

 Copyright © 2023 by Eric S. Roberts. All rights reserved.

Programming

in
Python

Eric S. Roberts

Charles Simonyi Professor of CS, emeritus, Stanford University
University Professor, Willamette University

CS 151

Willamette University
Spring 2023

 i

Contents
1 Introducing Python 1
 1.1 Data and types 2
 1.2 Numeric data 3
 1.3 Variables and assignment 8
 1.4 Functions 12
 1.5 Nonnumeric data 17
 1.6 Writing Python programs 23
 Summary 27
 Review questions 29
 Exercises 32

2 Control Statements 35
 2.1 Boolean data 37
 2.2 The if statement 43
 2.3 The while statement 44
 2.4 The for statement 50
 2.5 The assert statement 58
 Summary 60
 Review questions 62
 Exercises 63

3 Algorithmic Thinking 65
 3.1 Algorithms in history 67
 3.2 Devising your own algorithms 74
 3.3 Testing and debugging 81
 Summary 90
 Review questions 92
 Exercises 93

ii

4 Simple Graphics 97
 4.1 Your first graphics program 98
 4.2 Classes, objects, and methods 99
 4.3 Graphical objects 103
 4.4 The graphics window 113
 4.5 Creating graphical applications 115
 4.6 Decomposition 117
 4.7 Control structures and graphics 122
 4.8 Functions that return graphical objects 124
 Summary 125
 Review questions 127
 Exercises 128

5 Functions 137
 5.1 A quick review of functions 138
 5.2 The mechanics of function calls 141
 5.3 Libraries and interfaces 146
 5.4 The random library 148
 5.5 Creating your own libraries 155
 5.6 Inner functions 157
 5.7 Introduction to recursion 159
 Summary 169
 Review questions 171
 Exercises 172

6 Writing Interactive Programs 177
 6.1 First-class functions 178
 6.2 A simple interactive example 181
 6.3 Controlling properties of objects 183
 6.4 Responding to mouse events 189
 6.5 Timer-based animation 192
 6.6 Expanding the graphics library 196
 Summary 204
 Review questions 206
 Exercises 207

 iii

7 Strings 217
 7.1 Binary representation 218
 7.2 String functions and operators 225
 7.3 Common string patterns 229
 7.4 String methods 231
 7.5 Building string applications 234
 7.6 Formatting strings 242
 Summary 246
 Review questions 247
 Exercises 249

8 Lists 257
 8.1 Introduction to arrays and lists 258
 8.2 List methods 262
 8.3 List comprehensions 266
 8.4 Using lists for tabulation 268
 8.5 Using files 272
 8.6 Multidimensional arrays 280
 8.7 Image processing 281
 Summary 288
 Review questions 289
 Exercises 290

9 Searching and Sorting 297
 9.1 Searching 298
 9.2 Simple strategies for sorting 302
 9.3 Computational complexity 306
 9.4 Divide-and-conquer strategies 312
 9.5 Standard complexity classes 317
 9.6 The Quicksort algorithm 320
 9.7 A formal definition of big-O 326
 Summary 328
 Review questions 329
 Exercises 331

iv

10 Classes and Objects 337
 10.1 Records and tuples 338
 10.2 Representing points 347
 10.3 Rational numbers 352
 10.4 Operator overloading 357
 10.5 Implementing a token scanner 361
 Summary 358
 Review questions 369
 Exercises 370

11 Dictionaries and Sets 375
 11.1 Dictionaries 376
 11.2 Using dictionaries as records 385
 11.3 Designing an efficient dictionary 386
 11.4 Sets 398
 Summary 404
 Review questions 406
 Exercises 407

12 Designing Data Structures 415
 12.1 Abstract data types 416
 12.2 Representing real-world data 417
 12.3 Data-driven programs 425
 Summary 438
 Review questions 439
 Exercises 439

13 Inheritance 445
 13.1 Class hierarchies 446
 13.2 Defining an employee hierarchy 449
 13.3 Extending the graphics classes 453
 13.4 Decomposition and inheritance 456
 13.5 Unit testing 461
 13.6 Deciding when to use inheritance 464
 Summary 466
 Review questions 467
 Exercises 469

C H A P T E R 1
Introducing Python

It’s my belief that Python is a lot easier [to teach than] C or
C++ or Java . . . because all the details of the languages are
so much harder.

—Guido van Rossum

Guido van Rossum (1956–)

Guido van Rossum is a Dutch programmer best known as the inventor of the Python programming language.
Van Rossum has overseen the development of Python from its genesis in 1989 as a “hobby project” through
almost three decades of growing popularity. Van Rossum holds a Master’s degree in mathematics and
computer science from the University of Amsterdam. His career includes positions at prestigious research
labs, including the Centrum Wiskunde and Informatica in Amsterdam and the National Institute of Standards
and Technology in Washington, as well as at leading industrial corporations such as Google and Dropbox.

2 Introducing Python

Before you can appreciate the power of computing, you need to learn at least the
basics of a programming language. The programs in this text use a programming
language called Python, which was designed and implemented by Guido van
Rossum. Van Rossum explains that the name is a result of “being in a slightly
irreverent mood (and [being] a big fan of Monty Python's Flying Circus).”

Since its initial release in 1991, Python has since become one of the most popular
programming languages in use today, both in industry and academia. In particular,
Python is now the most common programming language in introductory computer
science courses.

Van Rossum explicitly designed Python to be easy to teach, as demonstrated by
the following design goals, which he included in a 1999 proposal entitled "Computer
Programming for Everybody":

• An easy and intuitive language just as powerful as major competitors

• Open source, so anyone can contribute to its development
• Code that is as understandable as plain English

• Suitability for everyday tasks, allowing for short development times

Although this text uses Python as its programming language, its focus is not on
the language itself but on the programs that you write using that language. It does
not try to cover all of Python and deliberately avoids some of its more exotic features.
Even so, the subset of Python it describes will give you the tools you need to write
exciting applications that use the best features of the Python language.

 1.1 Data and types
For much of their history, computing machines—even before the age of modern
computing—have worked primarily with numeric data. The computers built in the
mid 1960s were so closely tied to processing numeric data that they earned the
nickname number crunchers as a result. Information, however, comes in many
forms, and computers are increasingly good at working with data of many different
types. When you write programs that count or add things up, you are working with
numeric data. When you write programs that manipulate characters—typically
assembled into larger units such as words, sentences, and paragraphs—you are
working with string data. You will learn about these and many other data types as
you progress through this book.

In computer science, a data type is defined by two properties: a domain and a set
of operations. The domain is simply the set of values that are elements of that type.
For numeric data, the domain consists of numbers like 0, 42, -273, and 3.14159265.

 1.2 Numeric data 3

For string data, the domain comprises sequences of characters that appear on the
keyboard or that can be displayed on the screen. The set of operations is the toolbox
that allows you to manipulate values of that type. For numeric data, the set of
operations includes addition, subtraction, multiplication, and division, along with a
variety of more sophisticated functions. For string data, however, it is hard to imagine
what an operation like subtraction might mean. Using string data requires a different
set of operations, such as combining two strings to form a longer one or comparing
two strings to see if they are in alphabetic order. The general rule is that the set of
operations must be appropriate to the elements of the domain. The two components
together—the domain and the operations—define a data type.

 1.2 Numeric data
Computers today store data in so many exciting forms that numbers may seem a bit
boring. Even so, numbers are a good starting point for talking about data, mostly
because they are both simple and familiar. You’ve been using numbers, after all, ever
since you learned to count. Moreover, as you’ll discover in Chapter 7, all information
is represented inside the computer in numeric form.

Representing numbers in Python
One of the important design principles of modern programming languages is that
concepts that are familiar to human readers should be expressed in an easily
recognizable form. Like most languages, Python adopts that principle for numeric
representation, which means that you can write numbers in a Python program in much
the same way you would write them anywhere else.

In their most common form, numbers consist of a sequence of digits, optionally
containing a decimal point. Negative numbers are preceded by a minus sign. For
example, the following are all legal numbers in Python:

0 42 -273 3.14159265 -0.5 1000000

Note that large numbers, such as the value of one million shown in the last example,
are written without using commas to separate the digits into groups of three.

Numbers can also be written in a variant of scientific notation, in which the value
is represented as a number multiplied by a power of 10. To express a value in
scientific notation, you write a number in standard decimal notation, followed
immediately by the letter E and an integer exponent, optionally preceded by a + or -
sign. For example, the speed of light is approximately 2.9979 ´ 108 meters per
second, which can be written in Python as

2.9979E+8

4 Introducing Python

In Python’s scientific notation, the letter E is shorthand for times 10 to the power.

Like most languages, Python separates numbers into two classes: integers, which
represent whole numbers, and floating-point numbers, which contain a decimal point.
Integers have the advantage of being exact. Floating-point numbers, by contrast, are
approximations whose accuracy is determined by hardware limitations. Fortunately,
Python also defines its mathematical operators in a way that makes it less important
than it is in most languages to pay attention to the distinction between these two types
of numbers.

In addition to integers and floating-point numbers, Python defines a third type of
numeric data used to represent complex numbers, which combine a real component
and an imaginary component corresponding to the square root of –1. Although
complex numbers are beyond the scope of this text, the fact that Python includes
complex numbers as a fully supported, built-in type makes Python especially
attractive for scientific and mathematical applications in which complex numbers
play an important role.

Arithmetic expressions
The real power of numeric data comes from the fact that Python allows you to perform
computation by applying mathematical operations, ranging in complexity from
addition and subtraction up to highly sophisticated mathematical functions. As in
mathematics, Python allows you to express those calculations through the use of
operators, such as + and - for addition and subtraction.

If you want to understand how Python works, the best approach is to use the
Python interpreter, which is called IDLE. (Van Rossum claims that the name is an
acronym of Integrated DeveLopment Environment, but the common assumption is
that the name honors Monty Python’s Eric Idle.) IDLE allows you to enter Python
expressions and see what values they produce

To get a sense of how interactions with IDLE work, suppose that you want to solve
the following problem, which the singer-songwriter, political satirist, and
mathematician Tom Lehrer proposed in his song “New Math” in 1965:

To find the answer, all you have to do is enter the subtraction into IDLE, as follows:

Tom Lehrer

 1.2 Numeric data 5

This computation is an example of an arithmetic expression, which consists of a
sequence of values called terms combined using symbols called operators, most of
which are familiar from elementary-school arithmetic. The arithmetic operators in
Python include the following:

- a Negation (multiply a by –1 to reverse its sign)
a + b Addition (add a and b)
a - b Subtraction (subtract b from a)
a * b Multiplication (multiply a and b)
a / b True division (divide a by b)
a // b Floor division (a / b rounded down to the next integer)
a % b Remainder (compute the mathematical result of a mod b)
a ** b Exponentiation (raise a to the b power)

Although most of these operators should be familiar from basic arithmetic, the //

and % operators require additional explanation. Intuitively, these operators compute
the quotient and remainder, respectively, when one value divided by another. For
example, 7 // 3 has the value 2, because 7 divided by 3 leaves a whole number
quotient of 2. Similarly, 7 % 3 has the value 1, because 7 divided by 3 leaves a
remainder of 1. If one number is evenly divisible by another, there is no remainder,
so that, for example, 12 % 4 has the value 0.

Unlike almost every other programming language, Python defines // and % for
negative operands so that the result is consistent with mathematical convention. The
// operator computes the result by performing an exact division and then rounding
the result down to the next smaller integer. In mathematics, rounding a number down
to the closest integer is called computing its floor. For example, the expression -
9 // 5 has the value –2, because exact division produces –1.8, and the floor of –1.8
is –2. In computing the remainder, the % operator applies what mathematicians call
the mod operator, which always has the same sign as the divisor. The // and %
operators are related by the following equivalence:

x º (x // y) ´ y + x % y

Even though Python’s definition of these operators makes mathematicians happy,
the programs in this text use the // and % operators only with positive integers, where
the result corresponds to the notions of quotient and remainder that you learned in
elementary school. In part, the reason for this design decision is to avoid making
programming seem more mathematical than it in fact is. In addition, it is dangerous
to rely on how these operators behave with negative numbers because Python’s
definition—although it is clearly correct in mathematical terms—differs from how
remainders are defined in other languages. If you write a Python program that relies
on this behavior, it will be hard to translate that program into a language that uses a
different interpretation.

6 Introducing Python

Mixing types in an expression
Python allows you to mix integers and floating-point numbers freely in an expression.
If you do so, the type of the result depends both on the operator and the types of the
values to which it applies, which are called its operands. For almost all of Python’s
operators, the result is an integer if both operands are integers and a floating-point
number if either or both of its operands is floating-point. Thus, evaluating the
expression

17 + 25

produces the integer 42. By contrast, the expression

7.5 - 4.5

produces the floating-point value 3.0, even though the result is a whole number.

There are two exceptions to Python’s standard rule for combining types. The /
operator, which performs exact division, always returns a floating-point result, even
if both operands are integers. The ** operator is a bit more complicated. The result
is an integer if the left operand is an integer and the right operand is a nonnegative
integer. In any other case, the result is a floating-point value. For example, the
expression

2 ** 10

calculates 210 and therefore produces the integer 1024. The expression

2 ** -1

calculates 2–1, which is the floating-point number 0.5.

Precedence
Following the conventions of standard mathematics, multiplication, division, and
remainder are performed before addition and subtraction, although you can use
parentheses to change the evaluation order. For example, if you want to average the
numbers 4 and 7, you can enter the following expression into IDLE:

If you leave out the parentheses, Python first divides 7 by 2 and then adds 4 and 3.5
to produce the value 7.5, as follows:

 1.2 Numeric data 7

The order in which Python evaluates the operators in an expression is governed
by their precedence, which is a measure of how tightly each operator binds to its
operands. If two operators compete for the same operand, the one with higher
precedence is applied first. If two operators have the same precedence, they are
applied from left to right. The only exception is the exponentiation operator **,
which is applied from right to left. Computer scientists use the term associativity to
indicate whether an operator groups to the left or to the right. Most operators in
Python are left-associative, which means that the leftmost operator is evaluated first.
In Python, the only exception to this rule is the ** operator, which is right-associative
and groups from right to left.

Figure 1-1 shows a complete precedence table for the Python operators, many of
which you will have little or no occasion to use. As additional operators are
introduced in this book, you can look them up in this table to see where they fit in the
precedence hierarchy. Since the purpose of the precedence rules is to ensure that
Python expressions obey the same rules as their mathematical counterparts, you can
usually rely on your intuition. Moreover, if you are ever in any doubt, you can always
include parentheses to make the order of operations explicit.

8 Introducing Python

 1.3 Variables and assignment
When you write a program that works with data values, it is often convenient to use
names to refer to a value that can change as the program runs. In programming,
names that refer to values are called variables.

Every variable in Python has two attributes: a name and a value. To understand
the relationship of these attributes, it is best to think of a variable as a box with a label
attached to the outside, like this:

The name of the variable appears on the label and is used to tell different boxes apart.
If you have three variables in a program, each variable will have a different name.
The value corresponds to the contents of the box. The name of the box is fixed, but
you can change the value as often as you like.

You create a new variable in Python by assigning it a value in the context of an
assignment statement, which has the following form:

name = value

For example, if you execute the assignment statement

r = 10

Python will create a new variable named r and assign it the value 10, as follows:

As the word variable implies, the value of a variable is not fixed but can change
over the course of a program. For example, if you at some later point in a program
execute the assignment statement

r = 2.5

the value in the box will change as follows:

The value that appears to the right of the equal sign in an assignment statement
can be any Python expression. For example, you can compute the average of the
numbers 3, 4, and 5 using the following statement:

average = (3 + 4 + 5) / 3

 1.3 Variables and assignment 9

Shorthand assignment
Assignment statements are often used to modify the current value of a variable. For
example, you can add the value of deposit to balance using the statement

balance = balance + deposit

This statement takes the current value of balance, adds the value of deposit, and
then stores the result back in balance. Assignment statements of this form are so
common that Python allows you to use the following shorthand:

balance += deposit

Similarly, you can subtract the value of surcharge from balance by writing

balance -= surcharge

More generally, the Python statement

variable op= expression

is equivalent to

variable = variable op (expression)

The parentheses are included in this pattern to emphasize that the expression is
evaluated before op is applied. Such statements are called shorthand assignments.

Multiple assignment
In Python, both the left and right sides of an assignment statement can be lists
separated by commas. An assignment statement involving more than one value is
called a multiple assignment statement. The left side of a multiple assignment
statement is ordinarily a list of variables, and the right side is a list of expressions
with the same number of elements.

When Python encounters a multiple assignment statement, it assigns the value of
the first expression to the first variable, the value of the second expression to the
second variable, and so on. For example, the following is a legal assignment
statement in Python and has the effect of setting the variables a, b, and c to the values
3, 4, and 5, respectively:

a, b, c = 3, 4, 5

Python evaluates all the expressions on the right side of a multiple assignment
statement before it assigns any of the values. For example, the statement

10 Introducing Python

x, y = y, x

has the effect of exchanging the values of the variables x and y. Without multiple
assignment, exchanging the value of two variables requires storing one of the values
in a temporary variable so that its value is not lost when you perform the first
assignment. To achieve the same effect using standard assignment would therefore
require the following code:

tmp = x
x = y
y = tmp

Naming conventions
The names used for variables, functions, and so forth are collectively known as
identifiers. In Python, the rules for identifier formation are

1. The identifier must start with a letter or an underscore (_).
2. All other characters must be letters, digits, or underscores.
3. The identifier must not be one of the reserved keywords listed in 1-2.

Uppercase and lowercase letters appearing in an identifier are considered to be
different. Thus, the identifier ABC is not the same as the identifier abc.

You can make your programs more readable by using variable names that
immediately suggest the meaning of that variable. If r, for example, refers to the
radius of a circle, that name makes sense because it follows standard mathematical
convention. In most cases, however, it is better to use longer names that make it clear
to anyone reading your program exactly what value a variable contains. For example,
if you need a variable to keep track of the number of pages in a document, it is better
to use a name like number_of_pages than an abbreviated form like np.

When you use a name that consists of several English words, it is useful to adopt
some convention for marking the word divisions. The official Python style guide
recommends names like number_of_pages in which the individual words are

 1.3 Variables and assignment 11

separated by underscores. This style of separating words is called snake case,
presumably because the underscores lie flat on the baseline of the text. In accordance
with Python’s style guidelines, this text uses snake case for the names of functions,
variables, and methods.

For the names of classes, which are introduced beginning in Chapter 4, Python
uses a different strategy for marking word boundaries. This strategy is called camel
case, which marks word boundaries by using an uppercase letter at the beginning of
each embedded word. The name camel case comes from the fact that this style creates
humps in the middle of an identifier name. For example, one of the classes introduced
in Chapter 12 is called TokenScanner, in which the division between Token and
Scanner is marked using capitalization. This book also uses camel case for the names
of files, such as the AddTwoIntegers.py program file introduced later in this chapter.
Camel case is widely used in languages other than Python, so it is important to
become familiar with this style.

Constants
In addition to choosing meaningful variable names, you can make your programs
more readable by giving names to values that do not change as a program runs. Such
values are called constants. By convention, the names used to designate constant
values are written entirely in uppercase using underscores to indicate word
boundaries. For example, you can use the statement

SPEED_OF_LIGHT = 2.9979E+8

to assign a name to the specified value, which otherwise might be difficult for people
reading your program to recognize as the speed of light.

Unlike most modern languages, Python does not allow you to specify that the
value of a variable like SPEED_OF_LIGHT cannot be changed. The idea that this value
is a constant is instead a matter of convention. Constant names in Python are written
entirely in uppercase, adding underscores to indicate word boundaries.

Although it violates the spirit of constants to change their values while a program
is running, it is perfectly appropriate to use constants for values that you might want
to change over the development cycle of an application. The value of using constants
for this purpose is discussed in more detail in section 1.8.

Sequential calculations
The ability to define variables and constants makes arithmetic calculations easier to
follow, even in the IDLE interpreter. The following sequence of statements, for
example, compute an approximation of the area of a circle of radius 10, which is
accurate to the number of digits specified for the constant PI:

12 Introducing Python

 1.4 Functions
One of the most powerful features of any programming language is the ability to
define a function, which is a sequence of statements collected together under a single
name. Defining a function frees you from having to repeat the individual statements
each time you want to perform that computation. You instead specify the name of
the function, which invokes the entire sequence.

In computer science, the act of invoking a function by its name is referred to as
calling the function. As part of that operation, the caller can supply information in
the form of arguments, which are expressions computed at the time of the call. The
arguments to a function are enclosed in parentheses and appear after the function
name. Inside the function, each of the arguments is assigned to a variable called a
parameter. The function uses these parameters to compute a result, which is
delivered back to the caller. This process is called returning a result.

The term function is intended to evoke the similar concept in mathematics. As in
a programming language, functions in mathematics take data values enclosed in
parentheses and compute a result, which is typically written in the form of a
mathematical expression. As an example, the mathematical function

f (x) = x
2 – 5

expresses a relationship between the value of x and the value of the function. To find
the value of the function for a particular value of x, all you need to do is substitute
that value in for the variable x in the function definition. For example, you can
determine that the value of f (0) is –5 by substituting 0 for x in the function definition,
as follows:

f (0) = 0
2 – 5 = –5

Similarly, f (3) has the value 4:

f (3) = 3
2 – 5 = 4

In mathematics, functions are often represented using a graph that shows how the
value of a function changes with respect to the value of x. The graph for the function
f appears in the left margin.

 1.4 Functions 13

Defining functions
In Python, a function definition takes the form shown inside the shaded pattern in the
right margin, which is called a syntax box. Boldface text in a syntax box represents
the fixed portion of the pattern, which will always appear in precisely that form. Italic
text in a syntax box indicates the parts you can change for a particular instance of that
pattern. In this case, for example, a function must always begin with the keyword
def and include the parentheses and colon shown in the example. When you define
a new function, you are free to choose the name, the list of parameters, and the
statements that appear on subsequent lines. The first line of a syntactic pattern is
called the header line. The statements that appear after the header line are called the
body.

Python determines the extent of the body of a function using the indentation of the
code. Each statement in the body is indented four spaces with respect to the header
line. If statements within the body have their own contents, as you will discover in
Chapter 2, those statements use additional indentation to reflect the hierarchical
structure of the code.

Most functions will also include one or more return statements that specify the
value returned to the caller. This statement has the form shown on the right, where
exp can be any Python expression. When Python executes a return statement, it
evaluates the expression and then returns to the point at which the function was called,
substituting the computed value into the calling function.

Simple function examples
The details of defining a function are best introduced through examples. The
mathematical function f (x) = x

2 – 5 from page 12 has the following form in Python:

def f(x):
 return x ** 2 - 5

In this definition, x is the parameter variable, which is set by the argument passed by
the caller. For example, if you were to call f(2), the variable x would be set to the
value 2. The return statement specifies the computation needed to calculate the
result. Squaring x gives the value 4; subtracting 5 gives the final result of –1, which
is passed back to the caller.

You can define a function directly in the IDLE interpreter by typing its definition
and then entering a blank line to show that the function definition is complete. Once
you have defined the function, you can call it from IDLE by writing its name and
supplying the desired arguments, as shown in the following console session:

14 Introducing Python

Parameter variables and variables introduced in an assignment statement are
accessible only inside the function in which they appear. For this reason, those
variables are called local variables. By contrast, variables defined outside of a
function are global variables, which can be used anywhere in the program. As
programs get larger, using global variables makes those programs more difficult to
read and maintain. The programs in this book therefore avoid using any global
variables except for constants. Thus, it is reasonable to define SPEED_OF_LIGHT as a
global constant, but variables whose values might change should always be local.

You can use functions to compute values that come up in practical situations that
are largely outside of traditional mathematics. For example, if you travel outside the
United States, you will discover that the rest of the world measures temperatures in
Celsius rather than Fahrenheit. The formula to convert a Celsius temperature to its
Fahrenheit equivalent is

which you can easily translate into the following Python function:

def c_to_f (c):
 return 9 / 5 * c + 32

The use of the c_to_f function is illustrated in the following interaction with the
IDLE console:

 1.4 Functions 15

Built-in functions
Python defines more than 70 built-in functions that are always available for your
programs to call. Most of those functions are beyond the scope of this chapter—and
many are beyond the scope of this text—but the numeric functions in Figure 1-3 are
likely to come in handy. The following IDLE session gives you a sense of how these
functions work:

Library functions
Beyond the built-in functions, Python defines several collections of functions and
other useful definitions and makes those collections available as libraries. One of the
most useful libraries in Python is the math library, which includes several
mathematical definitions that come up often when you are writing programs, even
when those programs don’t seem particularly mathematical. Figure 1 -4at the top of
the next page lists several constants and functions available in the math library.

In Python, you gain access to the facilities of a library by importing that library.
To do so, you have two options. The first is to use an import statement to indicate
that your code would like to use the functions in that library using their fully qualified
names, which consist of the name of the library, a period (which programmers usually

16 Introducing Python

call a dot), and the name of the function. The following IDLE session illustrates the
use of this form of the import statement to calculate the square root of 2:

The second option is to use a from-import statement to incorporate one or more
functions directly into the current Python environment. This style of import allows
you to use the name of the library function without qualification, as follows:

 1.6 Storing programs in files 17

The choice of which of these options to use depends to some extent on what you
expect human readers of the program to understand. The advantage of the fully
qualified name is that readers know precisely where the function is defined. On the
other hand, if you are using mathematical functions extensively and expect any
readers of the program to be familiar with them, the second version is more concise.
The programs in this text use both styles.

 1.5 Nonnumeric data
So far, the programming examples in this chapter have worked only with numeric
data. These days, computers work less with numbers than with other forms of data.
Although you will have a chance to learn about many other data types as you go
through this text, learning a little bit about two common data types—strings and
lists—will expand the range of programs that you can write. You will learn more
about each of these types in a subsequent chapter, but this presentation will be enough
to get you started.

Strings
In today’s world, the most widely used type of data is string data, which is a generic
term for information composed of individual characters. The ability of modern
computers to process string data has led to the development of text messaging,
electronic mail, word processing systems, social networking, and a wide variety of
other useful applications.

Conceptually, a string is a sequence of characters taken together as a unit. As in
most modern languages, Python includes strings as a built-in type, indicated in a
program by enclosing the sequence of characters in quotation marks. For example,
the string "Python" is a sequence of six characters consisting of an uppercase letter
followed by five lowercase letters. The string "To be, or not to be" from Hamlet’s
soliloquy is a sequence of 19 characters including 13 letters, five spaces, and a
comma.

Python allows you to use either single or double quotation marks to specify a
string, but it is good practice to pick a style and then use it consistently. The programs
in this book use double quotation marks, mostly because that convention is common
across a wide range of programming languages. The only exception is when the string
itself contains a double quotation mark, as in '"', which specifies a one-character
string consisting of a double quotation mark. You can also include a quotation mark

18 Introducing Python

in a string by preceding it with a backslash character (\). Thus, you can also write
the one-character string containing a double quotation mark as "\"".

For the most part, you can use strings as a Python data type in much the same way
that you use numbers. You can, for example, assign string values to variables, just as
you do with numeric values. For example, the assignment

name = "Eric"

creates a variable called name and initializes it to the four-character string "Eric".

As with the numeric variables introduced earlier in the chapter, the easiest way to
represent a string-valued variable is to draw a box with the name on the outside and
the value on the inside, like this:

The quotation marks are not part of the string but are nonetheless included in box
diagrams to make it easier to see where the string begins and ends.

Similarly, you can create string constants, as in the following example:

ALPHABET = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

This statement defines the constant ALPHABET to be a string consisting of the 26
uppercase letters, as illustrated by the following box diagram:

Lists
The strings described in the preceding section consist of ordered sequences of
individual characters. The string "Eric", for example, is a sequence of the four
characters "E", "r", "i", and "c". Generically, programmers refer to sequences of
data values that appear in a fixed order as lists.

As human beings, we seem to delight in making lists. In 1998, the American Film
Institute polled 1500 leaders of the film industry and created a list of the top 100
American films of all time, of which the top ten entries appear in the sidebar in the
left margin. Lists are an example of a compound data type. The list itself is a value
in its own right, but it is also composed of individual components, which in this case
are strings.

Python makes it extremely easy to create a list. All you have to do is enclose the
elements of the list inside square brackets and separate the elements with commas.

 1.6 Storing programs in files 19

For example, you can define the constant AFI_TOP_TEN_FILMS using the following
declaration:

AFI_TOP_TEN_FILMS = [
 "Citizen Kane",
 "Casablanca",
 "The Godfather",
 "Gone with the Wind",
 "Lawrence of Arabia",
 "The Wizard of Oz",
 "The Graduate",
 "On the Waterfront",
 "Schindler's List",
 "Singing' in the Rain"
]

This declaration defines a list containing ten elements, each of which is a string. It
also illustrates an important convention about formatting long lines in Python. In
Python, the end of a statement is indicated by the end-of-line character, which is
typically labeled as RETURN or ENTER on the keyboard. If you want to break a long
statement across multiple lines to make it more readable, you ordinarily need to
precede each line break with a backslash character (/). Python, however, makes an
exception to this rule in the case of code enclosed within parentheses, square brackets,
or curly braces, in which case the backslash character is not required. In the definition
of AFI_TOP_TEN_FILMS, for example, all the strings are enclosed inside the square
brackets that create the list, so the backslash characters do not appear.

The elements of a list can be of any type. The following definition creates a list
containing the five integers 4, 6, 8, 12, and 20:

PLATONIC_SOLIDS = [4, 6, 8, 12, 20]

If you are a fan of classical mathematics (or, alternatively, role-playing games that
use a variety of oddly shaped dice), you may recognize these values as the number of
sides of the only three-dimensional shapes in which the faces are identical polygons
with equal angles and side lengths. These shapes are the regular polyhedra, which
are also known as the Platonic solids in honor of Plato’s identification of them as the
only shapes whose perfect symmetry revealed the beauty of the universe.

Operations on sequences
In Section 1.1, you learned that data types are defined by two properties: a domain
and a set of operations. For strings, the domain is the set of all sequences of
characters. For lists, the domain is the set of all sequences of Python values. Since
both strings and lists are sequences, it is not surprising that the operations they support

20 Introducing Python

are similar. In fact, Python does a better job than most languages to ensure that the
operations on these types adopt the same conventions, making those operations easier
to learn and use.

In Python, most operations on sequences are defined using an object-oriented
model of programming, which you will learn more about in later chapters. For the
moment, it is sufficient to learn just three operations:

1. Selecting an element from a sequence.

2. Joining two sequences together end to end, which is called concatenation.

3. Determining the length of a sequence.

In Python, the elements of a sequence—whether those elements are characters in
a string or values in a list—are numbered starting with 0. For example, the elements
of the list PLATONIC_SOLIDS are numbered like this:

In computer science, each element number in a list is called the index of the
corresponding element. You select an individual element from a sequence by writing
the name of the sequence, followed by the index number enclosed in square brackets.
Thus, PLATONIC_SOLIDS[3] selects the value 12.

Python specifies concatenation using the + operator, which is also used to indicate
addition for numbers. When Python evaluates the + operator, it first checks the types
of the operands. If both operands are numeric, Python interprets the + operator as
addition. If both operands are sequences, Python interprets the + operator as
concatenation. For example, the expression

2 + 2

has the value 4, because both of the operands to + are numbers. Conversely,

"abc" + "def"

produces the six-character string "abcdef".

In this example, it is important to observe that using the concatenation operator
with strings does not introduce a space character or any other separator between the
words. If you want to combine two strings into a single string that represents two
distinct words, you have to include the space explicitly. For example, assuming that
the variable greeting contains the string "Hello" and the variable name contains
the string "Eric", the expression

 1.6 Storing programs in files 21

greeting + " " + name

produces the ten-character string "Hello Eric".

Some languages—most notably Java and JavaScript—define the + operator so that
it allows you to combine a string with other types. If at least one of the operands to
+ is a string, those languages automatically convert the other to its string form. In
Python, you must specify this conversion explicitly using the built-in function str,
which converts values of any type to their string form as a sequence of characters.
For example, calling str(1729) returns the four-character string "1729". Similarly,
calling str(12.50) returns the string "12.5". The string value does not include the
trailing zero that appears in the call, because Python interprets 12.50 as a number
rather than as a string of digits. As a number, 12.50 has the value 12.5.

The str function therefore makes it possible to concatenate values of any type
into a string expression. For example, the expression

"Fahrenheit " + str(451)

produces the string "Fahrenheit 451" because the built-in str function converts the
numeric value 451 to the string "451" before combining the strings together.

Modern versions of Python, however, make it easy to assemble a string from
values of different types by using a new feature called an f-string, which stands for
formatted string. Formatted strings are so marvelously useful that it makes sense to
introduce them in a simple form here, deferring the details of their operation to
Chapter 7.

When Python encounters an f-string indicated by writing the letter f before the
opening quotation mark, it looks inside the string for any expressions enclosed in
curly braces and replaces each of those expressions with its value, performing any
necessary string conversion automatically. For example, you can insert the value of
the variable temperature after the word "Fahrenheit" using the following f-string:

f"The answer is {temperature}."

If temperature contains the integer 451, Python would interpret this string as
"Fahrenheit 451", which is the title of a Ray Bradbury novel. If temperature
instead contains the integer 911, the value would be "Fahrenheit 911", the title of
a film by Michael Moore. Formatted strings are particularly useful in conjunction
with calls to the print function, which you will learn about in Chapter 2.

Python also includes built-in functions that make it possible to convert strings that
represent numbers into their numeric counterparts. If you give it a string argument,
the int function tries to convert that string to an integer by checking to see that the

22 Introducing Python

value is a string of digits, possibly preceded by a minus sign. Thus, calling
int("1729") produces the integer value 1729. Similarly, the float function
converts a string representing a floating-point number into its numeric counterpart,
so that float("12.50") produces that value 12.5. If you pass int or float a string
that cannot be interpreted as a number of the appropriate type, Python signals that an
error has occurred.

In Python, you can determine the length of any sequence by calling the built-in
function len. For example, if you have initialized ALPHABET as shown on page 18,
calling len(ALPHABET) returns the value 26. Similarly, calling len("") returns the
value 0, because the string "" contains no characters between the quotation marks.
The string containing no characters at all is called the empty string. As you will
discover in Chapter 7, the empty string comes up frequently when you are writing
programs to manipulate string data.

Writing simple string functions
Although you will need the additional operations from Chapter 7 to write anything
more than the simplest string functions, it is worth looking at a few examples that use
only the concatenation operator.

The following function

def double_string(s):
 return s + s

returns two copies of the supplied string joined together. This function enables the
following IDLE session:

This screen transcript also includes two features that illustrate how the IDLE
interpreter works with strings. First, the IDLE interpreter displays string values using
single quotation marks rather than the double-quoted strings used in the text. Second,
the IDLE sessions—along with code in figures or indented text blocks but not in text
paragraphs—uses syntax coloring, in which different components of a program
appear in different colors. Keywords appear in orange, built-in functions appear in
purple, strings appear in green, and console output appears in blue.

 1.6 Storing programs in files 23

 1.6 Writing Python programs
The program examples you have seen so far define functions by typing them directly
into the IDLE interpreter. In practice, experienced programmers rarely type more
than a few lines into an interactive interpretive environment like IDLE. What they
do instead is use an editor, which is an application that allows you to create and
modify files on your computer, to create files that define simple programs in their
entirety or logically connected parts of a larger program. Those files are called
modules. In Python, the names of files containing modules end with the suffix .py.

As an example, Figure 1-5 combines the definition of the function c_to_f from
page 14 with the corresponding definition of a function f_to_c into a single module
stored in a file called temperature.py. The code in Figure 1-5 illustrates two new
features of Python, both of which are important for writing programs that are easy to
understand and maintain. The first line of temperature.py is an example of a
comment, which consists of text designed to explain the operation of the program to
human readers. In Python, comments begin with the hashtag character (#) and extend
through the end of the line. Here—as in the first line of all modules used in this text—
the comment specifies the name of the file in which the code appears.

The other new feature is the text that appears in green in Figure 1-5, which is used
in three different places in the code. These text strings are also comments for the
reader, but are written in a different way. Each one begins with three quotation marks
on a line, continues with any number of text lines, and then ends with another line of
three quotation marks. In Python, these bits of commentary are called docstrings. It

24 Introducing Python

is good programming practice to include a docstring at the beginning of each module
or function to describe its operation.

Once you have created a module, you can use it with the IDLE interpreter in
exactly the same way that you use one of the standard libraries. You use an import
statement—which may appear in either the import or from-import form—to
acquire the definitions you need, which you can then use in your own code.

The following IDLE session shows how to load the c_to_f and f_to_c functions
from the temperature module and then use them in expressions:

Specifying a start-up function
The ability to store programs in files also makes it possible to run Python programs
without using the IDLE interpreter. The details for doing so differ slightly depending
on what type of machine you’re using, but the idea is the same. You need to open up
a command window—which is called the shell on Unix systems, the Terminal
application on the Macintosh, and Command Prompt on Windows—and then use the
command window to invoke the Python interpreter on your program file. Again, the
precise syntax for the command line may differ from machine to machine, but the
following command is typical:

python3 name.py

where name is the name of the Python module you want to run.

Once you have entered this command, the Python interpreter takes over and reads
in the contents of the specified module, just as if you typed those lines into IDLE. A
typical module includes assignment statements and function definitions but must also
include some code after those definitions to get the program running.

Although you could start the program by including an explicit function call at the
end of the program file, doing so makes it difficult to use the program module as part
of another application. By convention, what Python programmers do instead is add
the following lines to the end of the program file, where function is the name of the
function that starts the program:

 1.6 Storing programs in files 25

if __name__ == "__main__":
 function()

The rather cryptic line at the beginning of this code fragment tests to see if this module
is being invoked directly as a command or if it has been loaded as a library. To do
so, it relies on the fact that Python initializes the variable __name__ to the name of
the module. If a module is invoked from the command line, this variable contains the
string "__main__". In this case, the Python interpreter calls the specified function.
If the module has been loaded as a library, that call is skipped.

At this point, you shouldn’t worry if you don’t understand exactly what the startup
code at the end of a program file does. Code patterns that always appear in a specific
form are often called boilerplate. In general, it is more important simply to memorize
the boilerplate than to learn precisely how it works.

Communicating with the user
Most application programs need to interact with the user in some way. Modern
applications typically communicate with the user through a graphical user interface
or GUI. Although you will have the opportunity to design simple graphical user
interfaces beginning in Chapter 6, it is much easier to begin with an older style of
interaction in which users communicate with applications through a console. The
application asks the user to enter values by typing on the keyboard, after which the
application performs some calculations and then displays the results on the screen.
Generically, the information the user enters is called input, and the information
displayed back to the user is called output.

When you are first learning to program, it is essential to appreciate the distinction
between the way that functions communicate within a program and the way in which
an application communicates with a user. Functions communicates with one another
by passing arguments and returning results. Applications communicate with the user
by calling input and output functions, which for the console are the input and print
functions described later in this section. If you are asked on an assignment or an
exam to write a function that takes in some number of values and returns a result, that
function will not ordinarily include calls to the input and print functions.

Console applications often require the user to enter information on the keyboard
and then use the input data to compute some result. Python uses the built-in function
input for this purpose. The input function takes a string argument, which is then
displayed on the console so that the user knows what information the program needs.
This string is called a prompt. After printing the prompt, the input function waits
for the user to type in a line of text and then pressing the RETURN key. The input
function than returns that string to the caller, as illustrated in the following IDLE
session:

26 Introducing Python

Even though the input function always returns a string, you can use it in
conjunction with the built-in functions int and float to read in numeric values. If,
for example, you want to read an integer from the user and store that value in the
variable n, you can use the following code:

n = int(input("Enter an integer? "))

Console output uses the built-in function print, which takes one or more
arguments and then prints each one on the console, separated by spaces. For example,
if the variable answer contains the number 42, executing the statement

print("The answer is", answer)

generates the output

where the space between the string and the number 42 is supplied by the comma in
the print call.

In most cases, however, it makes more sense to use Python’s f-string feature to
generate the output string. As an example, you could rewrite this statement to use an
f-string like this:

print(f"The answer is {answer}")

Console input and output are illustrated in more detail in the AddTwoIntegers.py
program in Figure 1-6 at the top of the next page, which reads two integers from the
user and then displays the result. If you run AddTwoIntegers.py from the command
line, Python will call the add_two_integers function, which generates a console
transcript that looks something like this:

 Exercises 27

 Summary
In this chapter, you have started your journey toward programming in Python by
learning how to write simple expressions involving a few important data types
including integers, floating-point numbers, and strings. Important points introduced
in the chapter include:

• The primary focus of this book is not the Python language itself but rather the

principles you need to understand the fundamentals of programming.

• Data values come in many different types, each of which is defined by a domain
and a set of operations.

• Integers in Python are written as a string of decimal digits optionally preceded by
a minus sign.

• Floating-point numbers in Python are written in conventional decimal notation.
Python also allows you to write numbers in scientific notation by adding the letter
E and an exponent indicating the power of 10 by which the number is multiplied.

• Expressions consist of individual terms connected by operators. The
subexpressions to which an operator applies are called its operands.

• The order of operations is determined by rules of precedence. The complete table
of operators and their precedence appears in Figure 1-1 on page 7.

• Variables in Python have two attributes: a name and a value. Variables used in a
Python program are created using an assignment statement in the form

variable = expression

28 Introducing Python

which establishes the name and value of the variable. You can subsequently use
assignment statements to change the value of an existing variable. When you
assign a new value to a variable, any previous value is lost.

• Python includes an abbreviated form of assignment in which the statement

variable op= expression

acts as a shorthand for the longer expression

variable = variable op (expression)

• Python allows multiple assignments within the same statement, as in

a, b, c = 3, 4, 5

which assigns a, b, and c the values 3, 4, and 5, respectively. The values of the
expressions on the right hand side are evaluated before any assignments are made,
so that

x, y = y, x

exchanges the values of the variables x and y.

• Variable names that include more than one word can be hard to read unless you
mark the word divisions in some way. The programs in this text follow the
standard Python convention of using snake case in the names of variables,
functions, and methods, in which the individual words are separated by
underscores, as in the variable name number_of_pages. Class names, which will
be introduced in subsequent chapters, use a different style convention called camel
case, in which each word embedded in the name starts with an uppercase letter, as
in the class name GFillableObject.

• Constants are used to specify values that do not change within a program. By
convention, you write the names of constants entirely in upper case, using the
underscore to mark word boundaries.

• A function is a block of code that has been organized into a separate unit and given
a name. Other parts of the program can then call that function, possibly passing
it arguments and receiving a result returned by that function.

• Variables that are assigned values inside the body of a function are called local
variables and are visible only inside that function. Variables defined outside of a
function are global variables, which can be used anywhere in the program. This
book avoids global variables, because they make programs harder to maintain.

• A function that returns a value must have a return statement that specifies the
result. Functions may return values of any type.

• Python predefines a set of built-in functions that are always available for use in
programs. Figure 1-3 lists several of the more important ones.

 Exercises 29

• Python’s math library defines a variety of functions that implement such standard
mathematical functions as sqrt, sin, and cos. A list of the more common
mathematical functions appears in Figure 1-4 on page 16.

• Before you use a function defined in a library, you must import that library.
Python supports two strategies for importing functions from libraries. The import
statement allows you to use a library function by specifying its fully qualified
name. The import-from statement allows you to import specific functions from
a library, which you can then use without including the library name.

 • A string is a sequence of characters taken together as a unit. In Python, you write
a string by enclosing its characters in quotation marks. Python accepts either
single or double quotation marks for this purpose.

• Although strings support many additional operations that will be presented in
Chapter 7, the examples in this chapter and the next few chapters use only the +
operator to concatenate string values along with the built-in functions len, str,
int, and float.

• Although you can use concatenation to combine strings with values of other types,
doing so is not as convenient as using f-strings. An f-string begins with the letter
f before the opening quotation mark and signifies that Python should substitute
the corresponding value for any expressions enclosed in curly braces.

• A list is a sequence of Python values taken together as a unit. In Python, you write
a list by enclosing its elements in square brackets.

• Strings and lists are both examples of sequences in Python. Each element of a
sequence is assigned an index number starting with 0. You can select an element
from a sequence by enclosing the index in square brackets after the sequence.

• Python programs are often stored in files called modules. As with functions
defined in a library, you can use the facilities defined in a module by importing
those definitions into your own computation.

• Python applications typically define a startup function using the following pattern:

if __name__ == "__main__":
 function()

• Functions in Python communicate by passing arguments and returning results.
Console applications communicate with the user through the built-in functions
input and print.

 Review questions
1. What are the two attributes that define a data type?

2. What is the difference between an integer and a floating-point number?

30 Introducing Python

3. Identify which of the following are legal numbers in Python:

a) 42 g) 1,000,000
b) -17 h) 3.1415926
c) 2+3 i) 123456789
d) -2.3 j) 0.000001
e) 20 k) 1.1E+11
f) 2.0 l) 1.1X+11

4. Rewrite the following numbers using Python’s form for scientific notation:

a) 6.02252 ´ 1023
b) 29979250000.0
c) 0.00000000529167
d) 3.1415926535

By the way, each of these values is an approximation of an important scientific
or mathematical constant: (a) Avogadro’s number, which is the number of
molecules in one mole of a chemical substance; (b) the speed of light in
centimeters per second; (c) the Bohr radius in centimeters, which is the average
radius of an electron’s orbit around a hydrogen atom in its lowest-energy state;
and (d) the mathematical constant π.

5. Indicate which of the following are legal variable names in Python:

a) x g) total output
b) formula1 h) a_very_long_variable_name
c) average_rainfall i) 12_month_total
d) %correct j) marginal-cost
e) pass k) b4hand
f) pass2 l) _stk_depth

6. In your own words, describe the effect of the /, //, and % operators in Python?

7. True or false: The - operator has the same precedence when it is used before an
operand to indicate negation as it does when it is used to indicate subtraction.

8. By applying the appropriate precedence rules, calculate the result of each of the
following expressions:

a) 6 + 5 / 4 - 3
b) 2 + 2 * (2 * 2 - 2) % 2 / 2
c) 10 + 9 * ((8 + 7) % 6) + 5 * 4 % 3 * 2 + 1
d) 1 + 2 + (3 + 4) * ((5 * 6 % 7 * 8) - 9) - 10

9. What shorthand assignment statement would you use to multiply the value of the
variable salary by 2?

 Exercises 31

10. How can you use multiple assignment to exchange the values of the variables x
and y? How would you achieve the same effect using traditional assignment
statements?

11. What is the value of each of the following expressions:

a) round(5.99)
b) math.floor(5.99)
c) math.ceil(5.99)
d) math.floor(-5.99)
e) math.sqrt(3 ** 2 + 4 ** 2)

12. What is meant by the terms snake case and camel case?

13. How do you specify a string value in Python?

14. What is an f-string, and how do you specify one in Python?

15. If a string is stored in the variable s, how would you determine its length?

16. How would you create a constant DWARVES containing the names of the seven
Disney dwarves (Bashful, Doc, Dopey, Grumpy, Happy, Sleepy, and Sneezy)?

17. What index expression would you use to select the name Happy from the
DWARVES list defined in the previous question.

18. What is meant by the term concatenation?

19. How does Python decide whether to interpret the + operator as addition or
concatenation?

20. What is the format of the startup boilerplate used to specify the starting function
in a Python application?

21. In your own words, describe the difference between communicating information
using arguments and results as opposed to communicating information using the
input and print functions.

22. What is a prompt?

22. How would you ask the user to enter a floating-point number signifying the
radius of a circle?

23. How would you rewrite the following f-string using concatenation, assuming that
the values of the variables n1 and n2 are integers:

print(f"The sum of {n1} and {n2} is {n1 + n2}.")

32 Introducing Python

 Exercises
1. How would you implement the following mathematical function in Python:

f (x) = x
2 – 5x + 6

2. According to mathematical historians, the German mathematician Carl Friedrich

Gauss (1777–1855) began to show his mathematical talent at a very early age.
When he was in primary school, Gauss was asked by his teacher to compute the
sum of the first 100 integers. Gauss is said to have produced the answer instantly
by working out that the sum of the first N integers is given by the formula

Write a function sum_first_n_integers that takes an integer n and returns the
sum of the first n integers, as illustrated in the following sample run:

3. Write a function triangle_area that computes the area of a triangle given

values for its base and its height, as ahown in the following diagram:

Given any triangle, the area is always one half of the base times the height.

4. Write a function distance that calculates the distance from the origin to the

point whose coordinates are given by the parameters x and y. The formula for
calculating this distance, traditionally attributed to the Greek philosopher
Pythagoras in the 6th century BCE, is illustrated in the following diagram:

Carl Friedrich Gauss

 Exercises 33

5. Write a function plural(word) that adds the string "s" to the end of the word
to create a simple plural form. This strategy, of course, does not work for all
English words, many of which require adding "es" instead of "s" depending on
the final consonant. You will have a chance to solve that more sophisticated
problem in Chapter 7.

6. Write a function quote(s) that uses concatenation to add a double quotation

mark to each end of the string s.

7. It is a beautiful thing, the destruction of words.
—Syme in George Orwell’s 1984

In Orwell’s novel, Syme and his colleagues at the Ministry of Truth are engaged
in simplifying English into a more regular language called Newspeak. As Orwell
describes in his appendix entitled “The Principles of Newspeak,” words can take
a variety of prefixes to eliminate the need for the massive number of words we
have in English. For example, Orwell writes,

Any word—this again applied in principle to every word in the language—
could be negatived by adding the affix un-, or could be strengthened by the
affix plus-, or, for still greater emphasis, doubleplus-. Thus, for example,
uncold meant “warm,” while pluscold and doublepluscold meant,
respectively, “very cold” and “superlatively cold.”

Define three functions—negate, intensify, and reinforce—that take a
string and add the prefixes "un", "plus", and "double" to that string,
respectively. Your function definitions should allow you to generate the
following console session:

8. Use the temperature.py module as a model to design and implement a new

module called metric.py that defines the following functions:

• A function miles_to_kilometers that takes a value representing a distance
in miles and returns the corresponding distance in kilometers.

• A function feet_and_inches_to_centimeters that takes two arguments
(feet and inches) and returns the equivalent distance in centimeters.

34 Introducing Python

Your module should define the following constants and use them to perform the
conversions:

FEET_PER_MILE = 5280
CENTIMETERS_PER_INCH = 2.54
INCHES_PER_FOOT = 12
CENTIMETERS_PER_METER = 100
METERS_PER_KILOMETER = 1000

Test your implementation by importing this module into IDLE and verifying the
following conversions:

• The standard distance for a marathon is 26.2 miles, which is approximately
42.165 kilometers.

• Eight feet and four inches represents a total length of 100 inches, which
corresponds to 254 centimeters.

9. Rewrite the temperature.py module so that it includes a main program that

asks the user for a Fahrenheit temperature and then displays the Celsius
equivalent.

10. Write a program called AverageThreeNumbers.py that asks the user to enter

three floating-point numbers and then computes their average. A sample run of
this program from the command line might look like this:

11. Write a function digit_name that takes an integer between 0 and 9 and returns

the English word for that digit as a string. For example, calling digit_name(7)
should return the string "seven". The easiest way to implement this function
given the facilities of Python you know is to put the strings for the ten digits into
a constant list and then have the function select the appropriate element from the
list.

C H A P T E R 2
Control Statements

I had a running compiler and nobody would touch it. . . .
They carefully told me, computers could only do
arithmetic; they could not do programs.

— Grace Murray Hopper, as quoted in
Charlene Billings, Grace Hopper: Navy
Admiral and Computing Pioneer, 1989

Grace Murray Hopper (1906–1992)

Grace Murray Hopper studied mathematics and physics at Vassar College and went on to earn her Ph.D. in
mathematics at Yale. During the Second World War, Hopper joined the United States Navy and was posted
to the Bureau of Ordinance Computation at Harvard University, where she worked with computing pioneer
Howard Aiken. Hopper became one of the first programmers of the Mark I digital computer, which was one
of the first machines capable of performing complex calculations. Hopper made several contributions to
computing in its early years and was one of the major contributors to the development of the language
COBOL, which continues to have widespread use in business programming applications. In 1985, Hopper
became the first woman promoted to the rank of admiral. During her life, Grace Murray Hopper served as
the most visible example of a successful woman in computer science. In recognition of that contribution,
there is now an annual Celebration of Women in Computing, named in her honor.

36 Control Statements

In Chapter 1, you saw several examples of simple Python functions. In each of those
examples, execution of the function started with the first statement in its body and
then continued through the remaining statements in order, possibly calling other
functions along the way. Before you can write more interesting applications, you
need to learn how to control the operation of your program in more sophisticated
ways.

This chapter introduces new statement forms that enable you to change the way in
which Python executes your programs. Collectively, these statements are called
control statements. Control statements fall into the following two classes:

1. Conditional statements. Conditional statements specify that certain statements

in a program should be executed only if a particular condition holds. In Python,
you specify conditional execution using an if statement, which exists in several
forms. The last section in this chapter also introduces the assert statement,
which makes it easy to write simple test programs.

2. Iterative statements. Iterative statements specify that certain statements in a
program should be executed repeatedly, forming what programmers call a loop.
Python supports two iterative statements: a while statement that allows you to
repeat a set of statements as long as some condition holds, and a for statement
that allows you to repeat a set of statements a certain number of times or for each
item in some collection.

Students often believe that there must be some rule that determines when they

need to use each of the various control statements a programming language provides.
That’s not how programming works. Control statements are tools for solving
problems. Before you can determine what control statement makes sense in a
particular context, you have to give serious thought to the problem you are trying to
solve and the strategy you should choose to solve it. You write the code for a program
after you have decided how to solve the underlying problem. There is nothing
automatic about the programming process.

The fact that there are no magic rules that turn a problem statement into a working
program is what makes programming such a valuable skill. If it were possible to
create programs by following some well-defined procedure, it would be easy to
automate the process and eliminate the need for programmers entirely. Programming
consists of solving problems, many of which are extremely complex and require
considerable ingenuity and creativity to solve. Solving such problems is what makes
computer programming hard; it is also what makes programming interesting and fun.

 2.1 Boolean data 37

 2.1 Boolean data
In Python, you express conditions by constructing expressions whose values are
either true or false. Such expressions are called Boolean expressions, after the
English mathematician George Boole, who developed an algebraic approach for
working with data of this type. Boolean values are represented in Python using a
built-in type whose domain consists of exactly two values: True and False.

Python defines several operators that work with Boolean values. These operators
fall into two classes—relational operators and logical operators—as described in the
next two sections.

Relational operators
The simplest questions you can ask in Python are those that compare two data values.
You might want, for example, to determine whether two values are equal or whether
one is greater than or smaller than another. Traditional mathematics uses the
operators =, ≠, <, >, ≤, and ≥ to signify the relationships equal to, not equal to, less
than, greater than, less than or equal to, and greater than or equal to, respectively.
Because several of these symbols don’t appear on a standard keyboard, Python
represents these operators in a slightly different form, which uses the following
character combinations in place of the usual mathematical symbols:

== Equal to
!= Not equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to

Collectively, these operators are called relational operators because they test the

relationship between two values. Like the arithmetic operators introduced in Chapter
1, relational operators appear between the two values to which they apply. For
example, if you need to check whether the value of x is less than 0, you can use the
expression x < 0.

Logical operators
In addition to the relational operators, which take values of any type and produce
Boolean results, Python defines three operators that take Boolean operands and
combine them to form other Boolean values:

not Logical not (True if the following operand is False)
and Logical and (True if both operands are True)
or Logical or (True if either or both operands are True)

George Boole

38 Control Statements

These operators are called logical operators and are listed in decreasing order of
precedence.

Although the operators and, or, and not correspond to the English words and, or,
and not, it is important to remember that English is somewhat imprecise when it
comes to logic. To avoid that imprecision, it helps to think of these operators in a
more formal, mathematical way. Logicians define these operators using truth tables,
which show how the value of a Boolean expression changes as the values of its
operands change. For example, the truth table for the and operator, given Boolean
values p and q, is

The last column of the table indicates the value of the Boolean expression p and q,
given the individual values of the Boolean variables p and q shown in the first two
columns. Thus, the first line in the truth table shows that when p is False and q is
False, the value of the expression p and q is also False.

The truth table for or is

Even though the or operator corresponds to the English word or, it does not indicate
one or the other, as it often does in English, but instead indicates either or both, which
is its mathematical meaning.

The not operator has the following simple truth table:

If you need to determine how a more complex logical expression operates, you can
break it down into these primitive operations and build up a truth table for the
individual pieces of the expression.

 2.1 Boolean data 39

In most cases, logical expressions are not so complicated that you need a truth
table to figure them out. The only case that often causes confusion is when the not
operator comes up in conjunction with and or or. When English speakers talk about
situations that are not true (as is the case when you work with the not operator), a
statement whose meaning is clear to human listeners is often at odds with
mathematical logic. Whenever you find that you need to express a condition
involving the word not, you should use extra care to avoid errors.

As an example, suppose you wanted to express the idea “x is not equal to either 2
or 3” as part of a program. Just reading from the English version of this conditional
test, new programmers are likely to code this expression as follows:

x != 2 or x != 3

As noted in Chapter 1, this book uses the bug symbol to mark sections of code that
contain deliberate errors. In this case, the problem is that an informal English
translation of the code does not correspond to its interpretation in Python. If you look
at this conditional test from a mathematical point of view, you can see that the
expression is True if either (a) x is not equal to 2 or (b) x is not equal to 3. No matter
what value x has, one of the statements must be True, since, if x is 2, it cannot also
be equal to 3, and vice versa.

To fix this problem, you need to refine your understanding of the English
expression so that it states the condition more precisely. That is, you want the
condition to be True whenever “it is not the case that either x is 2 or x is 3.” You
could translate this expression directly to Python by writing

not (x == 2 or x == 3)

but the resulting expression would be a bit ungainly. The question you really want to
ask is whether both of the following conditions are True:

• x is not equal to 2, and

• x is not equal to 3.

If you think about the question in this form, you can write the test as

x != 2 and x != 3

This simplification is a specific illustration of the following more general relationship
from mathematical logic:

not (p or q) is equivalent to not p and not q

40 Control Statements

for any logical expressions p and q. This transformation rule and its symmetric
counterpart

not (p and q) is equivalent to not p or not q

are called De Morgan’s laws after the British mathematician Augustus De Morgan.
Forgetting to apply these rules and relying instead on the English style of logic can
lead to programming errors that are difficult to find.

Short-circuit evaluation
Python interprets the and and or operators in a way that differs from the interpretation
used in many other programming languages. In the programming language Pascal,
for example, evaluating these operators requires evaluating both halves of the
condition, even when the result can be determined partway through the process.

The designers of Python (or, more accurately, the designers of earlier languages
that influenced Python’s design) took a different approach that is usually more
convenient for programmers. Whenever Python evaluates an expression of the form

exp1 and exp2

or

exp1 or exp2

the individual subexpressions are always evaluated from left to right, and evaluation
ends as soon as the answer can be determined. For example, if exp1 is False in the
expression involving and, there is no need to evaluate exp2 since the final answer will
always be False. Similarly, in the example using or, there is no need to evaluate the
second operand if the first operand is True. This style of evaluation, which stops as
soon as the answer is known, is called short-circuit evaluation.

A primary advantage of short-circuit evaluation is that it allows one condition to
control the execution of a second one. In many situations, the second part of a
compound condition is meaningful only if the first part comes out a certain way. For
example, suppose you want to express the combined condition that (1) the value of
the integer x is nonzero and (2) x divides evenly into y. You can express this
conditional test in Python as

(x != 0) and (y % x == 0)

because the expression y % x is evaluated only if x is nonzero. The corresponding
expression in Pascal fails to generate the desired result, because both parts of the
Pascal condition will always be evaluated. Thus, if x is 0, a Pascal program
containing this expression will end up dividing by 0 even though it appears to have a

Augustus De Morgan

 2.1 Boolean data 41

conditional test to check for that case. Conditions that protect against evaluation
errors in subsequent parts of a compound condition, such as the conditional test

(x != 0)

in the preceding example, are called guards.

Avoiding fuzzy standards of truth
In the programs included in this book, every conditional test produces a Boolean
value, which means that it will always be either True or False. Unfortunately, the
Python language is rather less disciplined on this point. Python defines the following
values (a couple of which you have not yet seen) to be falsy, presumably to imply
that they are like the legitimate Boolean value False:

False, 0, None, math.nan, and any sequence of length 0 including ""

Conversely, Python defines any other value to be truthy. In any conditional context,
any “falsy” value is treated as if it were the value False; any “truthy” value is treated
as if it were the value True.

The complexity of this situation is increased further by the fact that the and and
or operators are implemented so that they allow operands to be of any type. When
Python evaluates a sequence of expressions joined together by the and operator, it
returns the first falsy value in the sequence, so that the expression

0 and True

returns the integer 0, because 0 is falsy and thus determines the value of the entire
expression. Conversely, a sequence of expressions joined together by the or operator
returns the first truthy value in the sequence.

Overly clever programmers will find uses for Python’s rather convoluted
interpretation of Boolean values. If, however, you want to write programs that are
easy to read and maintain, you should avoid relying on these fuzzy definitions of truth
and falsity and make sure—as this book does—that every test produces a legitimate
Boolean value. In his book, JavaScript: The Good Parts, Douglas Crockford lists the
“surprisingly large number of falsy values” in his appendix on the “awful parts” of
JavaScript. That feature is no less awful in Python. But you might also take the
following advice from a somewhat older source:

Let what you say be simply “Yes” or “No”; anything more than this comes
from evil.

—Matthew 5:37, The New English Bible

42 Control Statements

Predicate functions
Although functions in Python can return values of any type, functions that return
Boolean values deserve special attention because they play such an important role in
programming. Functions that return Boolean values are called predicate functions.

As you know from earlier in this chapter, there are only two Boolean values: True
and False. Thus a predicate function—no matter how many arguments it takes or
how complicated its internal processing may be—must eventually return one of these
two values. The process of calling a predicate function is therefore analogous to
asking a yes/no question and getting an answer. For example, the following function
definition answers the question “is n an even number?” for a particular integer n
supplied by the caller as an argument:

def is_even(n):
 return n % 2 == 0

A number is even if there is no remainder when you divide that number by two. If n
is even, the expression n % 2 == 0 has the value True, which is returned as the value
of is_even. If n is odd, the function returns False.

As a second example, it is an interesting exercise to implement the predicate
function is_leap_year, which determines whether a given year qualifies as a leap
year. Although one tends to think of leap years as occurring once every four years,
astronomical realities are not quite so tidy. Because it takes about a quarter of a day
more than 365 days for the earth to complete its orbit, adding an extra day once every
four years helps keep the calendar in sync with the sun, but it is still off by a slight
amount. To ensure that the beginning of the year does not slowly drift through the
seasons, the rule used for leap years is in fact more complicated. Leap years come
every four years, except for years ending in 00, which are leap years only if they are
divisible by 400. Thus, 1900 was not a leap year even though 1900 is divisible by 4.
The year 2000, on the other hand, was a leap year because 2000 is divisible by 400.
For any leap year, one of the following conditions must hold:

• The year is divisible by 4 but not divisible by 100, or
• The year is divisible by 400.

It is easy to code the correct rule in Python as a predicate function, as follows:

def is_leap_year(year):
 return ((year % 4 == 0) and (year % 100 != 0)) or \
 (year % 400 == 0)

The return statement in the is_leap_year function illustrates an important

feature of Python. In contrast to most modern languages that ignore spaces and line

 2.2 The if statement 43

breaks, Python uses that spacing to define the hierarchical structure of a program. In
Python, a line break ordinarily signals the end of a statement. Because the return
statement includes a Boolean expression that doesn’t fit comfortably on a single line,
you need to find some way to let the expression extend across more than one line.
This example solves the problem by preceding the line break in the middle of the
expression by a backward slash (\), which causes Python to treat the following line
as part of this one. Python also ignores any line breaks that occur within parentheses,
square brackets, or curly braces, but that rule doesn’t apply in this example as it
appears. You will have many opportunities to see applications of this second rule,
which removes the need for the line-continuation character.

 2.2 The if statement
The simplest way to express conditional execution in Python is by using the if
statement, which comes in three forms, as shown in the syntax boxes on the left. The
first form of the if statement is useful when you want to perform an action only under
certain conditions. The second is appropriate when you need to choose between two
alternative courses of action. The third, which can contain any number of elif
clauses, makes sense if you need to choose among several different courses of action.

The condition component of these templates is a Boolean expression, as defined
in the preceding section. This Boolean expression can be a simple comparison, a
logical expression involving the and, or, and not operators, or a call to a predicate
function. For example, if you want to test whether the number stored in year
corresponds to a leap year, you can use the following if statement, which calls the
is_leap_year function defined on the preceding page:

if is_leap_year(year):

 In the first form of the if statement, Python executes the block of statements only
if the conditional test evaluates to True. If the conditional test is False, Python skips
the body of the if statement entirely. In the second form, Python executes the first
block of statements if the condition is True and the second if the condition is False.
In the third form, Python evaluates each of the conditions in turn and executes the
statements associated with the first condition that evaluates to True. If none of the
conditions apply, Python executes the statements associated with the else keyword.

You can use the if statement to implement your own versions of Python’s built-in
functions. For example, you can implement abs—at least for integers and
floating-point numbers—as follows:

44 Control Statements

def abs(x):
 if x < 0:
 return -x
 else:
 return x

Similarly, you can implement max for two arguments like this:

def max(x, y):
 if x > y:
 return x
 else:
 return y

As a third example, you can use the following definition to implement sign(x),
which returns –1, 0, or 1, depending on the sign of x:

def sign(x):
 if x < 0:
 return -1
 elif x == 0:
 return 0
 else:
 return 1

Choosing which form of the if statement to use requires you to think about the

structure of the problem. You use the simple if statement when the problem requires
code to be executed only if a particular condition applies. You use the if-else form
for situations in which the program must choose between two independent sets of
actions. You can often make this decision based on how you would describe the
problem in English. If that description contains the word otherwise or some similar
expression, there is a good chance that you’ll need the if-else form. If the English
description conveys no such notion, the simple form of the if statement is probably
sufficient. Finally, you use the if-elif-else form to express a choice among several
different options.

 2.3 The while statement
The simplest iterative construct is the while statement, which repeatedly executes a
simple statement or block until the conditional expression becomes False. The
template for the while statement appears in the syntax box on the right. The entire
statement, including both the while control line itself and the statements enclosed
within the body, constitutes a while loop. When the program executes a while
statement, it first evaluates the conditional expression to see if it is True or False. If
the condition is False, the loop terminates and the program continues with the next

 2.3 The while statement 45

statement after the entire loop. If the condition is True, the entire body is executed,
after which the program goes back to the top to check the condition again. A single
pass through the statements in the body constitutes a cycle of the loop.

There are two important principles to observe about the operation of a while loop:

1. The conditional test is performed before every cycle of the loop, including the

first. If the test is False initially, the body of the loop is not executed at all.

2. The conditional test is performed only at the beginning of a loop cycle. If that
condition happens to become False at some point during the loop, the program
doesn’t notice that fact until it has executed a complete cycle. At that point, the
program reevaluates the test condition. If it is still False, the loop terminates.

Summing the digits in a number
As an illustration of the use of while, suppose that you have been asked to write a
function called digit_sum that adds up the digits in an integer without converting it
to a string. Calling digit_sum(1729) should therefore produce the result 19, which
is 1 + 7 + 2 + 9. How would you go about implementing such a function?

The first thing that your function needs to do is keep track of a running total. The
usual strategy for doing so is to declare a variable called total, set it to 0, add each
digit to total one at a time, and finally return the value of total. That much of the
structure, with the rest of the problem written in English, appears below:

def digit_sum(n):
 total = 0
 For each digit in the number, add that digit to total.
 return total

Programs that are written partly in a programming language and partly in English are
called pseudocode.

The sentence

For each digit in the number, add that digit to total.

clearly specifies a loop structure of some sort, since there is an operation that needs
to be repeated for each digit in the number. If it were easy to determine how many
digits a number contained, you might choose to use the for loop described later in
this chapter to run through precisely that many cycles. As it happens, finding out how
many digits there are in a number is just as hard as adding them up in the first place.
The best way to write this program is just to keep adding in digits until you discover
that you have added the last one. Loops that run until some condition occurs are most
often coded using the while statement.

46 Control Statements

The essence of this problem lies in determining how to break up a number into its
component digits. The last digit of an integer n is simply the remainder left over
when n is divided by 10, which is the result of the expression n % 10. The rest of the
number—the integer that consists of all digits except the last one—is given by
n // 10. For example, if n has the value 1729, you can use these two expressions to
break that number into two parts, 172 and 9, as shown in the following diagram:

Thus, in order to add up the digits in the number, all you need to do is add the value
n % 10 to the variable total on each cycle of the loop and then replace the value of
n by n // 10. The next cycle will add in the second-to-last digit from the original
number, and so on, until all the digits have been processed.

But how do you know when to stop? As you compute n // 10 in each cycle, you
will eventually reach the point at which n becomes 0. At that point, you’ve processed
all the digits in the number. Thus, the while loop needed for the problem is

while n > 0:
 total += n % 10
 n = n // 10

The implementation of the digit_sum function appears in Figure 2-1.

 2.3 The while statement 47

Aligning output fields
You can also use the while statement to add spaces to a string in order to ensure that
strings of different lengths line up correctly when displayed on the Python console.
For example, columns of numbers are conventionally aligned on the right by adding
spaces at the beginning of the number. Although you will discover in Chapter 7 that
there is a library function that has the same effect, you can also use the following
function, which takes a value and a field width:

def align_right(value, width):
 result = str(value)
 while len(result) < width:
 result = " " + result
 return result

The function returns a string in which value appears at the right edge of a field that
is width characters wide. The first line of the function uses the str function to
convert value to a string and then assigns that value to the variable result. From
here, the function uses concatenation to add spaces to the beginning of result until
it has attained the desired length. The last statement then returns the padded string to
the caller. You will have a chance to see align_right in action in section 2.4.

Reading console input until a sentinel appears
Another context in which the while loop comes in handy is in programs that read
input lines until the user enters a special value that indicates that the data entry process
is complete. That special value is called a sentinel. This style of input has the
character required for a while loop in that it repeatedly reads lines from the user as
long as those lines don’t match the sentinel value.

To get a better sense of when this style of operation might come up, imagine that
you have been asked to write a program that reads in integers from the user, adding
them up as the process goes along. When the input list is complete, the program
should display the overall total. The program needs some sentinel to stop in order to
ensure that the program doesn’t keep asking for numbers forever. The following
execution trace shows the operation of an as-yet-unwritten add_list function that
uses a blank line as the sentinel to mark the end of the input:

48 Control Statements

The structure of this program is closely related to that of the digit_sum function
shown in Figure 2-1. In pseudocode form, the add_list function looks like this:

def add_list():
 print("This program adds a list of integers.")
 print("Enter a blank line to stop.")
 total = 0
 For each input value until the sentinel appears, add that number to total.
 print("The sum is", total)

What’s left is finding a way to express the remaining pseudocode line in English.

Writing the necessary code to implement this operation is not as simple as it might
at first appear. As the pseudocode makes clear, the loop should terminate when the
input value is equal to the sentinel. In order to check this condition, however, the
program must have first read in some value. If the program has not yet read in a
value, the termination condition doesn’t make sense.

The problem that arises in implementing the read-until-sentinel pattern is that the
check for the termination condition appears in the middle of the loop instead of at the
beginning. A loop that requires that some operation be performed before testing for
completion represents an instance of what programmers call the loop-and-a-half
problem.

Python offers at several strategies for solving the loop-and-a-half problem, each
of which uses a while loop in some form. Unfortunately, none of these strategies is
perfect. One strategy for is to read in the first number outside the loop and then
execute the loop until the sentinel appears. In this form, the missing statements look
like this:

line = input(" ? ")
while line != "":
 total += int(line)
 line = input(" ? ")

Although this strategy works, there are two aspects of this code that violate one’s
intuition about the problem. First, the statements in the body of the while loop begin
by adding a value to total and then reading in a line, even though the conceptual
order of operations in the pseudocode formulation is to read a line and then add a
value. Second, the same exact statement

line = input(" ? ")

 2.3 The while statement 49

appears twice in the code, even though there is only one conceptual operation. Such
instances of repeated code make programs more difficult to maintain, because it is
easy to change one instance without changing the other.

A second approach to solving the loop-and-a-half problem is to make use of the
break statement, which Python has inherited from the programming language C. The
break statement makes it possible to express the necessary control structure in a form
that mirrors the order of operations from the pseudocode, which consists of repeating
the following steps:

1. Read in a value.

2. If the value is equal to the sentinel, exit from the loop.
3. Perform whatever processing is required for that value.

Using break allows you to code the loop-until-sentinel pattern like this:

while True:
 line = input(" ? ")
 if line == "":
 break
 total += int(line)

The order of operations now matches the intuitive conception of the process, and the
code includes no duplicated lines.

Although several early studies have demonstrated that students are more likely to
write correct code if they use this coding model, many computer science experts reject
the idea of using the break statement because it buries the exit condition inside the
body of the loop. This style of programming makes it impossible for readers of the
program to tell from the header line of the while loop—which on its own makes it
seem as if the loop will run forever—without searching through the entire loop body
looking for the point at which the loop is complete.

The approach used in this text is to introduce a Boolean variable, which
programmers often refer to as a flag, to keep track of whether the process has finished.
Using the flag-based strategy, the implementation has the form shown in Figure 2-2.
As long as the finished flag is False, as it is at the beginning because of the explicit
assignment statement that precedes the loop, the code reads in a line from the user
and then checks to see whether that line is empty. If so, the first clause of the if
statement sets finished to True so the loop will terminate. If not, the else clause
adds the numeric value of the line to the variable total.

Although the flag-based code is slightly longer, this strategy avoids the problems
from the earlier approaches and is well worth memorizing for your own programs.

50 Control Statements

 2.4 The for statement
The most important control statement in Python is the for statement, which is
typically used in situations in which you know how many cycles the loop will run
before it begins. The general form of the for statement appears in the syntax box on
the left. When Python encounters a loop of this sort, it executes the statement in the
body with the variable indicated by the placeholder var set to each element in the
collection of values specified by iterable. Python uses the term iterable to specify a
data value that supports iteration, which is the formal term computer scientists use
for the process of looping through a collection one value at a time

Iterating over a range of integers
One of the most common uses of the for statement is to cycle through a range of
integers. In this case, the iterable placeholder in the for loop paradigm consists of a
call to the built-in function range, which returns an iterable value whose elements
are the desired integers. The for loop then executes one cycle for each value.

 2.4 The for statement 51

The range function offers several different patterns that give you considerable
control over the order in which the for loop processes the elements. These patterns
are determined by the number of arguments, as follows:

• If you call range with one argument, as in range(n), the result generates a

sequence of n values beginning with 0 and extending up to the value n – 1.

• If you call range with two arguments in the form range(start, limit), the result
generates a sequence beginning with start and continuing up to but not including
the value of limit.

 • If you call range with three arguments in the form range(start, limit, step), the
result generates a sequence beginning with start and then counts in increments of
step up to but not including limit. If the value of step is negative, the sequence
begins with start and then counts backwards down to but not including limit.

Figure 2-3 illustrates each of these argument patterns in the context of a for loop that
displays each of the values in the range.

The variable that appears in the for loop pattern is called an index variable. In
each of the examples in Figure 2-3, the index variable is named i. Although using
single-letter names can sometimes make programs more difficult to understand, using
i as an index variable follows a well-established programming convention. Just as
the single-letter variables names x and y are perfectly appropriate if they refer to
coordinate values, programmers immediately recognize the variable name i as a loop
index that cycles through a sequence of integers.

52 Control Statements

The last example in Figure 2-3 shows that you can use the range function to count
backwards. You could use this feature to write a function that simulates a countdown
from the early days of the space program:

def countdown(n):
 for t in range(n, -1, -1):
 print(t)

Calling countdown(10) produces the following output on the console:

The countdown function also demonstrates that any variable can be used as an index
variable. In this case, the variable is called t, presumably because that is traditional
for a rocket countdown, as in the phrase “T minus 10 seconds and counting.”

The factorial function
The factorial of a nonnegative integer n, which is traditionally written as n! in
mathematics, is defined to be the product of the integers between 1 and n. The first
ten factorials are shown in the following table:

0! = 1 (by definition)
1! = 1 = 1
2! = 2 = 1 ´ 2
3! = 6 = 1 ´ 2 ´ 3
4! = 24 = 1 ´ 2 ´ 3 ´ 4
5! = 120 = 1 ´ 2 ´ 3 ´ 4 ´ 5
6! = 720 = 1 ´ 2 ´ 3 ´ 4 ´ 5 ´ 6
7! = 5040 = 1 ´ 2 ´ 3 ´ 4 ´ 5 ´ 6 ´ 7
8! = 40320 = 1 ´ 2 ´ 3 ´ 4 ´ 5 ´ 6 ´ 7 ´ 8
9! = 362880 = 1 ´ 2 ´ 3 ´ 4 ´ 5 ´ 6 ´ 7 ´ 8 ´ 9

Factorials have extensive applications in statistics, combinatorial mathematics,

and computer science. A function to compute factorials is therefore a useful tool for
solving problems in those domains. You can implement a function fact(n) by
initializing a variable called result to 1 and then multiplying result by each of the
integers between 1 and n, inclusive. The resulting code looks like this:

 2.4 The for statement 53

def fact(n):
 result = 1
 for i in range(1, n + 1):
 result *= i
 return result

Note that the for loop specifies the upper limit of the range as n + 1 to ensure that the
value n is included in the product.

The FactorialTable.py program in Figure 2-4 on the next page displays a list
of the factorials starting at LOWER_LIMIT and extending up to but not including
UPPER_LIMIT, as illustrated by the following sample run:

The code for this program is divided into multiple modules. The main program is
stored in the FactorialTable.py module shown at the top of Figure 2-4. The code
in FactorialTable.py produces the table shown in the sample run but relies on a
separate factorial.py model for the fact function and an alignment.py module
(which you will have a chance to write in exercise 9) for the align_right function
defined on page 47.

The module that together define the FactorialTable application play slightly
different roles. The FactorialTable.py module defines a Python program that
delivers output to the user through the use of print statements. The factorial.py
and the as-yet-unwritten alignment.py modules each represent a Python library that
performs a service for the main program without communicating directly with the
user. The functions in the library modules communicate with their callers by taking
arguments as input and returning results.

The names of these modules reflect a convention that applies throughout this text.
Modules that are intended to be run as programs use camel-case names beginning
with an uppercase letter, as illustrated by the module name FactorialTable.py.
Modules intended to be used as libraries, such as factorial.py and alignment.py
in this chapter or like the temperature.py module from Chapter 1 have names
written entirely in lowercase letters.

54 Control Statements

FactorialFigure.png

 2.4 The for statement 55

Nested for statements
In many applications, you will discover that you need to write one for loop inside
another so that the statements in the innermost loop are executed for every possible
combination of values of the for loop indices. Suppose, for example, that you want
to display a multiplication table showing the product of every pair of numbers in the
range 1 to 10. You would like the output of the program to look like this:

The code to draw this multiplication table appears in Figure 2-5. To create the
individual entries, you need a pair of nested for loops: an outer loop that runs through
each of the rows and an inner loop that runs through each of the entries in each row.
The code inside the inner for loop will be executed once for every row and column,
for a total of 100 individual entries in the table.

56 Control Statements

The outer loop runs through each value of i from 1 to 10 and is responsible for
displaying one row of the table on each cycle. To do so, the code first declares the
variable line and initializes it to be the empty string. The inner loop then runs
through the values of j from 1 to 10 and concatenates the product of i and j to the
end of line after calling the align_right function to ensure that the columns have
the same width. When the inner loop is complete, the program calls print to display
the completed line of the multiplication table.

A useful way to get some practice using nested for loops is to write programs that
draw patterns on the console by displaying lines of characters. As a simple example,
the following function draws a triangle in which the number of stars increases by one
in each row:

def draw_console_triangle(size):
 for i in range(size):
 line = ""
 for j in range(i + 1):
 line += "*"
 print(line)

Calling draw_console_triangle(10), for example, produces the following output
on the console:

You will have a chance to create several similar displays in the exercises.

Iterating over sequences
The examples of the for statement you have seen so far all use the range function to
specify the sequence of values. If you look back at the original description of the for
loop pattern, however, you will see that header line has the following more general
format:

for var in iterable:

Python includes several data types that support iteration, any of which can be used
in place of the iterable component of this pattern. In many cases, those data types

 Exercises 57

represent sequences of individual values. Given any sequence, you can use the for
statement to step through the elements of that sequence one value at a time. The first
cycle of the for loop sets the index variable to the first element in the sequence, the
second cycle sets the variable to the second element, and the process continues in this
fashion through the entire sequence.

Even though you won’t encounter most of Python’s iterable types until later in this
book, you have already seen two iterable types, which are the string and list type
introduced in Chapter 1. Conceptually, a string is a sequence of characters. As with
any sequence, you can use a for loop to step through each of these characters in turn.
The following IDLE session, for example, uses a for loop to display the characters
in the string "Hello", one character per line:

When Python executes this for loop, it interprets "Hello" as a sequence of
one-character strings and then assigns each of those strings to the index variable ch
on successive cycles of the loop, starting with "H" and continuing through "o".

You can use this strategy of iterating through each character in a string to
implement a function count_char(c, s), which returns the number of times the
character c appears in the string s:

def count_char(c, s):
 count = 0
 for ch in s:
 if c == ch:
 count += 1
 return count

For example, calling count_char("u", "unusual") returns the value 3 because the
character "u" appears three times in the string "unusual".

You will have more opportunities to use the for loop with strings in Chapter 7
and with more general sequences beginning in Chapter 8.

58 Control Statements

The reversed and sorted functions
Python’s library of built-in functions includes two that take one iterable value as an
argument and return another that cycles through the same values but does so in a
different order. The reversed function returns an iterable value that runs through its
elements backwards. For example, you can use reversed to rewrite the countdown
function from page 52 as follows:

def countdown(n):
 for t in reversed(range(0, n + 1)):
 print(t)

The built-in sorted function takes any iterable object and return a list that

contains the elements from that object in sorted order. For example, the code
sequence

INNER_PLANETS = ["Mercury", "Venus", "Earth", "Mars"]
for planet in sorted(INNER_PLANETS):
 print(planet)

produces the following output on the console:

Similarly, calling sorted on a string (which is, after all, an iterable object whose
elements are the individual characters) returns a sorted list of those characters. For
example, calling sorted("word") returns the list ["d", "o", "r", "w"]. You will
have occasion to use this function in Chapter 3.

 2.5 The assert statement
The last control statement covered in this chapter is the assert statement, which
typically has the form shown in the syntax box on the left. Unlike the other control
statements, the assert statement doesn’t include a body; all you have is a conditional
tesr, which should be a Boolean expression of the form used in the if and while
statements. The assert statement represents a declaration of something that you, as
the programmer, believe to be true at that point in the execution of the program and
asks Python to verify that fact for you. If the test is indeed true, Python moves on to
the next statement. If not, Python displays the failed assertion and terminates the
program execution with a failure condition called an assertion error.

 Exercises 59

The following sample run illustrates the operation of the assert statement in the
context of the IDLE interpreter:

The first line, which makes the generally uncontroversial statement that two plus two
is four, executes silently, producing no output. The second line, which claims (as
O’Brien does in the George Orwell novel Nineteen Eighty-Four) that two plus two is
five, generates an error message showing the offending assertion.

The most useful application of the assert statement comes in writing functions
that test the operation of a module. For example, in the library factorial.py
module shown in Figure 2-4 on page 54, it would be good programming practice to
add a test_fact function composed of several assert statements checking that the
fact function computed the correct result. That function might look like this:

def test_fact():
 assert fact(0) == 1
 assert fact(1) == 1
 assert fact(2) == 2
 assert fact(5) == 120
 assert fact(10) == 3628800
 assert fact(20) == 2432902008176640000

You can’t possibly test all possible values for the arguments, but you can select
specific values that give you confidence in the correctness of the implementation.
Here, for example, the code tests the value of fact(0), which is defined to be 1, and
the value for a reasonably large argument like 20.

You can also use assert statements to verify that the arguments that the caller
passes to a library function meet the conditions required for a correct result. For
example, the fact function is defined only for nonnegative integers. Adding the
following assert statement to check that requirement can simplify later debugging:

 assert isinstance(n, int) and n >= 0

This statement uses the built-in isinstance function, which checks whether the first
argument has the type specified by the second. A version of the factorial.py
module that incorporates both these changes appears in Figure 2-6.

60 Control Statements

 Summary
The purpose of this chapter is to introduce the most common control statements in
Python and explore examples of their use. The important points include:

• One of the most useful types in any modern programming language is Boolean

data, for which the domain consists of just two values: True and False.

• The relational operators (<, <=, >, >=, ==, and !=) perform comparisons to create
Boolean values. The logical operators (and, or, and not) combine Boolean
values to express more complex conditions.

• The logical operators and and or are evaluated in left-to-right order in such a way
that the evaluation stops as soon as the program can determine the result. This
behavior is called short-circuit evaluation.

• Functions that return Boolean values play an important role in computer science
and are called predicate functions.

• Control statements fall into two classes: conditional and iterative.

 Exercises 61

• The if statement specifies conditional execution when a section of code should
be executed only in certain cases or when the program needs to choose between
two alternate paths.

• The while statement specifies repetition as long as some condition is met.

• In some applications, it is necessary to perform part of a while loop before
checking whether the termination condition applies. Programmers refer to this
situation as the loop-and-a-half problem. Several strategies exist for coding such
loops, none of which is perfect. This book recommends using a flag to keep track
of whether the loop has finished.

• A particular common example of the loop-and-a-half problem arises when a
program needs to read input lines until a blank line appears. This book uses the
following code pattern to implement this structure:

finished = False
while not finished:
 line = input(" ? ")
 if line == "":
 finished = True
 else:
 perform some operation using the input line

• The for statement is used to cycle through every value in an iterable object.

• Most of the for loops used in this chapter specify the limits of the iteration using
the built-in function range, which can take one, two, or three arguments. Calling
range(n) generates a sequence of n values beginning with 0 and extending up to
the value n – 1. The two-argument form range(start, limit) iterates through a
sequence beginning with start and continuing up to but not including the value of
limit. The three-argument form range(start, limit, step) iterates through a
sequence beginning with start and then counts in increments of step up to but not
including the value of limit.

• You can use the for statement to step through every value in a sequence, such as
a string or a list.

• The built-in functions reversed and sorted each convert an iterable object into
a new one that cycles through the elements in a different order. The reversed
function produces an iterator that runs backwards; the sorted function produces
a list in which the elements appear in sorted order.

• The assert statement asks Python to check whether some Boolean condition
holds. You can use the assert statement to write test functions for your modules
or to check that functions in a library are called with valid arguments.

• The built-in function isinstance(value, type) checks to see whether value has
the specified type.

62 Control Statements

 Review questions
1. What are the Python keywords for the two Boolean values?

2. Describe in English what the following conditional expression means:

(x != 4) or (x != 17)

For what values of x is this condition equal to True?

3. What is meant by the term short-circuit evaluation?

4. What is a predicate function?

5. What are the two classes of control statements?

6. What does it mean to say that two control statements are nested?

7. Suppose the body of a while loop contains a statement that, when executed,

causes the condition for that while loop to become False. Does the loop
terminate immediately at that point or does it complete the current cycle?

8. What is the loop-and-a-half problem?

9. What programming pattern does these notes recommend for reading input lines

until a blank line appears?

10. What term do computer scientists use to refer to an incomplete program written

partly in a programming language and partly in English?

11. Describe the sequence of values generated by each of the following calls to the

built-in function range:

a) range(7)
b) range(1, 10)
c) range(5, 25, 5)
d) range(1, -2, -2)

12. What for loop header line would you use in each of the following situations:

a) Counting from 1 to 100.
b) Counting by sevens starting at 0 until the number has more than two digits.
c) Counting backward by twos from 100 to 0.

13. How would you write a for loop to cycle through the characters in a string s?

14. Describe briefly the built-in functions reversed, sorted, and isinstance.

15. What two applications does the chapter describe for the assert statement?

 Exercises 63

 Exercises
1. As a way to pass the time on long bus trips, young people growing up in the

United States have been known to sing the following rather repetitive song:

99 bottles of beer on the wall.
99 bottles of beer.
You take one down, pass it around.
98 bottles of beer on the wall.

98 bottles of beer on the wall. . . .

Anyway, you get the idea. Write a Python program to display the lyrics of this
song using print. In testing your program, it would make sense to use some
constant other than 99 as the initial number of bottles.

2. Write a function that takes a positive integer N and then calculates and displays

the sum of the first N odd integers. For example, if N is 4, your function should
display the value 16, which is 1 + 3 + 5 + 7.

3. Why is everything either at sixes or at sevens?
—Gilbert and Sullivan, H.M.S. Pinafore, 1878

Write a program that displays the integers between 1 and 100 that are divisible
by either 6 or 7 but not both.

4. Use the digit_sum function as a model to define a function that takes a number
and returns a number that contains the same digits in the reverse order, as
illustrated by the following IDLE transcript:

The idea in this exercise is not to take the integer apart character by character,
which you will not learn how to do until Chapter 7. Instead, you need to use
arithmetic to compute the reversed integer as you go.

5. The digital root of an integer n is defined as the result of summing the digits
repeatedly until only a single digit remains. For example, the digital root of 1729
can be calculated using the following steps:

Step 1: 1 + 7 + 2 + 9 ® 19
Step 2: 1 + 9 ® 10
Step 3: 1 + 0 ® 1

64 Control Statements

Because the total at the end of step 3 is the single digit 1, that value is the digital
root. Write a function digital_root that returns this value.

6. Write a Python program that reads in numbers until the user enters a blank line
and then prints their average. A sample run of your program might look like this:

7. Write a function draw_console_box(width, height) that draws a box on the

console with the specified dimensions. The corners of the box should be
represented using a plus sign (+), the top and bottom borders using a minus sign
(-), and the left and right borders using a vertical bar (|). For example, calling
draw_console_box(52, 6) should produce the following diagram:

8. Write a function draw_console_pyramid(height) that draws a pyramid of the

specified height in which the width of each row increases by two as you move
downward on the console. Each of the rows should be centered with respect to
the others, and the bottom line should begin at the left margin. Thus, calling
draw_console_pyramid(8) should produce the following figure:

9. Implement a library module called alignment.py that defines the function

align_right as given on page 47 along with the corresponding functions
align_left and align_center. Make sure that your module includes a test
function.

C H A P T E R 3
Algorithmic Thinking

Computational thinking is a fundamental skill for
everyone, not just for computer scientists. To reading,
writing, and arithmetic, we should add computational
thinking to every child’s analytical ability.

— Jeannette Wing, “Computational Thinking,”
Communications of the ACM, 2006

Jeannette Wing (1956–)

Jeannette Wing received her Ph.D. in Computer Science from MIT in 1983 and has subsequently held faculty
positions at the University of Southern California, Carnegie Mellon, and Columbia University. In addition
to her academic work, Wing has served as Corporate Vice President of Microsoft Research and as a research
director at the National Science Foundation. In 2006, during her time as head of the Computer Science
Department at Carnegie Mellon, Wing published an influential article entitled “Computational Thinking” in
Communications of the ACM, the flagship journal of the leading professional society for computing. In that
article, Wing argued that every person growing up today needs to understand not only what computation can
do but also how to unlock that power using the patterns of thought that studying computer science fosters.
As Wing notes in her article, “computational thinking will have become ingrained in everyone’s lives when
words like algorithm . . . are part of everyone’s vocabulary.”

66 Algorithmic Thinking

The concept of an algorithm is fundamental to computer science. The word algorithm
comes from the name of the 9th-century Persian mathematician Muhammad ibn Mūsā
al-Khwārizmī, whose work had significant impact on modern mathematics. Figure
3-6 shows a photograph of a statue of al-Khwārizmī near his birthplace in what is
now Uzbekistan.

Although it is usually sufficient to think of an algorithm as a strategy for solving
a problem, modern computer science formalizes that definition so that algorithm
refers to a solution strategy that is

• Clear and unambiguous, in the sense that the description is understandable.
• Effective, in the sense that it is possible to carry out the steps in the strategy.
• Finite, in the sense that the strategy terminates after some number of steps.

This chapter begins by looking at a few historically important algorithms and then
shifts its focus toward the process of designing your own solution strategies. The
final section then explores topics in testing, debugging, and software maintenance.

 3.1 Algorithms in history 67

 3.1 Algorithms in history
Although the concept of an algorithm has taken on new significance in the computing
age, algorithmic techniques for solving problems have existed even before the time
of al-Khwārizmī. The next few sections offer a few examples of historically
important algorithms. These algorithms are interesting in their own right, but they
also offer useful illustrations of how control statements can be used in practice.

An early square-root algorithm
One of the earliest known algorithms dates back almost 4000 years to when
Babylonian mathematicians discovered a procedure for calculating square roots. The
primary evidence of the existence of an algorithmic process comes from cuneiform
tablets such as the one shown in Figure 3-2, which shows an approximation of the
square root of 2 that is far more accurate than anyone could possibly derive through
measurement alone. And although the precise details of how Babylonian
mathematicians performed the necessary calculations have been lost, historians
believe that their technique was similar to the algorithm described by the 1st-century
Greek mathematician Hero of Alexandria, who noted its Babylonian origin.

68 Algorithmic Thinking

The Babylonian method for calculating square roots is an example of a general
technique called successive approximation, in which you begin by making a rough
guess at the answer and then improve that guess through a series of refinements that
get closer and closer to the exact answer. For example, if you want to find the square
root of some number n, you start by choosing some smaller number g as your first
guess. At every point in the process, your guess g will be smaller or larger than the
actual square root. In either case, if you divide n by g, the result will inevitably lie
on the opposite side of the desired value. For example, if g is too small, n divided by
g will be too large, and vice versa. Averaging the two values will always give a better
approximation. At each step, you simply replace your previous guess g with the result
of the following formula, which averages g and n divided by g:

You then continue to apply this formula to each new guess until the answer is as close
to the actual value as you need it to be.

To get more of a sense of how the Babylonian method works, it helps to consider
a simple example. Suppose that you want to calculate, as the scribes who incised the
cuneiform tablet did, the square root of 2. One possible first guess for g is 1, which
is half the value of n. The first approximation step therefore computes the following
average:

The value 1.5 is closer to the actual square root of 2—which is approximately
1.4142136—so the process is on the right track.

To calculate the next approximation, all you need to do is plug into the formula
as the next value of g, and calculate the new average, as follows:

From this point, you simply repeat the calculation with as the new value of g:

Applying successive approximation one more time gives you

 3.1 Algorithms in history 69

After just four cycles, the Babylonian method has produced an approximation to
the square root of 2 that is correct to eight decimal digits. Moreover, because each
step generates an approximation that is closer to the exact value, you can repeat the
process to produce an approximation with any desired level of accuracy.

Figure 3-3 shows the definition of a sqrt function that uses the Babylonian
method to approximate the square root of its argument. The function uses a while
loop to continue the process until the approximation reaches the desired level of
precision. In this implementation, the while loop continues until the difference
between the square of the current approximation and the original number is no larger
than the value of the constant TOLERANCE.

Finding the greatest common divisor
Although you have seen a few simple algorithms implemented in the context of the
programming examples, you have had little chance to focus on the nature of the
algorithmic process itself. Most of the programming problems you have seen so far
are simple enough that the appropriate solution strategy springs immediately to mind.

70 Algorithmic Thinking

As problems become more complex, however, their solutions require more thought,
and you will need to consider more than one strategy before writing the final program.

As an illustration of how algorithmic strategies take shape, the sections that follow
consider two solutions to another problem from classical mathematics, which is to
find the greatest common divisor of two integers. Given two integers x and y, the
greatest common divisor (or gcd for short) is the largest integer that divides evenly
into both. For example, the gcd of 49 and 35 is 7, the gcd of 6 and 18 is 6, and the
gcd of 32 and 33 is 1.

Suppose that you have been asked to write a function that accepts two positive
integers x and y as input and returns their greatest common divisor. From the caller’s
point of view, what you want is a function gcd(x, y) that takes the two integers as
arguments and returns another integer that is their greatest common divisor. The
header line for this function is therefore

def gcd(x, y):

In many ways, the most obvious approach is simply to try every possibility. To
start, you simply “guess” that gcd(x, y) is the smaller of x and y, because any larger
value could not possibly divide evenly into a smaller number. You then proceed by
dividing x and y by your guess and seeing if it divides evenly into both. If it does,
you have the answer; if not, you subtract 1 from your guess and try again. A strategy
that tries every possibility is often called a brute-force approach.

The brute-force approach to calculating the gcd function looks like this in Python:

def gcd(x, y):
 guess = min(x, y)
 while x % guess != 0 or y % guess != 0:
 guess -= 1
 return guess

Before you decide that this implementation is in fact a valid algorithm for computing
the gcd function, you need to ask yourself several questions about the code. Will the
brute-force implementation of gcd always give the correct answer? Will it always
terminate, or might the function continue forever?

To determine whether the program gives the correct answer, you need to look at
the condition in the while loop, which looks like this:

x % guess != 0 or y % guess != 0

As always, the while condition indicates under what circumstances the loop will
continue. To find out what condition causes the loop to terminate, you have to negate

 3.1 Algorithms in history 71

the while condition. Negating a condition involving logical operators is tricky unless
you remember De Morgan’s laws, which were introduced in Chapter 2. De Morgan’s
laws indicate that the following condition must hold when the while loop exits:

x % guess == 0 and y % guess == 0

From this condition, you can see immediately that the final value of guess is
certainly a common divisor. To recognize that it is in fact the greatest common
divisor, you have to think about the strategy embodied in the while loop. The critical
factor to notice in the strategy is that the program counts backward through all the
possibilities. The greatest common divisor can never be larger than x or y, and the
brute-force search therefore begins with the smaller of these two values. If the
program ever gets out of the while loop, it must have already tried each value
between the starting point and the current value of guess. Thus, if there were a larger
value that divided evenly into both x and y, the program would already have found it
in an earlier iteration of the while loop.

In recognizing that the function terminates, the key insight is that the value of
guess must eventually reach 1, unless a larger common divisor is found. At this
point, the while loop will surely terminate, because 1 will divide evenly into both x
and y, no matter what values those variables have.

Brute force is not, however, the only effective strategy. Although brute-force
algorithms have their place in other contexts, they are a poor choice for the gcd
function if you are concerned about efficiency. For example, if you call

gcd(1000005, 1000000)

the brute-force algorithm will run through the body of the while loop almost a million
times before it comes up with the answer 5, even though you can instantly arrive at
that result just by thinking about the two numbers.

What you need to find is an algorithm that is guaranteed to terminate with the
correct answer but that requires fewer steps than the brute-force approach. This is
where cleverness and a clear understanding of the problem pay off. Fortunately, the
necessary creative insight was described sometime around 300 BCE by the Greek
mathematician Euclid, whose Elements (book 7, proposition II) contains an elegant
solution to this problem. In modern English, Euclid’s algorithm can be described as
follows:

1. Divide x by y and compute the remainder; call that remainder r.

2. If r is zero, the procedure is complete, and the answer is y.

3. If r is not zero, set x equal to the old value of y, set y equal to r, and repeat the
entire process.

72 Algorithmic Thinking

You can easily translate this algorithmic description into the following code:

def gcd(x, y):
 r = x % y
 while r != 0:
 x = y
 y = r
 r = x % y
 return y

This implementation of the gcd function also correctly finds the greatest common
divisor of two integers. It differs from the brute-force implementation in two respects.
On the one hand, it computes the result much more quickly. On the other, it is more
difficult to prove correct.

Although a formal proof of correctness for Euclid’s algorithm is beyond the scope
of this book, you can easily get a feel for how the algorithm works by adopting the
mental model of mathematics the Greeks used. In Greek mathematics, geometry held
center stage, and numbers were thought of as distances. For example, when Euclid
set out to find the greatest common divisor of two whole numbers, such as 51 and 15,
he framed the problem as one of finding the longest measuring stick that could be
used to mark off each of the two distances involved. Thus, you can visualize the
specific problem by starting out with two sticks, one 51 units long and one 15 units
long, as follows:

The problem is to find a new measuring stick that you can lay end to end on top of
each of these sticks so that it precisely covers each of the distances x and y.

Euclid’s algorithm begins by marking off the large stick in units of the shorter one,
like this:

Unless the smaller number is an exact divisor of the larger one, there is some
remainder, as indicated by the shaded section of the lower stick. In this case, 15 goes
into 51 three times with 6 left over, which means that the shaded region is 6 units
long. The fundamental insight that Euclid had is that the greatest common divisor for
the original two distances must also be the greatest common divisor of the length of
the shorter stick and the length of the shaded region in the diagram.

 3.1 Algorithms in history 73

Given this observation, you can solve the original problem by reducing it to a
simpler problem involving smaller numbers. Here, the new numbers are 15 and 6,
and you can find their greatest common divisor by reapplying Euclid’s algorithm.
You start by representing the new values, x¢ and y¢, as measuring sticks of the
appropriate length. You then mark off the larger stick in units of the smaller one.

Once again, this process results in a leftover region, which this time has length 3. If
you then repeat the process one more time, you discover that the shaded region of
length 3 is itself the common divisor of x¢ and y¢ and, therefore, by Euclid’s
proposition, of the original numbers x and y. That 3 is indeed a common divisor of
the original numbers is demonstrated by the following diagram:

Euclid supplies a complete proof of his proposition in the Elements. If you are
intrigued by how mathematicians thought about such problems more than 2000 years
ago, you may find it interesting to look up translations of the original Greek text.

Although Euclid’s algorithm and the brute-force algorithm correctly compute the
greatest common divisor of two integers, there is an enormous difference in the
efficiency between the two algorithmic strategies. Suppose once again that you call

gcd(1000005, 1000000)

The brute-force algorithm requires on the order of a million steps to find the answer;
Euclid’s algorithm requires only two. At the beginning of Euclid’s algorithm, x is
1000005, y is 1000000, and r is set to 5 during the first cycle of the loop. Since the
value of r is not 0, the program sets x to 1000000, sets y to 5, and starts again. On
the second cycle, the new value of r is 0, so the program exits from the while loop
and reports that the answer is 5.

The two strategies for computing greatest common divisors presented in this
section offer a clear demonstration that the choice of algorithm can have a profound
effect on the efficiency of the solution. In Chapter 9, you will learn how to quantify
such differences in performance along with several general approaches for improving
algorithmic efficiency.

74 Algorithmic Thinking

The first program in modern computing history
One problem that has particular relevance to the history of modern computing is that
of finding the largest factor of an integer, which is believed to be the first programs
executed on the Small-Scale Experimental Machine at Manchester University—the
first computer to implement the stored-program architecture that is used in essentially
all computers today. The author of the program was Tom Kilburn, the lead engineer
on the team that built the machine, which its inventors nicknamed the “Baby.”

Because the Baby had extremely limited capabilities, Kilburn’s solution strategy
had to be almost absurdly simple. Given a number N, the program used the
brute-force strategy of counting down from N - 1 until it found a divisor is found.
Taking some advantage of Python’s extended set of operations, Kilburn’s algorithm
might look like this:

def largest_factor(n):
 factor = n - 1
 while n % factor != 0:
 factor -= 1
 return factor

The following IDLE log shows the results from two calls to the largest_factor
function:

When the second of these calculations was run on the Manchester Baby on June 21,
1948, the program took 52 minutes to compute the answer. In the process, it
demonstrated both the efficacy and the reliability of the Baby’s architecture.

 3.2 Devising your own algorithms
In my many years of experience teaching programming, I am convinced that the
students who experience the most trouble are those who believe that the computer is
a magical device for which they have not yet learned the proper incantations. When
faced with a programming problem, those students believe that they don’t know what
to do and look instead for some essentially mechanical procedure—an algorithm, if
you will—for turning a programming problem into working code. No such algorithm
exists. Each new programming problem requires creativity to apply the tools you
already know to come up with a solution.

 3.2 Designing your own algorithms 75

When you start working on a programming problem, the most important question
to ask is how you would solve the problem if you didn’t have a computer. If you can
figure that out, the actual process of writing the code becomes much easier. You need
to design an algorithm specifically tailored for the problem at hand.

Devising such an algorithm, of course, may not be easy. I certainly wouldn’t
expect most students to discover Euclid’s algorithm for finding the greatest common
divisor on their own. At the same time, anyone who has learned basic arithmetic
should be able to design and implement the brute-force algorithm that counts down
from the smaller number until it finds a number that divides evenly into both of the
numbers in question. The code, which you have already seen on page 70, is worth
repeating:

def gcd(x, y):
 guess = min(x, y)
 while x % guess != 0 or y % guess != 0:
 guess -= 1
 return guess

There is undoubtedly some complexity involved in coding the condition for the while
loop, but the overall approach is straightforward. Similarly, it doesn’t take a scientist
of Tom Kilburn’s cleverness to realize that you can find the largest factor of an integer
N by counting downward from N - 1 until you find one that divides evenly into N.

The next few sections work through problems for which the solution should be at
least as manageable. In each of these examples, you can easily work out a solution
by hand. The computer may find the solution faster, but there aren’t any operations
or concepts that you don’t already understand.

Finding the largest value in a list entered by the user
The first example of a problem you could easily solve on your own is that of finding
the largest value in a sequence of numbers given to you, one at a time, by the user. A
sample run of the program might look like this:

76 Algorithmic Thinking

Before you try to write the program (or look at the solution in Figure 3-4 on the next
page), imagine that you are trying to solve this problem just as the computer does.
You need to ask the user for each number, check for the blank line marking the end
of the input, and then print out the largest value entered. Much of the logic is therefore
the same as that in the AddList.py program from Chapter 2. The only difference is
that, instead of adding the numbers as you go, you need to find the largest.

What do you do when you get the first number, which is 314 in the sample run?
You have to write it down somewhere because it might turn out to be the largest value
since you haven’t yet seen any of the others. But what happens when the user gives
you the second number, which is 159? Do you need to write it down? The 159 can’t
be the largest number because it’s smaller than the 314 you wrote down earlier. You
can therefore ignore it entirely. You can ignore the third number (265) for exactly
the same reason. When you get the 358 as the fourth number, however, you can’t be
so cavalier because 358 is greater than 314. You therefore need to remember the 358,
although you can now forget about the 314.

The fundamental insight you need to design this algorithm is that you only have
to keep track of the value that is the largest value so far. You are free to discard all
of the other values. In the Python implementation, you can store this value in a
variable called largest. If the current number is stored in the variable value, all
you need to do as each new value comes in is execute the following code:

if value > largest:
 largest = value

In English, these lines tell Python to check whether the current value is greater than
the largest value so far and, if so, record the current value as the new largest value.

There are still a few details to consider before writing the final program, one of
which is how to initialize the value of largest. In the AddList.py program, it made
since to initialize the value of total to 0 and then add each new input value to it. In
this program, however, you can’t simply set largest to 0 because the program would
then fail if all the input values were negative (and no one said they couldn’t be). What
makes sense instead is to initialize largest to the special Python value None, which
is included in the language to indicate a missing value. You need to check to see if
largest is None when you check the current value and again when you print the final
answer, but those changes are conceptually small.

Even small conceptual changes, however, can pose issues for programmers just
starting out. For reasons that are beyond the scope of this text, Python’s conventions
dictate that programs should check for the value None using the is operator rather
than the == operator. Although either would work in this case, it makes sense to start
following the convention as early as possible.

 3.2 Designing your own algorithms 77

Finding all two-letter words
Given the popularity of word puzzles like Wordle and Spelling Bee in The New York
Times, it is fun to look for algorithms that might be useful in playing word games.
One example that illustrates how different algorithms exist for solving the same
problem is making a list of the two-letter words that appear in a dictionary. This list
is so important in Scrabble that most serious players take the time to memorize it.

Once again, the first step in solving this problem is to think about how you would
approach it without the aid of a computer. Imagine that you have a physical dictionary
and a notepad. How might you go about making the list of all two-letter words?

Although doing so will be time-consuming, you can adopt the brute-force strategy
of opening the dictionary and going through all the words in order, making a list as
you go of all the two-letter entries. In a dictionary of English words, the first entry is
the word a. That word has only one-letter, so you ignore it and move on to the next.
If the dictionary is reasonably complete, the second entry is the word aa, which is the
Hawaiian name for a particular form of lava characterized by its rough texture. That

78 Algorithmic Thinking

word has two letters, so you write it down. The pseudocode version of this algorithm
therefore looks like this:

for each word in the dictionary:
 if the length of that word is two:
 Write down the word.

To translate this pseudocode into an actual program, you need a dictionary that

Python can read. The libraries associated with this text include an english.py
module that defines a constant ENGLISH_WORDS whose value is an alphabetical list of
the words in an at-least-reasonably-complete dictionary of English words. No magic
is involved in creating this list. If you look at the contents of english.py, you will
see a definition that begins with the lines

ENGLISH_WORDS = [
 "a", "aa", "aah", "aahed", "aahing", "aahs", "aal", "aalii",

and ends many thousands of lines later with the words

 "zymotic", "zymurgies", "zymurgy", "zyzzyva", "zyzzyvas"
]

A program that uses this definition to produce the two-letter word list appears in
Figure 3-5.

The solution strategy in Figure 3-5, however, is not the only one you might choose,
nor is it the most efficient one. Looking at every word in the dictionary takes time,
particularly if you try to do so by hand. By contrast, looking up a collection of letters

 3.2 Designing your own algorithms 79

to see whether it exists in the dictionary is comparatively fast because the alphabetical
arrangement of the dictionary helps guide you to where the word—if indeed it is a
word—must appear. This insight suggests the following pseudocode algorithm:

for every possible combination of two letters:
 if that combination exists in the dictionary:
 Write down that two-letter combination.

Implementing this strategy in Python requires you to use a second feature from

the english.py module. In addition to the constant ENGLISH_WORDS, this library
defines a predicate function is_english_word(letters) that checks whether the
string letters appears in the list of English words. That check, moreover, is
extremely efficient because it uses a fast search algorithm that you will learn about in
Chapter 9. Figure 3-6 shows the Python implementation of this strategy, which runs
almost three times faster than the brute-force version.

Finding anagrams

The english.py module allows you to solve other interesting problems that arise in
word games, a few of which appear in the exercises. To emphasize how much you
can accomplish with a small amount of code, this section implements a program that
finds all the English words that contain a particular set of letters. For example, given
the seven letters a, e, i, m, n, r, and s, you can form each of the following three words:
marines, remains, and seminar. Words that contain the same letters in a different
order are called anagrams.

80 Algorithmic Thinking

Having a program to find anagrams would be helpful in solving Wordle puzzles
but even more valuable in Scrabble, where you get a 50-point bonus by playing all
seven of your tiles in a single turn for what Scrabble players call a bingo. Although
using such a program in an actual game would certainly be cheating, you could use it
to help you learn various letter combinations that form seven-letter words.

Although a general technique for generating all rearrangements of a string requires
concepts beyond the scope of this text, you can achieve the desired result by going
through the list of English words and adding every word that contains a particular
combination of letters to a list of anagrams. Moreover, all you need to do to test
whether two combinations of letters are the same is to see if sorting those
combinations produces the same list. As it happens, you already saw in Chapter 2
that you can use the built-in function sorted to transform a string into an alphabetized
list of its characters. That insight is all you need to write the program to find all
anagrams, which appears in Figure 3-7.

 3.3 Testing and debugging 81

The program in Figure 3-7 defines both a create_anagram_list function that
generates the list of anagrams and a main program called find_anagrams that makes
it easy for the user to enter a set of letters and get back the list of anagrams. A sample
run of this program might look like this:

 3.3 Testing and debugging
Although you may sometimes get lucky with extremely simple programs, one of the
truths you’ll soon have to accept as a programmer is that very few of your programs
will run correctly the first time around. Most of the time, you will need to spend a
considerable fraction of your time testing the program to see whether it works,
discovering that it doesn’t, and then settling into the process of debugging, in which
you find and fix the errors in your code.

Perhaps the most compelling description of the centrality of debugging to the
programming process comes from the British computing pioneer Maurice Wilkes
(1913–2010), who in 1979 offered the following reflection from his early years in the
field:

As soon as we started programming, we found to our surprise that it wasn’t
as easy to get programs right as we had thought. We had to discover
debugging. I can remember the exact instant when I realized that a large
part of my life from then on was going to be spent in finding mistakes in
my own programs.

Programming defensively
Even though it is impossible to avoid bugs altogether, you can reduce the number of
bugs by being careful during the programming process. Just as it’s important to drive
defensively in your car, it makes sense to program defensively as you write your code.
The most important aspect of defensive programming is looking over your programs
to ensure that they do what you intend them to do. You will also find that taking the
time to make your code as clear and readable as possible will help avoid problems
down the road.

Maurice Wilkes

82 Algorithmic Thinking

Becoming a good debugger
Debugging is one of the most creative and intellectually challenging aspects of
programming. It can also be one of the most frustrating. If you are just beginning
your study of programming, it is likely that the frustrating aspects of debugging will
loom much larger than the excitement of meeting an interesting intellectual challenge.
That fact in itself is by no means surprising. Debugging, after all, is a skill that takes
time to learn. Before you have developed the necessary experience and expertise,
your forays into the world of debugging will often leave you facing a completely
mysterious problem that you have no idea how to solve. And when your assignment
is due the next day and you can make no progress until you somehow solve that
mystery, frustration is probably the most natural reaction.

To a surprising extent, the challenges that people face while debugging are not so
much technical as they are psychological. To become a successful debugger, the most
important thing is to start thinking in new ways that get you beyond the psychological
barriers that stand in your way. There is no magical, step-by-step approach to finding
the problems, which are usually of your own making. What you need is logic,
creativity, patience, and a considerable amount of practice.

The phases of the programming process
When you are developing a program, the actual process of writing the code is only
one piece of a more complex intellectual activity. Before you sit down to write the
code, it is always wise to spend some time thinking about the program design. As
you will discover as you start to write more sophisticated applications, programs are
often too large to write as a single function, which in turn forces you to decompose
the problem into more manageable pieces. Putting some thought into the design of
that decomposition before you start writing the individual functions is almost certain
to reduce the total amount of time—and frustration—involved in the project as a
whole. After you’ve written the code, you need to test whether it works and, in all
probability, spend some time ferreting out the bugs that prevent the program from
doing what you want.

These four activities—designing, coding, testing, and debugging—constitute the
principal components of the programming process. And although there are certainly
some constraints on order (you can’t debug code that you haven’t yet written, for
example), it is a mistake to think of these phases as rigidly sequential. The biggest
problem that students have comes from thinking that it makes sense to design and
code the entire program and then try to get it working as a whole. Professional
programmers never work that way. They develop a preliminary design, write some
pieces of the code, test those pieces to see if they work as intended, and then fix the
bugs that the testing uncovers. Only when that individual piece is working do
professional programmers return to code, test, and debug the next section of the

 3.3 Testing and debugging 83

program. From time to time, they go back and revisit the design as they learn from
the experience of seeing how well the original design works in practice. You must
learn to work in much the same way.

It is equally important to recognize that each phase in the programming process
requires a fundamentally different approach. As you move back and forth among the
various phases, you need to adopt different ways of thinking. In my experience, the
best way to illustrate how these approaches differ is to associate each phase with a
profession that depends on much the same skills and modes of thought.

During the design phase, you have to think like an architect. You need to have a
sense not only of the problem that must be solved but also an understanding of the
underlying aesthetics of different solution strategies. Those aesthetic judgments are
not entirely free from constraints. You know what’s needed, you recognize what’s
possible, and you choose the best design that lies within those constraints.

When you move to the coding phase, your role shifts to that of the engineer. Now
your job is to apply your understanding of programming to transform a theoretical
design into an actual implementation. This phase is by no means mechanical and
requires a significant amount of creativity, but your goal is to produce a program that
you believe implements the design.

In many respects, the testing phase is the most difficult aspect of the process to
understand. When you act as a tester, your role is not to establish that the program
works, but just the opposite. Your job is to break it. A tester therefore needs to
assume the role of a vandal. You need to search deliberately for anything that might
go wrong and take real joy in finding any flaws. It is in this phase of the programming
process that the most difficult psychological barriers arise. As the author of the
program, you want it to work; as the tester, you want it to fail. Many people have
trouble shifting focus in this way. After all, it’s hard to be overjoyed at pointing out
the stupid mistakes the programmer made when you also happen to be that
programmer. Even so, you need to make this shift.

Finally, your job in the debugging phase is that of a detective. The testing process
reveals the existence of errors but does not necessarily reveal why they occur. Your
job during the debugging phase is to sort through all the available evidence, create a
hypothesis about what is going wrong, check that hypothesis through additional
testing, and then make the necessary corrections.

As with testing, the debugging phase is full of psychological pitfalls. When you
were writing the code in your role as engineer, you believed that it worked correctly
when you designed it in your role as architect. You now have to discover why it
doesn’t, which means that you have to discard any preconceptions you’ve retained
from those earlier phases and approach the problem with a fresh perspective. Making

Phases and roles in the
programming process

Design = Architect
Coding = Engineer
Testing = Vandal
Debugging = Detective

84 Algorithmic Thinking

that shift successfully is always a difficult challenge. Code that looked correct to you
once is likely to look just as good when you come back to it a second time.

What you need to keep in mind is that the testing phase has determined that the
program is not working correctly. There must be a problem somewhere. It’s not the
browser or Python that’s misbehaving or some unfortunate conjunction of the planets.
As Cassius reminds Brutus in Shakespeare’s Julius Caesar, “the fault, dear Brutus, is
not in our stars, but in ourselves.” You introduced the error when you wrote the code,
and it is your job to find it.

This book will offer additional suggestions about debugging as you learn how to
write more complex programs, but the following principle will serve you better than
any specific debugging strategy or technique:

When you are trying to find a bug, it is more important to understand
what your program is doing than to understand what it isn’t doing.

Most students who come upon a problem in their code go back to the original problem
and try to figure out why their program isn’t doing what they wanted. Although such
an approach can be helpful in some cases, it is far more likely that this kind of thinking
will make you blind to the real problem. If you make an unwarranted assumption the
first time around, you are likely to make it again, and therefore find it difficult to see
any reason why your program isn’t doing the right thing. You need instead to gather
information about what your program is doing and then work out where it goes wrong.

Although many modern Python programming environments come equipped with
sophisticated debuggers, you are likely to get the most mileage out of the built-in
function print. If you discover that your program isn’t working, you can add a few
calls to print at places where you think your program might be going down the
wrong path. In some cases, it’s sufficient to include a line like

print("I got here")

to the program. If the message "I got here" appears on the console, you know that
the program got to that point in the code. It is often even more helpful to use print
to display the value of an important variable. If, for example, you expect the variable
n to have the value 100 at some point in the code, you can add the line

print(f"n = {n}")

If running the program shows that n has the value 0 instead, you know that something
has gone wrong prior to this point. Narrowing down the region of the program in
which the problem might be located puts you in a much better position to find and
correct the error.

 3.3 Testing and debugging 85

Since the process of debugging is similar to the art of detection, it seems
appropriate to offer some of the more relevant bits of debugging wisdom I’ve
encountered in detective fiction, which appear in Figure 3-8. I also strongly
recommend Robert Pirsig’s critically acclaimed novel Zen and the Art of Motorcycle
Maintenance: An Inquiry into Values (Bantam, 1974), which stands as the best
exposition of the art and psychology of debugging ever written. The most relevant
section is the discussion of “gumption traps” in Chapter 26.

An example of a psychological barrier
Although most testing and debugging challenges involve a level of programming
sophistication beyond the scope of this chapter, there is a very simple program that
illustrates just how easy it is to let your assumptions blind you not only to the cause
of an error but even to its very existence. Throughout the many years I’ve taught
computer science, one of my favorite problems to assign at the beginning of the term
is to write a function that solves the quadratic equation

 ax2 + bx + c = 0

This equation has two solutions given by the formula

x =

86 Algorithmic Thinking

The first solution is obtained by using + in place of the ± symbol; the second is
obtained by using – instead. The problem I give students is to write a function that
takes a, b, and c as parameters and displays the two resulting solutions for x.

Although the majority can solve this problem correctly, there are always a number
of students—as much as 20 percent of a large class—who turn in functions that look
something like this:

def solve_quadratic(a, b, c):
 r = math.sqrt(b*b - 4*a*c)
 x1 = (-b + r) / 2*a
 x2 = (-b - r) / 2*a
 print(f"x1 = {x1}")
 print(f"x2 = {x2}")

This text uses a red bug to mark code that is incorrect. This implementation of
solve_quadratic is buggy, although the problem is subtle. It looks as if the
expression 2*a is in the denominator of the fraction, when in fact it isn’t. In Python,
operators in the same precedence class, such as the / and * in the lines defining x1
and x2, are evaluated in left-to-right order. The parenthesized value in these
expressions is therefore first divided by 2 and then multiplied by a. Python requires
parentheses around the denominator (2*a).

The real lesson in this example, however, lies in the fact that many students
compound their mistake by failing to discover it. Most of the students who make this
error fail to test their programs for any values of the coefficient a other than 1, since
those are the easiest answers to compute by hand. If a is 1, it doesn’t matter whether
you multiply or divide by a because the answer will be the same. Worse still, students
who test their program for other values of a often fail to notice that their programs
give incorrect answers. I often get sample runs that look like this:

This sample run asserts that x = 32 and x= 16 are solutions to the equation

8 x2 – 6 x + 1 = 0

but it is easy to check that neither of these values satisfy the equation. Even so,
students happily submit such programs without noticing that the answers are wrong.

 3.3 Testing and debugging 87

Writing test programs
Whenever you write a function, it is a good idea to write a function to check that your
implementation works for a reasonably large set of cases. In doing so, it is often
useful to make use of Python’s assert statement, which you have already seen in
Chapter 2. The code in Figure 3-9 defines three functions: a main program called
quadratic that lets the user enter the coefficients and see the results, a function
called find_quadratic_roots that other code could use to determine the solve the
quadratic equation, and a function called find_quadratic that uses assert
statements to verify that the results are correct.

The fact that the quadratic.py module includes both a main program and a
function that other programmers might want to use as a library makes it a little

88 Algorithmic Thinking

difficult to know exactly what the standard startup code should do. In this example,
the boilerplate consists of the lines

if __name__ == "__main__":
 quadratic()

Thus, if you invoke the quadratic.py module from the command line or a Python
development environment, it runs the main program for the user, which might
produce the following sample run:

If you want to run the test program instead, you need to invoke it explicitly from
IDLE or whatever Python development environment you’re using. A better strategy,
however, is to install the pytest package, which implements an automated testing
environment. If you run it from the command line using

pytest quadratic.py

the pytest application will search the quadratic.py module for any functions
whose names begin with test_ to see if any of the assertions fail.

The decision to combine a main program and a test function in the same has
another implication for the module design. It is difficult to write test functions for a
main program that communicates directly with the user by making calls to input and
print. What you need to instead is separate the functions—as the code in Figure 3-9
does—so that different functions take care of the user interaction and the underlying
calculation. The test function can then make assertions about the calculations without
requiring the user to take any explicit action.

Software maintenance
One of the more surprising aspects of software development is that programs require
maintenance. In fact, studies of software development indicate that, for commercial
applications, paying programmers to maintain the software after it has been released
constitutes between 80 and 90 percent of the total cost. In the context of software,
however, it is a little hard to imagine precisely what maintenance means. At first
hearing, the idea sounds rather bizarre. If you think in terms of a car or a bridge,
maintenance occurs when something has broken—some of the metal has rusted away,
a piece of some mechanical linkage has worn out from overuse, or something has
gotten smashed up in an accident. None of these situations apply to software. The

 3.3 Testing and debugging 89

code itself doesn’t rust. Using the same program over and over again does not in any
way diminish its functioning. Accidental misuse can certainly have dangerous
consequences but does not usually damage the program itself; even if it does, the
program can often be restored from a backup copy. What does maintenance mean in
such an environment?

Software requires maintenance for two principal reasons. First, even after
considerable testing and, in some cases, years of field use, bugs can still survive in
the code. When some unanticipated situation arises, the bug, previously dormant,
causes the program to fail. Thus, debugging is an essential part of program
maintenance. It is not, however, the most important part. Far more consequential,
especially in terms of the impact on the overall cost of program maintenance, is that
programs need to change in response to changing requirements. Users often want
new features in their applications, and software developers try to provide those
features to maintain customer loyalty. In either case—whether one wants to repair a
bug or add a feature—someone has to look at the program, figure out what’s going
on, make the necessary changes, verify that those changes work, and then release a
new version. This process is difficult, time-consuming, expensive, and prone to error.

Program maintenance is especially difficult because many programmers do not
write their programs for the long haul. To them it seems sufficient to get the program
working and then move on to something else. The discipline of writing programs so
that they can be understood and maintained by others is called software engineering.
In this text, you are encouraged to write programs that demonstrate effective software
engineering techniques.

Many novice programmers are disturbed to learn that there is no precise set of
rules you can follow to ensure good programming style. Software engineering is not
a cookbook sort of process. It is instead a skill blended with more than a little bit of
artistry. Practice is critical. One learns to write well-structured programs by writing
them, and by reading others, much as one learns to be a novelist. Becoming an
effective programmer requires discipline—the discipline not to cut corners or to
forget, in the rush to complete a project, about that future maintainer. Good
programming practice also requires developing an aesthetic sense of what it means
for a program to be readable and well presented.

Although there are no hard-and-fast rules for writing maintainable programs, there
are certainly some important principles, including the following:

• Write both your code and your comments with future maintainers in mind.
• Choose names for variables, constants, and functions that convey their purpose.
• Use indentation to highlight the hierarchical structure of your programs.
• Design your programs so that they are easy to modify as requirements change.

90 Algorithmic Thinking

The last point in this list deserves additional discussion. Given that programs will
inevitably change over their lifetimes, it is good programming practice to help future
maintainers make the necessary changes. A useful strategy to support ongoing
maintenance is to use constant definitions for values that you expect might change at
some point down the road.

The value of using constant definitions is perhaps easiest to illustrate in the context
of a historical example. Imagine for the moment that you are a programmer in the
late 1960s working on the initial design of the ARPANET, which is the forerunner of
today’s internet. Because resources were highly constrained at that time, the
designers of the ARPANET placed a limit on the number of computers (which were
called hosts in the ARPANET days) that could be connected to the network. In the
early years of the ARPANET, that limit was 127 hosts. If Python had existed in 1969,
you might have declared a constant like this:

MAXIMUM_NUMBER_OF_HOSTS = 127

At some later point, however, the explosive growth of networking would force you
to raise this bound.

Making that change would be easy if you had defined a constant but hard if you
had instead written the number 127. In that case, you would need to change all
instances of 127 that refer to the number of hosts. Some instances of 127 might refer
to things other than the limit on the number of hosts, and it would be important not to
change any of those values. In the likely event that you had made a mistake in that
process, you would have a very hard time tracking down the bug.

 Summary
The focus of this chapter is on the concept of an algorithm and on how to approach
designing, implementing, testing, and debugging algorithms of your own. The
important points include:

• An algorithm is a strategy that is clear and unambiguous, effective, and finite.

• Algorithms have existed since long before computers. Important historical
examples include the Babylonian method for approximating square roots from
between the 19th and 16th centuries BCE and Euclid’s algorithm for finding the
greatest common divisors of two integers, which dates from around 300 BCE.

• There are usually several different algorithms for solving a particular problem.
Algorithms for solving a problem often vary dramatically in their efficiency.
Choosing the algorithm that best fits the application is an important part of your
task as a programmer.

 Summary 91

• Although they are rarely the most efficient, it is often easiest to find a brute-force
algorithm that tries every possible solution looking for an answer. An early
example from the dawn of the computing age is the first program run on the
Small-Scale Experimental Machine at Manchester University in 1948, which
calculated the largest factor of an integer N by trying each successively smaller
number until it found one that divided evenly into N.

• When you are given a programming problem, it is often useful to think about how
you would solve it without a computer. If you don’t understand the solution
strategy, you will be unable to write a program that carries out the necessary steps.

• Another useful programming strategy is figuring out what information you need
to remember and what information you can safely forget. In the program shown
in Figure 3-4 that finds the largest number in a list of values entered by the user,
you don’t need to remember all the values the user gives you; all you need to
remember is the largest value so far.

• Python includes a keyword called None that you can use to indicate the absence
of an actual value. By convention, Python programs test for this special value
using the is operator, as in the following statement from the FindLargest.py
program in Figure 3-4:

if largest is None:

• The libraries associated with this text include a module called english.py that
exports a constant ENGLISH_WORDS containing an alphabetical list of English
words and a predicate function is_english_word that checks whether its
argument is a valid English word.

• The four phases of the programming process are design, coding, testing, and
debugging, although it is best to view these phases as interrelated rather than
sequential. Professional programmers typically code one piece of a program, test
it, debug it, and then go back and work on the next piece.

• Each phase in the programming process requires you to behave in a different way.
During the design phase, you act as an architect. When you are coding, you
function as an engineer. During testing, you must act like a vandal, striving to
break the program, not to prove that it works. When debugging, you need to think
like a detective employing all the cleverness and insight of a Sherlock Holmes.

• When you are trying to find a bug, it is more important to understand what your
program is doing than to understand what it isn’t doing.

• In seeking to understand what your program is doing, your most helpful resource
is the built-in print function.

• The most serious problems programmers face during the testing and debugging
phases are psychological rather than technical. It is extremely easy to let your
assumptions and desires get in the way of understanding where the problems lie.

92 Algorithmic Thinking

• It is good programming practice to include test programs along with the definitions
of any functions that you write.

• Programs require maintenance over their life cycles both to correct bugs and to
add new features as user requirements change.

 Review questions
1. What are the two words that Muhammad ibn Mūsā al-Khwārizmī and his work

gave to English?

2. What conditions must a solution strategy meet in order to be an algorithm?

3. How would you define a brute-force strategy?

4. Use Euclid’s algorithm to compute the greatest common divisor of 7735 and

4185. What values does the local variable r take on during the calculation?

5. In the examples that use Euclid’s algorithm to calculate gcd(x, y), the value of

x has always been larger than y. What happens if x is smaller than y?

6. What was the nickname of the Small-Scale Experimental Machine developed at

Manchester University that was in many respects the first modern digital
computer?

7. True or false: A good way to approach many programming problems is to figure

out how you would solve it yourself without using a computer.

8. How would you write a Python expression that tests whether the value of the

variable x is equal to the special constant None?

9. The programs in this chapter use two definitions exported by the english.py

module. What are those two definitions?

10. The two versions of the TwoLetterWords.py program both generate a list of the

valid two-letter words in English. Will those versions always generate those
words in the same order? Why or why not?

11. Explain the purpose of the calls to the function sorted in the FindAnagrams.py

module shown in Figure 3-7.

12. What are the four phases of the programming process identified in this chapter?

For each of those phases, what professional role does the chapter offer as a model
for how to perform that phase?

 Exercises 93

13. True or false: Professional programmers work through the four phases of the
programming process in order, finishing each one before moving on to the next.

14. True or false: When you are testing your program, your primary goal is to show
that it works.

15. What piece of advice does the chapter offer to help you think effectively about

debugging?

16. What built-in function does the text identify as the most useful debugging tool?

17. In your own words, explain what is meant by program maintenance.

 Exercises
1. Modify the Babylonian algorithm as presented in the text so that it calculates

cube roots instead of square roots. Express the algorithm in the form of a
function cuberoot(n) that returns the cube root of the argument n. The creative
part of this problem is figuring out what numbers you should average to obtain a
new guess on each cycle of the loop. If g, for example, lies to one side of the
cube root of n, what value can you compute using n and g that would be
approximately as close to the root but on the opposite side? If you can find such
a value, averaging the two will yield a result that is closer to the actual answer.

2. As noted in the description of the program for the Manchester Baby to find the

largest factor of an integer, the solution that appears in the text takes “some
advantage of Python’s extended set of operations.” The Manchester Baby could
not perform multiplication and division and therefore had no immediate way to
calculate a remainder. Rewrite the largest_factor function so that it uses only
assignment, addition, subtraction, and comparing a number against 0.

3. One of the important strategic principles in Scrabble is to conserve your S tiles,

because the rules for English plurals mean that many words take an S-hook at
the end. Some words, of course, allow an S tile to be added at the beginning, but
it turns out that there are 680 words—including, for example, the words cold and
hot—that allow an S-hook on both ends. Write a program that uses the
english.py module to display a list of all such words.

4. The FindAnagrams.py program checks to see if two words are anagrams by

sorting the letters of each word and seeing whether those sorted lists match.
Some English words already have their letters arranged in sorted order, such as
is, aft, cost, below, and almost. Write a program that display a list of all words
defined in the english.py module that have this property.

94 Algorithmic Thinking

5. In many cases, as in the case of the two strategies presented for calculating the
greatest common divisor, using a better algorithm can result in an enormous
increases in efficiency. Even if you can’t find improvements at that level, it is
still useful to look for modifications that produce more modest performance
gains. As presented in the text, the FindAnagrams.py program ends up sorting
the letters in every dictionary word, but there is no point in doing so unless the
word has the correct length. Rewrite FindAnagrams.py so that it checks that
the length of the dictionary word matches that of the letter sequence before you
call sorted.

6. Write a Python program that reads in integers up to a blank line and then prints

both the largest and second-largest values in the user’s input, as follows:

The values in this sample run are the number of pages in the British hardcover
editions of J. K. Rowling’s Harry Potter series. The output tells us that the
longest book is the Harry Potter and the Order of the Phoenix at 766 pages and
the second-longest book is Harry Potter and the Goblet of Fire at 636 pages.

7. The German mathematician Gottfried Wilhelm von Leibniz discovered the rather

remarkable fact that the mathematical constant p can be computed using the
following mathematical relationship:

The formula to the right of the equal sign represents an infinite series; each
fraction represents a term in that series. If you start with 1, subtract one-third,
add one-fifth, and so on, for each of the odd integers, you get a number that gets
closer and closer to the value of p/4 as you go along.

Write a program that calculates an approximation of p consisting of the first
10,000 terms in Leibniz’s series.

8. An integer greater than 1 is said to be prime if it has no divisors other than itself

and one. The number 17, for example, is prime because it has no factors other

 Exercises 95

than 1 and 17. The number 91, however, is not prime because it is divisible by
7 and 13. Write a predicate function is_prime(n) that returns True if the
integer n is prime, and False otherwise. As an initial strategy, implement
is_prime using a brute-force algorithm that simply tests every possible divisor.
Once you have that version working, look for improvements that increase your
algorithm’s efficiency without affecting its correctness.

9. The first program written for the Manchester Baby found the largest factor of a

number. A more interesting problem is to find the complete set of factors. Write
a function print_factors(n) that lists all the factors in the form of a single
line that includes the number n, an equal sign, and the individual factors
separated by asterisks, as illustrated in the following IDLE transcript:

10. Greek mathematicians took a special interest in numbers that are equal to the sum

of their proper divisors (a proper divisor of n is any divisor less than n itself).
They called such numbers perfect numbers. For example, 6 is a perfect number
because it is the sum of 1, 2, and 3, which are the integers less than 6 that divide
evenly into 6. Similarly, 28 is a perfect number because it is the sum of 1, 2, 4,
7, and 14.

Write a predicate function is_perfect(n) that returns True if the integer n
is perfect, and False otherwise. Test your implementation by writing a program
that uses the is_perfect function to check for perfect numbers in the range 1
to 9999 by testing each number in turn. Whenever your program identifies a
perfect number, it should display that number on the screen. The first two lines
of output should be 6 and 28. Your program should find two other perfect
numbers in that range as well.

11. Although Euclid’s algorithm for calculating the greatest common divisor is one

of the oldest to be dignified with that term, there are other algorithms that date
back many centuries. In the Middle Ages, one of the problems that required
sophisticated algorithmic thinking was determining the date of Easter, which
falls on the first Sunday after the first full moon following the vernal equinox.
Given this definition, the calculation involves interacting cycles of the day of the
week, the orbit of the moon, and the passage of the sun through the zodiac. Early
algorithms for solving this problem date back to the third century and are

96 Algorithmic Thinking

described in the writings of the eighth-century scholar known as the Venerable
Bede. In 1800, the German mathematician Carl Friedrich Gauss published an
algorithm for determining the date of Easter that was purely computational in the
sense that it relied on arithmetic rather than looking up values in tables. His
algorithm—translated from the German—appears in Figure 3-11.

Write a Python function find_easter_date(year) that returns a string
showing the date of Easter in the specified year. For example, calling
find_easter_date(1800) returns the string "April 13" because that is the
date of Easter in the year that Gauss published his algorithm.

Unfortunately, the algorithm in Figure 3-11 works only for years in the 18th
and 19th centuries. It is easy, however, to search the web for extensions that work
for all years. Once you have completed your implementation of Gauss’s
algorithm, undertake the necessary research to implement a more general
approach.

12. Working from the perspective of a designer, come up with an algorithm for tying

your shoelaces and then write it down in English as carefully as you can. Once
you have done so, shift your role to that of a tester and see if you can find any
parts of the algorithm that are sufficient unclear or ambiguous that you can make
the process fail even while obeying each of the instructions to the letter, at least
under some interpretation. Finally, take on the role of debugger to fix the bugs
you found during the testing phase.

C H A P T E R 4
Simple Graphics

A display connected to a digital computer gives us a chance
to gain familiarity with concepts not realizable in the
physical world. It is a looking glass into a mathematical
wonderland.

— Ivan Sutherland, “The Ultimate Display,” 1965

Ivan Sutherland (1938–)

Ivan Sutherland was born in Nebraska and developed a passion for computers while still in high school, when
a family friend gave him the opportunity to program a tiny relay-based machine called SIMON. Since
computer science was not yet an academic discipline, Sutherland majored in electrical engineering at
Pittsburgh’s Carnegie Institute of Technology (now Carnegie Mellon University) and then went on to get a
Master’s degree at Caltech and a Ph.D. from MIT. His doctoral thesis, “Sketchpad: A man-machine graphical
communications system,” became one of the cornerstones of computer graphics and introduced the idea of
the graphical user interface, which has become an essential feature of modern software. After completing
his degree, Sutherland held faculty positions at Harvard, the University of Utah, and Caltech before leaving
academia to found a computer-graphics company. Sutherland received the ACM Turing Award in 1988.

98 Simple Graphics

Although it is possible to learn the fundamentals of programming using only the
numeric and string types you saw in Chapter 1, numbers and strings are not as exciting
as they were in the early years of computing. For students who have grown up in the
21st century, much of the excitement surrounding computers comes from their ability
to work with other more interesting types of data, including images and interactive
graphical objects. Python is ideal for working with graphical data. Introducing just
a few graphical types will enable you to create applications that are much more
engaging and give you a greater incentive to master the material.

This chapter introduces you to the facilities in the Portable Graphics Library, a
collection of tools for writing simple graphical applications. The discussion in this
chapter provides enough information to get you started; more advanced features of
the graphics library will be introduced as they are needed.

 4.1 Your first graphics program
As is usually the case when you are studying programming, the best way to learn how
graphical programs work is to look at an example. Although many examples might
serve, the cultural history of computer science suggests using a particular
programming problem as a starting point. That programming problem first appeared
in The C Programming Language by Brian Kernighan and Dennis Ritchie, who offer
the following advice on the first page of Chapter 1:

The only way to learn a new programming language is by writing
programs in it. The first program to write is the same for all languages:

Print the words
hello, world

This is the big hurdle; to leap over it you have to be able to create the
program text somewhere, compile it successfully, load it, run it, and find
out where the output went. With these mechanical details mastered,
everything else is comparatively easy.

That advice was followed by the four-line text of the “Hello World” program, which
became part of the heritage shared by all C programmers.

Although the existence of a sophisticated interactive environment like IDLE
makes it unnecessary—and entirely too easy—to use “Hello World” as your first
Python program, it makes sense to use that problem as a starting point for graphical
programs. The code for a graphically oriented GraphicsHelloWorld.py program
appears in Figure 4-1. The new goal is not to print the words “hello, world” but
instead to display those words in a graphics window.

 4.2 Classes, objects, and methods 99

The main function for the GraphicsHelloWorld.py program looks like this:

def hello_world():
 gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT)
 msg = GLabel("hello, world", 50, 100)
 gw.add(msg)

The first two statements in this function define the variable gw, which stands for
“graphics window,” and the variable msg, which refers to the message on the screen.
The last statement then adds the message to the graphics window.

At one level, these statements are similar to the ones you have seen in the earlier
chapters. Each of the two assignment statements introduces a new variable and then
initializes it to a value produced by calling a function. The important difference lies
in the types of those values.

 4.2 Classes, objects, and methods
One of the most important things to notice about the GraphicsHelloWorld.py
program in Figure 4-1 is that the values stored in the variables gw and msg are more

100 Simple Graphics

complex than the values you’ve worked with so far, even though the underlying
principles are the same. So far, the values you have stored in variables have been
numbers and strings. In the GraphicsHelloWorld.py program, the value stored in
each of the variables is an object, which is the term computer science uses to refer to
a conceptually integrated entity that ties together the information that defines the state
of the object and the operations that affect that state.

Each of these objects is a representative of a class, which is easiest to imagine as
a template that defines the attributes and operations shared by all objects of a
particular type. A single class can give rise to many different objects; each such
object is said to be an instance of that class.

Creating objects
The GraphicsHelloWorld.py program uses the following assignment statements to
create two objects:

gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT)
msg = GLabel("hello, world", 50, 100)

The names GWindow and GLabel are part of the pgl module, which implements the
Portable Graphics Library. The first line after the introductory comments is

from pgl import GWindow, GLabel

which imports these two classes. The GWindow class represents a graphical window
on the screen, and the GLabel class represents a string that can appear in that window.
Functions that create new objects are called constructors and are written using camel
case, starting with an uppercase letter.

The assignment statement

gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT)

uses the GWindow constructor to create an object whose class is GWindow. The
parameters GWINDOW_WIDTH and GWINDOW_HEIGHT specify the window size in units
called pixels, which are the tiny dots that cover the face of the display. The call to
GWindow therefore creates a new GWindow object that is 500 pixels wide and 200
pixels high. That object is then assigned to a variable named gw, which makes it
possible for the program to refer to the window in the rest of the code.

Even though the declarations of the variables gw and msg create the necessary
objects, these lines alone do not cause the GLabel to appear in the GWindow. To get
the message to appear, the program has to tell the GWindow object stored in gw to add
the GLabel stored in msg to its internal list of graphical objects to display on the

 4.2 Classes, objects, and methods 101

window. This step in the process is the responsibility of the last line in the
GraphicsHelloWorld.py program, which looks like this:

gw.add(msg)

Understanding how this statement works requires you to learn a little more about the
way that Python implements objects.

Sending messages to objects
When you are programming in a language that supports objects, it is useful to adopt
at least some of the ideas and terminology of the object-oriented paradigm, a
conceptual model of programming that focuses on objects and their interactions rather
than on the more traditional model in which data and operations are seen as separate.
In object-oriented programming, the generic term for anything that triggers a
particular behavior in an object is called a message. In Python, sending a message to
an object is implemented by calling a function associated with that object. Functions
that are associated with an object are called methods, and the object on which the
method is invoked is called the receiver.

In Python, method calls use the following syntax:

receiver.name(arguments)

In the method call gw.add(msg), the graphics window stored in gw is the receiver,
and add is the name of the method that responds to the message. The argument msg
lets the implementation of the GWindow class know what graphical object to add,
which in this case is the GLabel stored in the msg variable. The GWindow responds
by displaying the message at the specified coordinates on the screen, which creates
the following image:

As you can see from the screen image, the desired message is there. The message is
not very large or exciting, but you’ll have a chance to spice it up later in the chapter.

References
In Python, the value stored in a variable like gw is not the entire object but instead a
reference, which is a value internal to the computer that serves as a link to the data
in the actual object. In the GraphicsHelloWorld.py program, the declaration

102 Simple Graphics

gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT)

initializes the variable gw to contain a reference to an on-screen window capable of
displaying graphical objects, as illustrated by the following diagram:

As the arrow suggests, the reference stored in gw points to a larger value that
represents the graphics window on the screen.

The assignment statement

msg = GLabel("hello, world", 50, 100)

operates in a similar fashion. This line creates a GLabel object and assigns a reference
to that object to the variable msg, as follows:

Although it is often possible to ignore the distinction between a reference and its
associated object, it is important to understand that assigning an object value to a
variable does not copy the entire object but instead copies only the reference. For
example, if you were to write the statement

msg2 = msg

Python would not create a second object but would instead arrange it so that msg and
msg2 both contained references to the same object, as follows:

If you need to create a second GLabel—even one that has the same contents—you
need to call the GLabel constructor.

Understanding how Python uses references as links to larger data structures will
be particularly important when you learn about arrays and objects in Chapters 8
through 12.

 4.3 Graphical objects 103

Encapsulation
The diagrams for the GLabel objects in the preceding section show only the data
values that are stored inside those objects. In addition to these values, objects also
contain the private data and associated code necessary to implement the class. That
information, however, is not available to the main program but is instead securely
packaged inside the GLabel object. This model of packaging data and code together
is called encapsulation.

 4.3 Graphical objects
The GLabel class is only one of several classes in the Portable Graphics Library. This
section introduces three other classes—GRect, GOval, and GLine—that, together
with GLabel and GWindow, provide a useful “starter kit” for writing graphical
programs.

The GRect class
The GRect class allows you to create rectangles and add them to the graphics window.
For example, the program in Figure 4-2 creates a graphics window and then adds a
rectangle to the window, solidly filled using the color blue, like this:

104 Simple Graphics

The BlueRectangle.py program is similar to the GraphicsHelloWorld.py
program from Figure 4-1. The blue_rectangle function begins—as the main
functions for all graphics programs in this book do—by creating a GWindow of the
desired size and assigning it to the variable gw.

The next statement in the blue_rectangle function is

rect = GRect(150, 50, 200, 100)

which creates a GRect object used to display the rectangle in the window. In this call,
the first two arguments, 150 and 50, indicate the x and y coordinates at which the
rectangle should be positioned; the second two arguments, 200 and 100, specify the
width and height of the rectangle. As in the earlier call to GWindow, each of these
values is measured in pixels. This geometry is illustrated in Figure 4-3.

When you work with the graphics library, it is important to keep in mind that the
coordinate values in the y direction increase as you move down the screen, with the

 4.3 Graphical objects 105

(0, 0) origin in the upper left corner. To maintain consistency with this convention,
the origin of a graphical object is usually defined to be its upper left corner. The
GRect object stored in the variable rect is therefore positioned so that its upper left
corner is at the point (150, 50) relative to the upper left corner of the window.

The remaining statements in the blue_rectangle function are all examples of
method calls. For example, the statement

rect.set_color("Blue")

sends the rectangle object a set_color message asking it to change its color. The
argument to set_color is a string, which is usually one of the color names from
Figure 4-4. Here, the set_color call tells the rectangle to set its color to blue.

106 Simple Graphics

If the 140 standard web colors listed in Figure 4-4 are not enough for you, the
Portable Graphics Library allows you to specify 16,777,216 different colors by
indicating the proportion of the three primary colors of light: red, green, and blue. To
do so, all you need to do is specify the color as a string in the form "#rrggbb", where
rr indicates the red value, gg indicates the green value, and bb indicates the blue value.
Each of these values is expressed as a two-digit number written in hexadecimal, or
base 16. You may already be familiar with this form of color specification from
designing web pages. If not, you will have a chance to learn more about hexadecimal
notation in Chapter 7.

The next line in the blue_rectangle function is the method call

rect.set_filled(True)

which sends a set_filled message to the rectangle. The set_filled method takes
a Boolean argument, which specifies whether the rectangle is filled or outlined.
Calling rect.set_filled(True) indicates that the interior of the rectangle should
be filled. Conversely, calling rect.set_filled(False) indicates that it should not
be, which leaves only the outline.

The final line in the blue_rectangle function is the method call

gw.add(rect)

which sends an add message to the graphics window, asking it to add the graphical
object stored in rect to the contents of the window. Adding the rectangle produces
the final contents of the display.

By default, the GRect function creates rectangles that are unfilled. Thus, if you
left this statement out of blue_rectangle, the result would look like this:

For filled shapes, you can set the interior color by calling set_fill_color with
any of the color names from Figure 4-4. For example, if you replace the call to
set_color("Blue") in Figure 4-2 with a call to set_fill_color("Cyan"), the
rectangle would be filled in cyan but outlined in black, like this:

 4.3 Graphical objects 107

The GOval class
As its name suggests, the GOval class is used to display an oval-shaped figure in a
graphics window. The GOval constructor takes the same arguments as GRect, but
the two classes display different objects on the screen. The GRect class displays a
rectangle whose location and size are determined by the arguments. The GOval class
displays the oval that fits exactly inside the corresponding rectangle.

The relationship between the GRect and the GOval classes is most easily
illustrated by example. The following function definition takes the code from the
earlier BlueRectangle.py program and extends it by adding a GOval with the same
coordinates and dimensions:

def grect_plus_goval():
 gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT)
 rect = GRect(150, 50, 200, 100)
 rect.set_filled(True)
 rect.set_color("Blue")
 gw.add(rect)
 oval = GOval(150, 50, 200, 100)
 oval.set_filled(True)
 oval.set_color("Red")
 gw.add(oval)

The resulting output looks like this:

108 Simple Graphics

There are two important things to notice in this example. First, the red GOval
extends so that its edges touch the boundary of the rectangle. Second, the GOval,
which was added after the GRect, hides the portions of the rectangle that lie
underneath the oval. If you were to add these figures in the opposite order, all you
would see is the blue GRect, because the entire GOval would be within the boundaries
of the GRect.

The GLine class
The GLine class is used to display line segments on the graphics window. The GLine
function takes four arguments, which are the x and y coordinates of the two endpoints.
For example, the function call

GLine(0, 0, GWINDOW_WIDTH, GWINDOW_HEIGHT)

creates a GLine object running from the point (0, 0) in the upper left corner of the
graphics window to the point at the opposite corner in the lower right.

The following function uses the GLine class to draw the two diagonals across the
graphics window:

def draw_diagonals():
 gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT)
 gw.add(GLine(0, 0, GWINDOW_WIDTH, GWINDOW_HEIGHT))
 gw.add(GLine(0, GWINDOW_HEIGHT, GWINDOW_WIDTH, 0))

Loading this program in the browser generates the following display:

The GLabel class
When you last saw the GLabel class in the GraphicsHelloWorld.py program, the
results were not entirely satisfying. The message appearing on the screen was too
small to generate much excitement. To make the "hello, world" message bigger,
you need to display the GLabel in a different font.

 4.3 Graphical objects 109

In all likelihood, you already know about fonts from working with other computer
applications and have an intuitive sense that fonts determine the style in which
characters appear. More formally, a font is an encoding that maps characters into
images that appear on the screen. To change the font of the GLabel, you need to send
it a set_font message, which might look like this:

msg.set_font("36px 'Times New Roman'")

This call to the set_font method tells the GLabel stored in msg to change its font to
one in which the height of a text line is 36 pixels and the font family is Times New
Roman, used by The New York Times. If you include the set_font call in the
program, the graphics window will look like this:

The string passed as the argument to set_font is written so that it conforms to
style specifications used on the web, which is called CSS for cascading style sheets.
This string specifies several font properties, which appear in the following order:

• The font style, which can be used to indicate an alternative form of the font. This

specification is ordinarily omitted from the font string to indicate a normal font
but may appear as italic or oblique to indicate an italic variant or a slanted one.

• The font weight, which specifies how dark the font should be. This specification
is omitted for normal fonts but may appear as bold to specify a boldface one.

• The font size, which specifies how tall the characters should be by indicating the
distance between two successive lines of text. In CSS, the font size is usually
specified in pixel units as a number followed by the suffix px, as in the 36px
specification used in the most recent call to set_font.

• The font family, which specifies the name associated with the font. If the name
of the font contains spaces, it must be quoted, usually using single quotation marks
because the font specification appears inside a double-quoted string. Setting the
text in Times New Roman, for example, therefore requires the font string to
include 'Times New Roman'. Because different computers support different fonts,
CSS allows a font specification to include several family names separated by
commas. The browser will then use the first font family that is available.

110 Simple Graphics

CSS defines several generic family names, which do not identify a specific font
but instead describe a type of font that is always available in some form. The most
common generic family names appear in Figure 4-5. It is good practice to end the list
of preferred font families with one of these generic names to ensure that your program
will run on the widest possible set of browsers.

As you probably know from using your word processor, it can be fun to
experiment with different fonts. On most Macintosh systems, for example, there is a
font called Lucida Blackletter that produces a script reminiscent of the style of
illuminated manuscripts of medieval times. To set the message in this font, you could
change the set_font call in this program to

msg.set_font("24px 'Lucida Blackletter',Serif")

Note that the font string includes the generic family name Serif as an alternative. If
the browser displaying the page could not find a font called Lucida Blackletter, it
could then substitute one of the standard serif fonts, such as Times New Roman. If,
however, it were able to load the Lucida Blackletter font successfully, the output
would look something like this:

The GLabel class uses its own geometric model, which is similar to the ones that
typesetters have used over the centuries since Gutenberg’s invention of the printing
press. The notion of a font, of course, originally comes from printing. Printers would
load different sizes and styles of type into their presses to control the way in which
characters appeared on a page. The terminology that the graphics library uses to

 4.3 Graphical objects 111

describe both fonts and labels also derives from the typesetting world. You will find
it easier to understand the behavior of the GLabel class if you learn the following
terms:

• The baseline is the imaginary line on which characters sit.

• The origin is the point at which the text of a label begins. In languages that read
left to right, the origin is the point on the baseline at the left edge of the first
character. In languages that read right to left, the origin is the point at the right
edge of the first character, at the right end of the line.

• The height is the distance between successive baselines in multiline text.

• The ascent is the maximum distance that characters extend above the baseline.

• The descent is the maximum distance that characters extend below the baseline.

The interpretation of these terms in the context of the GLabel class is illustrated in
Figure 4-6.

The GLabel class includes methods that allow you to determine these properties.
For example, the GLabel class includes a method called get_ascent to determine
the ascent of the font in which the label appears. In addition, it includes a method
called get_width that determines the horizontal extent of the GLabel.

These methods make it possible to center a label in the window, although they
raise an interesting question. The only function you’ve seen to create a GLabel takes
its initial coordinates as parameters. If you want to center a label, you won’t know
those coordinates until after you have created the label. To solve this problem, the
function that creates a GLabel comes in two forms. The first takes the string for the
label along with the x and y coordinates of the origin. The second leaves out the
origin point, setting the origin to the default value of (0, 0).

112 Simple Graphics

Suppose, for example, that you want to center the string "hello, world" in the
graphics window. To do so, you first need to create the GLabel, then change its font
so the label has the appearance you want, and finally determine the dimensions of the
label to calculate the correct initial position. You can then supply those coordinates
in the add method, which takes optional x and y parameters to set the location of the
object when you add it to the GWindow. The following function from the
CenteredHelloWorld.py program implements this strategy:

def hello_world():
 gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT)
 msg = GLabel("hello, world")
 msg.set_font("36px 'Sans-Serif'")
 x = (gw.get_width() - msg.get_width()) / 2
 y = (gw.get_height() + msg.get_ascent()) / 2
 gw.add(msg, x, y)

The coordinate values necessary to center the GLabel appear in the assignment
statements for x and y, which specify the origin point for the centered label. To
compute the x coordinate of the label, you need to shift the origin left by half the
width of the label from the center of the window. Centering the label in the vertical
dimension is a bit trickier. You can get pretty close by defining the y coordinate to
be half the font ascent below the centerline. These declarations also introduce the
fact that the GWindow object also implements get_width and get_height, so you
can use these methods to determine the width and height of the window.

Running the CenteredHelloWorld.py program creates the following image:

If you’re a stickler for aesthetic detail, you may find that using get_ascent to
center a GLabel vertically doesn’t produce the optimal result. Most labels that you
display on the canvas will appear to be a few pixels too low. If you want things to
look perfect, you may have to adjust the vertical centering by a pixel or two.

The most important methods in the GRect, GOval, GLine, and GLabel classes are
summarized in Figure 4-7. Other classes and methods will be introduced in later
chapters as they become relevant.

 4.4 The graphics window 113

 4.4 The graphics window
Although it is essential for any program that uses the graphics library, the GWindow
class is conceptually different from the other classes in the library. Classes like GRect
and GLabel represent objects that you can display in a graphics window. The
GWindow class represents the graphics window itself.

114 Simple Graphics

The GWindow object is conventionally initialized using the line

gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT)

which appears at the beginning of every program that uses the graphics library. This
statement creates the graphics window and installs it in the web page so that it is
visible to the user. It also serves to implement the conceptual framework for
displaying graphical objects. The conceptual framework implemented by a library
package is called its model. The model gives you a sense of how you should think
about working with that package.

One of the most important roles of a model is to establish what analogies and
metaphors are appropriate for the package. Many real-world metaphors are possible
for computer graphics, just as there are many different ways to create visual art. One
possible metaphor is that of painting, in which the artist selects a paintbrush and a
color and then draws images by moving the brush across a screen that represents a
virtual canvas.

For consistency with the principles of object-oriented design, the Portable
Graphics Library uses the metaphor of a collage. A collage artist works by taking
various objects and assembling them on a background canvas. In the real world, those
objects might be, for example, geometrical shapes, words clipped from newspapers,
lines formed from bits of string, or images taken from magazines. The graphics
library offers counterparts for all these objects.

The fact that the graphics window uses the collage model has implications for the
way you describe the process of creating a design. If you were using the metaphor of
painting, you might talk about making a brush stroke in a particular position or filling
an area with paint. With the collage model, the key operations are adding and
removing objects, along with repositioning them on the background canvas.

Collages also have the property that some objects can be positioned on top of other
objects, obscuring whatever is behind them. Removing those objects reveals
whatever used to be underneath. In this book, the back-to-front ordering of objects
in the collage is called the stacking order, although you will sometimes see it referred
to as z-ordering in more formal writing. The name z-ordering comes from the fact
that the stacking order occurs along the axis that comes out of the two-dimensional
plane formed by the x and y axes. In mathematics, the axis coming out of the plane
is called the z-axis.

The methods exported by the GWindow class appear in Figure 4-8. For now, your
most important methods are add, get_width, and get_height. The other methods
will be described in more detail when they are needed for an application.

 4.5 Creating graphical applications 115

 4.5 Creating graphical applications
You can use the Portable Graphics Library to create graphical displays composed of
instances of the GRect, GOval, GLine, and GLabel classes. Suppose, for example,
that you want to display a red balloon marked with an upbeat message, as follows:

This program, which appears in Figure 4-9 at the top of the next page, displays three
graphical objects:

1. A GOval representing the balloon itself, outlined in black and filled in red

2. A GLine representing the cord attached to the balloon.

3. A GLabel displaying the string "CS is fun!" drawn in white.

116 Simple Graphics

The objects themselves are not hard to create. What typically takes the most time
when you are creating this kind of display is figuring out how to specify the sizes of
each object and how to position them in the window so that everything fits together
in the way you want it to appear.

The simplest strategy for specifying the sizes and other properties of graphical
objects is to define them as constants, as shown in the RedBalloon.py example. The
constants indicate that the graphics window is 500 pixels wide and 300 pixels high,
that the balloon itself is 140 pixels wide and 160 pixels tall, that the message it

 4.6 Decomposition 117

displays is the string "CS is fun!", and that the cord tied to the base of the balloon
is 100 pixels long.

Your primary task in writing the program is to figure out exactly how to position
the graphical objects given the values of these constants. The entire figure—the
balloon together with its cord—is centered in the graphics window, which means that
you have to figure out the coordinate locations for each of the objects relative to the
center of the window. The coordinates of the center are easily computed using the
following declarations, which will show up repeatedly in other examples:

cx = gw.get_width() / 2
cy = gw.get_height() / 2

The upper left corner of the oval representing the balloon is then shifted left from

cx by half the width of the balloon and shifted upward from cy by half the total height,
which is BALLOON_HEIGHT + CORD_LENGTH. The coordinates of the upper left corner
of the oval can therefore be computed as follows:

balloon_x = cx - BALLOON_WIDTH / 2
balloon_y = cy - (BALLOON_HEIGHT + CORD_LENGTH) / 2

The remaining coordinates can be computed similarly. The y-coordinate of the top
of the cord, for example, can be computed using the following expression:

cord_y = balloon_y + BALLOON_HEIGHT

 4.6 Decomposition
One of the most important challenges you will face as a programmer is finding ways
to reduce the conceptual complexity of your programs. Large programs are typically
difficult to understand as a whole. The only way to keep such programs within the
limits of human comprehension is to break them up into simpler, more manageable
pieces. In programming, this process is called decomposition.

Decomposition is a fundamental strategy that applies at several levels of the
programming process. At the function level, decomposition is the process of breaking
a large task down into simpler subtasks that together complete the task as a whole.
Those subtasks may themselves require further decomposition, which creates a
hierarchy of subtasks of the sort illustrated in Figure 4-10. In that diagram—which
presents only the general structure of a typical solution and offers no details about the
problem itself—the complete task is decomposed into three primary subtasks. The
second of those subtasks is then divided further into two subtasks at an even lower
level of detail. Depending on the complexity of the actual problem, the subdivision
may require more subtasks or more levels of decomposition.

118 Simple Graphics

Learning how to find the most useful decomposition requires considerable

practice. If you define the individual subtasks appropriately, each one will have
conceptual integrity as a unit and make the program as a whole much simpler to
understand. If you choose the subtasks inappropriately, your decomposition can end
up getting in the way. Although this chapter offers some useful guidelines, there are
no hard-and-fast rules for selecting a particular decomposition; you will learn how to
apply this process through experience.

Stepwise refinement
When you are trying to find an effective decomposition, one of the best strategies is
to start at the highest levels of abstraction and work your way downward to the details.
You begin by thinking about the program as a whole. Assuming that the program is
large enough to require decomposition, your next step is to divide the entire problem
into its major components. Once you figure out what the major subtasks are, you can
then repeat the process to decompose any of the subtasks that are themselves too large
to solve in a few lines of code. At the end of this process, you will be left with a set
of individual tasks, each of which is simple enough to be implemented as a single
function. This process is called top-down design, or stepwise refinement.

A simple example of decomposition
The best way to understand the process of stepwise refinement is to work through a
simple example. The RedBalloon.py program in Figure 4-9 is written as a single
function. In more sophisticated graphical applications, it makes sense to decompose
the program into multiple functions, each of which is responsible for part of the

 4.6 Decomposition 119

drawing. As you do so, it is important to think carefully about how to decompose the
problem so that each of the functions makes sense on its own.

Suppose, for example, that you have decided to draw a picture of your dream
house, using a level of detail that one might find in an elementary-school art class. In
the end, you want the picture on the graphics window to look like this:

Although there are other reasonable choices, one strategy is to subdivide the problem
into functions that draw the house frame, the door, and each of the windows. These
functions then have responsibility for drawing the parts of the picture shown in the
right margin. You can then draw the entire house by making one call to draw_frame,
one call to draw_door, and two calls to draw_window. An implementation of
DrawHouse.py using this strategy appears in Figure 4-11.

An essential part of the decomposition process is figuring out what parameters
need to be passed to each of subsidiary function so that it knows precisely how to
draw the component of the picture for which that function is responsible. As in the
RedBalloon.py program, some of the values can be specified using constants.
Some, however, have to be passed as parameters to these functions. At a minimum,
the draw_window function needs to know the x and y coordinates of the window so
that it can draw a window in two different places.

Deciding which values to declare as constants and which to pass as parameters
requires evaluating the tradeoffs between the two models. In general, declaring
constants is simpler but limits the program’s flexibility. At the same time, passing

120 Simple Graphics

DrawHouse-py-p1.png

 4.6 Decomposition 121

too many parameters makes functions harder to understand and use. In most
applications, it makes sense to adopt a hybrid strategy in which you use constants to
specify values that remain the same throughout the program and parameters to specify
values that callers will want to change.

Each of the functions in Figure 4-11 takes three parameters: the graphics window
gw and the coordinates x and y, which specify the location at which that part of the
entire picture should appear. For consistency with the model used by the Portable
Graphics Library, these coordinate values specify the upper left corner of that
component of the picture. For graphical objects that don’t have an upper left corner,
the usual strategy is to have the coordinates refer—as they do for the GOval class—
to the upper left corner of the rectangle that encloses the object, which is called its
bounding box.

122 Simple Graphics

 4.7 Control structures and graphics
The control statements you learned about in Chapter 2 come up often in graphical
programming, particularly when you need to draw many copies of the same figure in
different positions on the graphics window. As an example, the program in Figure
4-12 draws five circles centered in the graphics window, like this:

It is worth taking a look at the code for the DrawFiveCircles.py program to make
sure you understand how the expressions ensure that the circles are centered.

 4.7 Control structures and graphics 123

When you work with two-dimensional graphical designs, you often need nested
loops to arrange graphical objects in both the horizontal and vertical directions. The
Checkerboard.py program in Figure 4-13, for example, draws a checkerboard that
looks like this:

124 Simple Graphics

Once again, it is worth taking some time to go through the code in Figure 4-13, paying
particular attention to the following details:

• The program is designed so that you can easily change the dimensions of the

checkerboard by changing the values of the constants N_ROWS and N_COLUMNS.

• The checkerboard is arranged so that it is centered in the graphics window. The
variables x0 and y0 are used to hold the coordinates of the upper left corner of the
centered board.

• The decision to fill a square is made by checking whether the sum of its row
number and column number is even or odd. For white squares, this sum is even;
for black squares, this sum is odd. Note, however, that you don’t need to include
an if statement in the code to test this condition. All you need to do is call the
set_filled method with the appropriate Boolean value.

 4.8 Functions that return graphical objects
It is important to keep in mind that graphical objects are data values in Python in
precisely the same way that numbers and strings are. You can therefore assign
graphical objects to variables, pass them as arguments to function calls, or have
functions return them as results. Functions that return values of one of the GObject
subclasses can be extremely useful as tools in creating graphical applications that
need to display a shape with certain preset features, such as size and color.

The Target.py program in Figure 4-14 illustrates this feature by defining a
create_filled_circle function that takes four arguments: the values x and y
representing the coordinates of the center of the circle, a number r specifying the
radius of the circle, and a string color indicating the Python color name. The
Target.py program calls create_filled_circle three times to create three circles
that alternate in color between red and white and progressively decrease in size. The
radius of the outer circle is given by the constant OUTER_RADIUS. The two inner
circles are two-thirds and one-third that size, respectively. Running the Target.py
program produces the following output:

 Summary 125

 Summary
This chapter introduced the Portable Graphics Library, which allows you to create
simple pictures on the screen using lines, rectangles, ovals, and labels. Along the
way, you had a chance to practice using objects in Python.

Important points introduced in the chapter include:

• The graphical programs in this book use the Portable Graphics Library, which is
a collection of graphical tools designed for use in introductory courses.

126 Simple Graphics

• Python supports a modern style of programming called the object-oriented
paradigm, which focuses attention on data objects and their interactions.

• In the object-oriented paradigm, an object is a conceptually integrated entity that
combines the state of that object and the operations that affect its state. Each
object is a representative of a class, which is a template that defines the attributes
and operations shared by all objects of a particular type. A single class can give
rise to many different objects; each such object is an instance of that class.

• Objects communicate by sending messages. In Python, those messages are
implemented by calling methods, which are simply functions that belong to a
particular class.

• Method calls in Python use the receiver syntax, which looks like this:

receiver.name(arguments)

 The receiver is the object to which the message is sent, name indicates the name
of the method that responds to the message, and arguments is a list of values that
convey any additional information carried by the message.

• Functions that create new objects are called constructors and conventionally have
names that begin with an uppercase letter.

• The first line in any Python program that uses the Portable Graphics Library
creates a GWindow object using the following declaration:

gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT)

 The constants GWINDOW_WIDTH and GWINDOW_HEIGHT specify the dimensions of
the graphics window in pixels, which are the tiny dots that cover the face of the
display. Once you have initialized the variable gw, you can then create graphical
objects of various kinds and add them to the window.

• This chapter introduces four classes of graphical objects—GRect, GOval, GLine,
and GLabel—that represent rectangles, ovals, line segments, and text strings,
respectively. Other graphical objects are introduced in later chapters.

• All graphical objects support the method set_color, which takes the name of the
color as a string. Python defines 140 standard colors whose names appear in
Figure 4-4 on page 105.

• The GRect and GOval classes use set_filled and set_fill_color to control
whether the shape is filled and what color is used for the interior.

• The GLabel class uses the set_font method to set the font in which the label
appears. The argument to set_font is the CSS specification of a font, which is
described on page 107.

• The GLabel class uses a geometric model that is different from the one used by
the other graphical objects. That model is illustrated in Figure 4-6 on page 109.

 Review questions 127

• One of the most effective strategies for managing the complexity of programs is
decomposition, which is the process of breaking a large task down into smaller,
more manageable subtasks.

• In most cases, it makes sense to apply decomposition by starting at the level of the
problem as a whole and then working your way downward to the details. This
strategy is called top-down design or stepwise refinement.

• Graphical objects are data values in Python in the same way that numbers and
strings are. You can therefore assign graphical objects to variables, pass them as
arguments to function calls, or have functions return them as results.

• The Target.py program in Figure 4-14 defines a create_filled_circle
function that illustrates the strategy of returning graphical objects from functions.
This technique will be used in many programs throughout the remaining chapters.

 Review questions
1. What is the name of the Python library used in this chapter to implement

programs that produce graphical output?

2. In your own words, define the terms class, object, and method.

3. What is a reference?

4. The object-oriented paradigm uses the metaphor of sending messages to model
communication between objects. How does Python implement this idea?

5. What is the receiver syntax?

6. What is a constructor?

7. What is the first line in every graphical program that appears in this book?

8. What are the four classes of graphical objects introduced in this chapter?

9. How do you change the color of a graphical object?

10. What is the purpose of the set_filled and set_fill_color methods in the

GRect and GOval classes?

11. What is the format of the argument string passed to set_font?

12. Define the following terms in the context of the GLabel class: baseline, origin,

height, ascent, and descent.

13. Explain the purpose of the following lines in the CenteredHelloWorld.py

program:

128 Simple Graphics

x = (gw.get_width() - msg.get_width()) / 2
y = (gw.get_height() + msg.get_ascent()) / 2

Why is there a minus sign in the calculation of the x coordinate and a plus sign
in the calculation of the y coordinate?

14. When you center a GLabel vertically using the get_ascent method, why does

the resulting text often appear to be a few pixels too low?

15. What is the collage model?

16. What is meant by the term stacking order? What other term is often used for the

same purpose?

17. Explain in your own words the process of stepwise refinement.

18. What two strategies does this chapter propose for conveying information

between a program and the individual functions that result from decomposing
that program into smaller pieces? What are the advantages and disadvantages of
each of these strategies?

 Exercises
1. Use your program editor to create the file GraphicsHelloWorld.py exactly as

it appears in Figure 4-1. Make a copy of the pgl.py library file and store it in
the same folder. Invoke Python on GraphicsHelloWorld.py to show that you
can get execute a graphical program.

2. Write a graphical program TicTacToeBoard.py that draws a Tic-Tac-Toe board

centered in the graphics window, as shown in the following sample run:

The size of the board should be specified as a constant, and the diagram should
be centered in the window, both horizontally and vertically.

 Exercises 129

3. Draw a simplified version of Figure 4-6, which illustrates the geometry of the
GLabel class. In your implementation, you should display the two strings
("The quick brown fox" and "jumped over the lazy dog") in red using a
sans-serif font that is large enough to make the guidelines easy to see. Then for
each of the strings, you should draw a gray line along the baseline, the line that
marks the font ascent, and the line that marks the font descent. Finally, you
should draw a small filled circle indicating the baseline origin of the first string.
The graphics window will then look like this:

This output is a little more honest than Figure 4-6 about the font ascent, which
appears slightly above the top of the uppercase characters.

4. Use the graphics library to draw a rainbow that looks something like this:

Starting at the top, the seven bands in the rainbow are red, orange, yellow, green,
blue, indigo, and violet, respectively; cyan makes a lovely color for the sky.
Remember that this chapter defines only the GRect, GOval, GLine, and GLabel
classes and does not include a graphical object that represents an arc. It will help
to think outside the box, in a more literal sense than usual.

5. Use top-down design to design a program that creates the following picture of a

more complex house than the one presented in Figure 4-11:

130 Simple Graphics

Think carefully about the decomposition to see whether it is possible to exploit
common features of the design.

6. If the house diagrams in Figure 4-11 and the preceding exercise seem a bit

mundane, you might instead want to draw a diagram of the House of Usher,
which Edgar Allan Poe describes as follows:

With the first glimpse of the building, a sense of insufferable gloom
pervaded my spirit. . . . I looked upon the scene before me—upon the
mere house, and the simple landscape features of the domain—upon
the bleak walls—upon the vacant eye-like windows . . . upon a few
white trunks of decayed trees—with an utter depression of soul.

From Poe’s description, you might draw a house that looks something like this:

 Exercises 131

The figure on the left is the house with its “vacant eye-like windows” and the
three figures on the right are a stylized rendition of the “few white trunks of
decayed trees.”

7. Write a program that displays a pyramid on the graphics window. The pyramid

consists of bricks in horizontal rows, arranged so that the number of bricks in
each row decreases by one as you move upward, as follows:

The pyramid should be centered in the window both horizontally and vertically
and should use constants to define the dimensions of each brick and the height
of the pyramid.

8. Rewrite (and suitably rename) the DrawFiveCircles.py program shown in

Figure 4-12 so that the number of circles is given by the constant N_CIRCLES.

9. Enhance the Checkerboard.py program shown in Figure 4-13 so that the

graphics window also displays the red and black checkers corresponding to the
initial state of the game, which looks like this:

The other change in this program is that the color of the dark squares has been
changed from black to gray so that the black checkers are not lost against the
background.

132 Simple Graphics

10. Rewrite the Target.py program from Figure 4-14 so that the number and radii
of the circles are controlled by the following constants:

N_CIRCLES = 7
OUTER_RADIUS = 75
INNER_RADIUS = 10

Given those values, the program should generate the following display:

11. Classical optical illusions offer a rich source of interesting graphical exercises.

One of the simplest examples is the Müller-Lyer illusion, named after the
German sociologist Franz Karl Müller-Lyer, who first described the effect in
1889. In one of its more common forms, the Müller-Lyer illusion asks the viewer
which of the two horizontal lines is longer in the following figure:

Most people are convinced that the bottom line is longer, but the two lines are in
fact the same length.

Write a program to produce the Müller-Lyer illusion as it appears in this
example. Make sure you use constants to define parameters like the lengths of
the various lines.

12. Another illusion that shows how context affects the perception of relative size is

the Ebbinghaus illusion, which was discovered by the German psychologist
Hermann Ebbinghaus and published in a 1901 book by the British psychologist

 Exercises 133

Edward Tichener. This illusion, which appears in Figure 4-15, makes it seem as
if the central circle on the left is smaller than the circle on the right, even though
the two are the same size. Write a program to produce this illusion.

13. Write a program to produce the Zöllner illusion, which was discovered by the

German astrophysicist Johann Karl Friedrich Zöllner in 1860. In this illusion,
the diagonal lines that run in opposite directions on every other line make it
difficult to see that the horizontal lines are actually parallel:

14. An even more exotic illusion is the kindergarten illusion (also called the café
wall illusion), which was first described by the American psychologist Arthur
Henry Pierce in 1898. In this illusion, shifting the squares slightly on each row
of a checkerboard pattern makes the horizontal lines of the checkerboard appear
slanted instead of straight. Starting with the Checkerboard program from
Figure 4-13, make the changes necessary to produce the following image:

134 Simple Graphics

15. The scintillating grid illusion shown in Figure 4-16 was popularized by Elke

Lingelbach in the 1990s and is based on an earlier illusion published by Ludimar
Hermann in 1870. In this illusion, the viewer sees black dots inside the white
circles at the intersections of the grid. Write a program that replicates this
illusion.

16. Our visual sense is powerfully affected by our assumptions about an image. In

1911, the Italian psychologist Mario Ponzo showed that people expect objects
viewed at a distance in a perspective drawing to appear smaller. If an object
appears to violate the rules of perspective, our minds compensate by changing
our perception of its size.

 Exercises 135

In one of its more popular forms, the Ponzo illusion illustrates this principle
by superimposing two horizontal lines onto a stylized image of a railroad track
receding into the distance. Since our experience assures us that the rails are
equally far apart all the way down the track, a line that crosses it must be larger
than one that falls entirely inside it, as illustrated in the following example:

Your mission is to reproduce this image using one-point perspective, which
is a technique for representing a three-dimensional scene in a two-dimensional
drawing. In a drawing that uses one-point perspective, objects move toward a
single vanishing point as they move farther from the viewer. This technique was
developed during the early Renaissance and was used by the Florentine artist and
architect Filippo Brunelleschi in a 1415 painting. Your challenge in creating the
Ponzo illusion is to figure out where each of the crossties should go in the railroad
track as it vanishes into the distance. The mathematical formulae you need to
perform these calculations appear in Figure 4-17.

136 Simple Graphics

17. Back in the early 1990s—long before Python existed—Julie Zelenski and Katie
Capps Parlante developed a lovely graphics assignment that we used in
Stanford’s introductory course for many years. The goal of the assignment was
to draw a sampler quilt, which is composed of several different block types that
illustrate a variety of quilting styles.

For this exercise, your job is to use the graphics library to create the sampler
quilt shown in Figure 4-18. This quilt is composed of a repeating pattern of the
following four blocks, three of which are examples of previous work:

The only new block is the fourth one, which is a classic quilting pattern called a
log cabin block. This block is composed of rectangles that spiral inward toward
a square in the center. The width of each rectangle and the width of the central
square are all the same, which means that the dimensions are determined by the
block size and the number of frames in the spiral.

a

C H A P T E R 5
Functions

Our module structure is based on the decomposition
criteria known as information hiding. According to this
principle, system details that are likely to change
independently should be the secrets of separate modules.

— David Parnas, Paul Clements, and David Weiss,
“The modular structure of complex systems,” 1984

David Parnas (1941–)

David Parnas is Professor of Software Engineering emeritus at the University of Limerick in Ireland, where
he directed the Software Quality Research Laboratory, and has also taught at universities in Germany,
Canada, and the United States. His most influential contribution to software engineering is his
groundbreaking 1972 paper entitled “On the criteria to be used in decomposing systems into modules,” which
provided much of the foundation for the strategy of decomposition described in this chapter. Professor Parnas
also attracted considerable public attention in 1985 when he resigned from a Department of Defense panel
investigating the software requirements of the proposed Strategic Defense Initiative—more commonly
known as “Star Wars”—on the grounds that the requirements of the system were impossible to achieve. For
his courageous stand in bringing these problems to light, Parnas received the 1987 Norbert Wiener Award
from Computer Professionals for Social Responsibility.

138 Functions

This chapter examines in more detail the concept of a function, which was initially
presented in Chapter 1. A function is a set of statements that have been collected
together and given a name. Because functions allow the programmer to invoke the
entire set of operations using a single name, programs become much shorter and much
simpler. Without functions, programs would become unmanageable as they
increased in size and sophistication.

In order to appreciate how functions reduce the complexity of programs, it helps
to examine the role of functions from two distinct philosophical perspectives,
reductionism and holism. Reductionism is the philosophical principle that the whole
of an object can best be understood by understanding the parts that make it up. Its
antithesis is holism, which recognizes that the whole is often more than the sum of
its parts. As you try to master the discipline of dividing large programs into functions,
you must learn to see the process from each of these perspectives. If you concentrate
only on the big picture, you will end up not understanding the tools you need for
solving problems. However, if you focus exclusively on details, you will invariably
miss the forest for the trees.

When you are first learning about programming, the best approach is usually to
alternate between these two perspectives. Taking the holistic view helps sharpen your
intuition about the programming process and enables you to stand back from a
program and say, “I understand what this function does.” Taking the reductionistic
view allows you to say, “I understand how this function works.” Both perspectives
are essential. You need to understand how functions work so that you can code them
correctly. At the same time, you must be able to take a step backward and look at
functions holistically, so that you also understand why they are important and how to
use them effectively.

 5.1 A quick review of functions
Although you have been working with functions ever since you wrote your first
programs in Chapter 1, you have so far seen only a part of the computational power
that functions provide. Before delving more deeply into the details of how functions
work, it helps to review some basic terminology. First of all, a function consists of a
set of statements that have been collected together and given a name. The act of
executing the set of statements associated with a function is known as calling that
function. To indicate a function call in Python, you write the name of the function,
followed by a list of expressions enclosed in parentheses. These expressions, which
are called arguments, allow the caller to pass information to the function.

 5.1 A quick review of functions 139

The syntax of a function definition
A typical function definition has the form shown in the syntax box on the right. The
name component of this pattern indicates the function name, parameters is the list of
parameter names that receive the values of the arguments, and statements represents
the body of the function. Functions that return a value to the caller must contain at
least one return statement that specifies the value of the function, as illustrated in
the second syntax box.

These syntactic patterns are illustrated in the definition of the max function from
Chapter 2, which looks like this:

def max(x, y):
 if x > y:
 return x
 else:
 return y

This function has the name max and takes two parameters, x and y. The statements
in the body decide which of these two values is larger and then return that value.

Functions, however, are often called simply for their effect and need not return a
value. For example, the Python functions that implement complete programs don’t
include a return statement. Some languages distinguish a function that returns a
value from one that doesn’t by calling the latter a procedure. Python uses the term
function for both types. This terminology is technically accurate because Python
functions always return a value, which is the Python constant None if no return
statement appears.

Parameter passing
In the function calls you have seen so far, the arguments supplied by the caller are
copied to the parameter variables in the order in which they appear. The first
argument is assigned to the first parameter variable, the second argument to the
second parameter variable, and so on. Parameters passed by their order in the
argument list are called positional parameters.

When you use positional parameters, the variable names in the caller and the called
function are completely irrelevant to the process by which parameter values are
assigned. There may well be a variable named x in both the calling function and in
the parameter list for the function being called. That reuse of the same name,
however, is merely a coincidence. Local variable names and parameter names are
visible only inside the function in which their declarations appear.

140 Functions

Python allows a function to specify a value for a parameter that the caller fails to
supply. Such parameters are called default parameters. Default parameters appear
in the function header line with an equal sign and a default value. For example, the
following function displays n consecutive integers, beginning with the value start
if two arguments are supplied and with the value 1 if the second argument is missing:

def count(n, start=1):
 for i in range(n):
 print(start + i)

The following IDLE session illustrates the operation of count, both when it is given
a second argument and when it is not:

Python also allows callers to pass arguments by including the parameter name and
an equal sign in the function call. For example, if you cannot remember the order of
parameters for the count function, you can write the arguments in either order by
including the parameter names, as follows:

Parameters identified by name are called keyword parameters, even though the
names are not in any way related to Python keywords like def or while.

Default and keyword parameters are useful in designing library functions that are
easy to use. The section entitled “Designing your own libraries” later in this chapter
includes several examples of each of these styles.

 5.2 The mechanics of function calls 141

 5.2 The mechanics of function calls
Although you can certainly get by with an intuitive understanding of how the
function-calling process works, it helps to understand precisely what happens when
one function calls another in Python. The sections that follow describe the process in
detail and then walk you through a simple example.

The steps in calling a function
Whenever a function call occurs, Python executes the following operations:

1. The calling function computes values for each argument using the bindings of

local variables in its own context. Because the arguments are expressions, this
computation can involve operators and other functions; the calling function
evaluates these expressions before execution of the new function begins.

2. The system creates new space for all the local variables required by the new
function, including the variables in the parameter list. These variables are
allocated together in a block, which is called a stack frame.

3. Each positional argument is copied into the corresponding parameter variable.
4. All keyword arguments are copied to the parameter with the same name.
5. For parameters that include default values, Python assigns those values to any

arguments that are still unspecified. If any parameters are still unassigned after
this step, Python reports an error.

6. The statements in the function body are executed until the program encounters a
return statement or there are no more statements to execute.

7. The value of the return expression, if any, is evaluated and returned as the value
of the function.

8. The stack frame created for this function call is discarded. In the process, all
local variables disappear.

9. The calling program continues, with the returned value substituted in place of the
call. The point to which the function returns is called the return address.

Although this process may seem to make at least some sense, you probably need

to work through an example or two before you understand it fully. Reading through
the example in the next section will give you some insight into the process, but it will
be even more helpful to take one of your own programs and walk through it at the
same level of detail. And while you can trace through a program on paper or a
whiteboard, it may be best to get yourself a supply of 3´5 index cards and then use a
card to represent each stack frame. The advantage of the index-card model is that
you can create a stack of index cards that closely models the operation of the
computer. Calling a function adds a card; returning from the function removes it.

142 Functions

The combinations function
The function-calling process is most easily illustrated in the context of a specific
example. Suppose that you have a collection of six coins, which in the United States
might be a penny, a nickel, a dime, a quarter, a half-dollar, and a dollar. Given those
six coins, how many ways are there to choose two of them? As you can see from the
full enumeration of the possibilities in Figure 5-1, the answer is 15. However, as a
computer scientist, you should immediately think about the more general question:
given a set containing n distinct elements, how many ways can you choose a subset
with k elements? The answer to that question is computed by the
combinations function C(n, k), which is defined as

C(n, k) =

where the exclamation point indicates the factorial function, which you saw in
Chapter 2. The code to compute the combinations function in Python appears in
Figure 5-2.

 5.2 The mechanics of function calls 143

As you can see from Figure 5-2, the combinations.py file contains two
functions. The combinations function computes the value of C(n, k), and the
now-familiar fact function computes factorials. An IDLE session just before
making the call to combinations(6, 2) might look like this:

Tracing the combinations function
While the combinations function is interesting in its own right, the purpose of the
current example is to illustrate the steps involved in calling functions. When the user
enters a function call in the IDLE window, the Python interpreter invokes the standard
steps in the function-calling process.

As always, the first step is to evaluate the arguments in the current context. In this
example, the arguments are the numbers 6 and 2, so the evaluation process simply
keeps track of these two values.

144 Functions

The second step is to create a frame for the combinations function that contains
space for the variables that are stored as part of that frame, which are the parameters
and any variables that appear in declarations within the function. The combinations
function has two positional parameters and no local variables, so the frame only
requires enough space for the parameter variables n and k. After the Python
interpreter creates the frame, it copies the argument values into these variables in
order. Thus, the parameter variable n is initialized to 6, and the parameter variable k
is initialized to 2.

In the diagrams in this book, each stack frame appears as a rectangle surrounded
by a double line. Each stack-frame diagram shows the code for the function along
with a pointing-hand icon that makes it easy to keep track of the current execution
point. The frame also contains labeled boxes for each of the local variables. The
stack frame for the combinations function therefore looks like this after the
parameters have been initialized but before execution of the function begins:

To compute the value of the combinations function, the program must make
three calls to the function fact. In Python, function calls are evaluated from left to
right, so the first call is the one to fact(n), as follows:

To evaluate this function, the system must create yet another stack frame, this time
for the function fact with an argument value of 6. The frame for fact has both
parameters and local variables. The parameter n is initialized to the value of the
calling argument and therefore has the value 6. The two local variables, i and
result, have not yet been initialized, which is indicated in stack diagrams using an
empty box. The new frame for fact gets stacked on top of the old one, which allows
the Python interpreter to remember the values in the earlier stack frame, even though
they are not currently visible. The situation after creating the new frame and
initializing the parameters looks like this:

 5.2 The mechanics of function calls 145

The system then executes the statements in the function fact. In this instance,
the body of the for loop is executed six times. On each cycle, the value of result
is multiplied by the loop index i, which means that it will eventually hold the value
720 (1´2´3´4´5´6 or 6!). When the program reaches the return statement, the
stack frame looks like this:

Returning from a function involves copying the value of the return expression
(in this case the local variable result), to the point at which the call occurred. The
frame for fact is then discarded, which leads to the following configuration:

The next step in the process is to make a second call to fact, this time with the
argument k. In the calling frame, k has the value 2. That value is then used to
initialize the parameter n in the new stack frame, as follows:

The computation of fact(2) is easier to perform in one’s head than the earlier
call to fact(6). This time around, the value of result will be 2, which is then
returned to the calling frame, like this:

146 Functions

The code for combinations makes one more call to fact, this time with the
argument n - k. Evaluating this call therefore creates a new stack frame with n equal
to 4:

The value of fact(4) is 1´2´3´4, or 24. When this call returns, the system is
able to fill in the last of the missing values in the calculation, as follows:

The computer then divides 720 by the product of 2 and 24 to get the answer 15. This
value is returned to the Python interpreter running in the IDLE console window. The
interpreter prints that value on the console, like this:

 5.3 Libraries and interfaces
Writing a program to solve a large or difficult problem inevitably forces you to
manage at least some amount of complexity. There are algorithms to design, special
cases to consider, user requirements to meet, and innumerable details to get right. To
make programming manageable, you must reduce the complexity of the programming
process as much as possible. Functions reduce some of the complexity; libraries offer

 5.3 Libraries and interfaces 147

a similar reduction in programming complexity but at a higher level of detail. A
function gives its caller access to a set of steps that implements a single operation. A
library provides a collection of tools that share a common model. That model and its
conceptual foundation constitute a programming abstraction.

Clients and implementers
One of the goals of any programming abstraction is to hide the complexity involved
in the underlying implementation. By exporting the sqrt function, the Python math
library hides away the complexities involved in calculating a square root. When you
call math.sqrt, you don’t need to have any idea how the implementation works.
Although it almost certainly uses a more modern algorithm that computes the result
more quickly, the implementation might use the 3800-year-old Babylonian method
described in Chapter 3. The caller doesn’t need to know. The details of how the
computation proceeds are relevant only to the programmers responsible for
implementing the math library.

Knowing how to call the math.sqrt function and knowing how to implement it
are both important skills. It is useful to keep in mind, however, that those two skills—
calling a function and implementing one—are to a large extent independent.
Successful programmers often use functions that they wouldn’t have a clue how to
write. Conversely, programmers who implement a library function can never
anticipate all the potential uses for that function.

To emphasize the difference in perspective between programmers who implement
a library and those who use it, computer scientists have assigned names to
programmers working in each of these roles. Naturally enough, a programmer who
implements a library is called an implementer. Conversely, a programmer who calls
functions provided by a library is called a client of that library.

Both functions and libraries offer a tool for hiding lower-level implementation
details so that clients need not worry about them. In computer science, this technique
is called information hiding. The fundamental idea, championed by David Parnas in
the early 1970s, is that the complexity of programming systems is best managed by
making sure that details are visible only at those levels of the program at which they
are relevant. For example, only the programmers who implement math.sqrt need
to know the details of its operation. Clients who merely use math.sqrt can remain
blissfully unaware of the underlying details.

The concept of an interface
In computer science, the understanding shared between a client and an implementer
is called an interface. Conceptually, an interface contains the information that clients
need to know about a library—and no more. For clients, getting too much information

148 Functions

can be as bad as getting too little, because additional detail is likely to make the
interface more difficult to understand. Often, the real value of an interface lies not in
the information it reveals but rather in the information it hides.

When you design an interface for a library, you should try to protect the client
from as many of the complicating details of the implementation as possible. In doing
so, it is perhaps best to think of an interface not as a communication channel between
the client and the implementation, but instead as a wall that divides them.

Like the wall that divided the lovers Pyramus and Thisbe in Greek mythology, the
wall representing an interface contains an opening or chink that allows the two sides
to communicate. In programming, that chink exposes the function definitions so that
the client and implementation can share essential information. The main purpose of
the wall, however, is to keep the two sides apart. Ideally, all the complexity involved
in the realization of a library lies on the implementation side of the wall. An interface
is successful if it supports the principle of information hiding by keeping as much
complexity as possible away from the client side.

 5.4 The random library
Before turning to the problem of creating new libraries, it makes sense to explore
another Python library so that you have more examples than the math library you
have already seen. The random library exports a set of functions that allow you to
write programs that make seemingly random choices. Being able to simulate random
behavior is necessary, for example, if you want to write a computer game that
involves flipping a coin or rolling a die, but is also useful in more practical contexts.
Programs that simulate random processes are said to be nondeterministic.

As with the math library, you need to import the random library before you use it
in a module. To do so, all you need is the statement

import random

at the beginning of your file. Including this statement gives you access to all the
functions in the random library but requires you to refer to those functions using their
fully qualified name, which includes the source module name and a dot, as in
random.randint.

 5.4 The random library 149

Functions in the random library
A subset of the functions exported by the random library appears in Figure 5-3. These
functions are subdivided into categories depending on the type of value on which they
operate. The first section offers a set of functions for working with random integers.
The easiest function to use is randint(min, max), which returns an integer between
min and max, inclusive. You can, for example, use this function to generate a die roll
like this:

die = random.randint(1, 6)

Similarly, you could generate the outcome of spinning a European roulette wheel
(unlike American roulette wheels, which have both a 0 and a 00 slot, European
roulette wheels have slots numbered from 0 to 36) with the following statement:

spin = random.randint(0, 36)

You can also generate random integers using the function randrange, which takes
the same argument forms as the range function used in conjunction with the for
loop. Thus, you could also simulate the die roll like this:

die = random.randrange(1, 7)

150 Functions

Figure 5-3 includes two functions for generating random floating-point numbers,
although the random library implements a much larger set of functions that are useful
in statistical applications. The random function itself generates a number uniformly
distributed over the range from 0 to 1. More generally, the function
uniform(min, max) returns a floating-point value between min and max. For
example, the function call

random.uniform(-1, 1)

generates a random floating-point number between –1 and 1.

You can use the random function to simulate random events that occur with some
probability. The predicate function

def random_chance(p=0.5):
 return random.random() < p

returns True with probability p, where the argument is a statistical probability value
between 0.0, which means that the event never happens, and 1.0, which means that
the event always happens. If p is omitted, the random_chance function uses the
default value 0.5, which signifies an event that happens with probability 0.5, or 50
percent of the time. Thus, you can simulate the process of flipping a coin using the
following statements, which set the variable flip to "Heads" or "Tails" with equal
probability:

if random_chance():
 flip = "Heads"
else:
 flip = "Tails"

The functions random.choice, random.sample, and random.shuffle are

designed for use with lists, which are introduced in Chapter 8. As a preview of these
coming attractions, you can use random.choice to choose a random character from
a string. For example, you can use the following line to set the variable letter to a
randomly chosen lowercase letter:

letter = random.choice("abcdefghijklmnopqrstuvwxyz")

Initializing the random number generator
The seed function in the last section of Figure 5-3 requires a little more explanation.
Because computers are deterministic machines, random numbers are usually
computed by going through a deterministic calculation that nonetheless appears
random to the user. Random numbers computed in this way are called pseudorandom
numbers. By default, modern versions of Python automatically call seed to initialize

 5.4 The random library 151

the generator, but it is still common practice to include an explicit call to
random.seed() at the beginning of each program that uses the random library. The
effect of this statement is to initialize the internal state of Python’s random number
generator to an unpredictable value based on the system clock. As Figure 5-3 shows,
you can also call seed with an integer argument, which is used to set the internal
state. If you initialize the random number generator to a particular value, it will
always generate the same values every time the program is run.

At first, it may seem hard to understand why a random number package should
return the same values on each run. After all, deterministic behavior of this sort seems
to defeat the whole purpose of the package. There is, however, a good reason behind
this behavior: programs that behave deterministically are easier to debug. To
illustrate this fact, suppose you have just written a program to play an intricate game,
such as Monopoly. As is always the case with newly written programs, the odds are
good that your program has a few bugs. In a complex program, bugs can be relatively
obscure, in the sense that they only occur in rare situations. Suppose you are playing
the game and discover that the program is starting to behave in a bizarre way. As you
begin to debug the program, it would be very convenient if you could regenerate the
same state and take a closer look at what is going on. Unfortunately, if the program
is running in a nondeterministic way, a second run of the program will behave
differently from the first. Bugs that showed up the first time may not occur on the
second pass.

In general, it is difficult to reproduce the conditions that cause a program to fail if
the program is behaving in a truly random fashion. If, on the other hand, the program
is operating deterministically, it will do the same thing each time. This behavior
makes it possible for you to recreate the conditions under which the problem
occurred. When you write a program that works with random numbers, it is usually
best to call random.seed with an argument during the debugging phase. When the
program seems to be working well, you can remove that argument to ensure that its
behavior changes from one run to the next.

Using the random library
As an illustration of how clients might use the random library, the Craps program in
Figure 5-4 plays the casino game called craps. The rules for craps appear in the
comments at the beginning of the program. The code itself follows the outline
imposed by the rules of the game. In particular, it rolls the dice initially and then
chooses how to proceed according to the result of that first roll. Moreover, because
the task of rolling two dice and determining their sum appears at different points in
the program, it makes sense to make rolling two dice a separate function. The startup
code at end of the Craps.py file runs the Craps function repeatedly, asking the user
at the end of each game whether to play again.

152 Functions

Craps.py

 5.4 The random library 153

Although the Craps function is nondeterministic and will therefore produce
different results each time, the following console log shows two possible outcomes:

As a second example of a program that uses the random library, the
RandomCircles.py program in Figure 5-5 on the next page displays circles of
various random sizes, random colors, and random positions. The display will be
different each time, but the code makes sure that the individual circles always fit
inside the graphics window. A sample run of this program might look like this:

Because Python’s random number generator produces different values each time,
running the program again produces an image with different circles, as follows:

It is worth paying attention to the implementation of the random_color function
in Figure 5-5, which uses the random.choice function to select one of the sixteen
hexadecimal digits. The effect is to create a hexadecimal color value in the form
"#dddddd", as described on page 106.

154 Functions

RandomCircles.py

 5.5 Creating your own libraries 155

 5.5 Creating your own libraries
One of the most important advantages of creating a library is that doing so allows you
to reuse functions and definitions in new programs without having to copy the actual
code. For example, you may have noticed that the RandomCircles program in Figure
5-5 included the function create_filled_circle, which first appeared in the
Target.py program in Figure 4-14. If you discover that you are using a function
several times in different applications, you should consider defining that function in
a library module and then importing that module when you need it.

Python makes it extremely easy to import definitions from other modules. You
could, for example, import create_filled_circle directly from the Target
module by including the line

from Target import create_filled_circle

at the top of your program. Doing so, however, is likely to confuse clients who are
not familiar with the Target application. In most cases, it makes sense to collect
several similar functions together into a module that is used only as a library and not
as an application. Client applications can then import the functions they need from a
common source.

When you create a new library module from existing functions, it is usually wise
to think about those functions carefully to see whether they meet the needs of as many
clients as possible. While the create_filled_circle function does exactly what
both the Target.py and RandomCircles.py programs need, other applications may
want to control the color used for the border of the circle separately from the color
used to fill it. If you decide that feature would be useful, you should redefine
create_filled_circle so that it takes two arguments specifying color, one for the
fill color and one for the border color, both of which are optional. If only one color
argument appears, that argument should be used to set the color of the entire circle,
just as it has in the existing applications. Clients that need to control the fill and
border colors independently should two color names, ideally specified as keyword
parameters under the names fill and border so that their order is unimportant.

The extended version of create_filled_circle appears in Figure 5-6 along
with a similar function for rectangles called create_filled_rect and a useful
function called create_centered_label that creates a GLabel centered at a
specified point. Clients who need any of these functions can then import them from
the gtools module. You can, moreover, go back and rewrite the Target.py and
RandomCircles.py programs to import the create_filled_circle function from
gtools because the new definition is compatible with the old one.

156 Functions

gtools.py

 5.6 Inner functions 157

The code in Figure 5-6 introduces one new feature of Python, which is important
to understand if you are trying to write functions that take different argument patterns.
To detect whether an argument is missing from the call, all three functions specify
the Python constant None as a default value for the last parameter in the list. The new
feature appears later in the function body when the code checks to see whether that
argument was specified. Although the == and != operators also work for this purpose,
the approved way to check for None is to use the Python operators is and is not,
which test for exact identity rather than equality. The distinction is subtle and beyond
the scope of this chapter, but you will have a chance later in this book to see examples
where the differences between these operators matter.

 5.6 Inner functions
In Python, you can define one function inside another function simply by nesting the
definitions just as you would nest any control structure. A function defined inside
another one is called an inner function. The following admittedly artificial example
defines a function g inside a function f:

def f(x, y):
 def g(n):
 return x ** n
 return g(y)

The function g is an inner function and is defined only inside the function f. It takes
a single argument n and returns the value of the variable x raised to the nth power.
Although that idea initially seems straightforward, it is important to ask yourself how
the function g determines the value of x.

The answer is that x is defined in the enclosing context. The variable x is one of
the parameters for the function f, which encloses the definition of g. If g cannot find
a variable in its own collection of variables, it looks to see if that variable is defined
in the enclosing function. When Python evaluates the expression x ** n, if find the
value on n in its own stack frame and the value of x in the frame of the enclosing
function f. Calling f(2, 3), for example, creates a frame for the function f, which
looks like this when execution reaches the return statement:

158 Functions

Executing the return statement requires Python to evaluate the function g(y) in
the current frame. Since g is an inner function, its frame is conceptually nested inside
the frame for f and has access to its variables. The frame diagram after invoking g
therefore looks like this:

Inside the frame for g, the variable n is in the local frame and has the value 3. The
variable x appears in the enclosing frame and has the value 2. The result of the
function call is therefore 23 or 8.

When Python needs to find the value of an identifier, it searches for the name in
the following four contexts:

1. Local. The local context consists of all names defined within the current

function. A name is defined in the function if it appears as a parameter, as the
target of an assignment, as the index variable in a for loop, or as the name of a
nested function definition.

2. Enclosing. The enclosing context consists of the names defined in a function
that encloses the current one, as illustrated by the diagram showing the frame for
g nested within the frame for f.

3. Global. The global context consists of names defined outside of any function or
imported into the current module using the from-import statement.

4. Built-in. The last place that Python looks for a name is in the list of built-in
functions like abs, str, and print.

Python searches each of these contexts in order, so that a local definition takes
precedence over a definition in any of the other contexts. Names defined at one level
can therefore hide names defined at lower levels of this hierarchy. For example, it is
perfectly legal in Python to use str as the name of a local variable, but doing so
means that it is impossible to call the built-in function str inside the function that
defines the local variable. Hiding an existing identifier by defining its name in a more
local context is called shadowing.

The region of a program in which an identifier is defined is called its scope. The
rules for determining the scope of an identifier in Python are a little more complicated
than this section suggests, but these rules are sufficient in most cases.

 5.7 Introduction to recursion 159

One of the advantages of defining nested functions is that doing so allows a set of
related functions to share local data without having to pass all of the information as
arguments. For example, the DrawHouse.py program in Figure 4-11 can be
simplified by defining the functions draw_house_at, draw_frame, draw_door, and
draw_window as inner functions nested within the draw_house definition. Doing so
makes it unnecessary to pass gw as an explicit parameter to each of these functions
because those functions can see this variable in the enclosing scope. You will have a
chance to implement this strategy in exercise 6.

 5.7 Introduction to recursion
Most algorithmic strategies used to solve programming problems have counterparts
outside the domain of computing. When you perform a task repeatedly, you are using
iteration. When you make a decision, you exercise conditional control. Because
these operations are familiar, most people learn to use the control statements for,
while, and if with relatively little trouble.

Before you can solve certain more sophisticated programming tasks, you will need
to master a powerful problem-solving strategy that has few direct counterparts in the
real world. That strategy, called recursion, is defined as any solution technique in
which large problems are solved by reducing them to smaller problems of the same
form. The italicized phrase is crucial to the definition, which otherwise describes the
basic strategy of stepwise refinement. Both strategies involve decomposition. What
makes recursion special is that the subproblems in a recursive solution have the same
form as the original problem.

If you are like most beginning programmers, the idea of breaking a problem down
into subproblems of the same form does not make much sense when you first hear it.
Unlike repetition or conditional testing, recursion is not a concept that comes up in
day-to-day life. Because it is unfamiliar, learning how to use recursion can be
difficult. To do so, you must develop the intuition necessary to make recursion seem
as natural as all the other control structures. For most students of programming,
reaching that level of understanding takes considerable time and practice. Even so,
learning to use recursion is definitely worth the effort. As a problem-solving tool,
recursion is so powerful that it at times seems almost magical. In addition, using
recursion often makes it possible to write complex programs in simple and profoundly
elegant ways.

A simple example of recursion
To gain a better sense of what recursion is, let’s imagine that you have been appointed
as the funding coordinator for a political campaign, which is long on volunteers but
short on cash. Your job is to raise $1,000,000 in contributions.

160 Functions

If you know someone who is willing to write a check for the entire $1,000,000,
your job is easy. On the other hand, you may not be lucky enough to have friends
who are generous millionaires. In that case, you must raise the $1,000,000 in smaller
amounts. If the average contribution is $100, you might choose a different tack: call
10,000 friends and ask each of them for $100. But then again, you probably don’t
have 10,000 friends. So what can you do?

As is often the case when you are faced with a task that exceeds your own capacity,
the answer lies in delegating part of the work to others. Your organization has a ready
supply of volunteers. If you could find 10 dedicated supporters in different parts of
the country and appoint them as regional coordinators, each of those 10 people could
then take responsibility for raising $100,000.

Raising $100,000 is simpler than raising $1,000,000, but it hardly qualifies as
easy. What should your regional coordinators do? If they adopt the same strategy,
they will in turn delegate parts of the job. If they each recruit 10 fundraising
volunteers, those people will only have to raise $10,000 each. The delegation process
can continue until the volunteers are able to raise the money on their own; because
the average contribution is $100, the volunteer fundraisers can probably raise $100
from a single donor, which eliminates the need for further delegation. If you express
this fundraising strategy in pseudocode, it has the following structure:

def collect_contributions(n):
 if n <= 100:
 Collect the money from a single donor.
 else:
 Find 10 volunteers.
 Get each volunteer to collect n/10 dollars.
 Combine the money raised by the volunteers.

The most important thing to notice about this pseudocode function is that the line

Get each volunteer to collect n/10 dollars.

is simply the original problem reproduced at a smaller scale. The basic character of
the task—raise n dollars—remains exactly the same; the only difference is that n has
a smaller value. Moreover, because the problem is the same, you can solve it by
calling the original function. Thus, the preceding line of pseudocode would
eventually be replaced with the following line:

collect_contributions(n / 10)

It’s important to note that the collect_contributions function ends up calling
itself if the contribution level is greater than $100. In the context of programming,
having a function call itself is the defining characteristic of recursion.

 5.7 Introduction to recursion 161

The structure of the collect_contributions function is typical of recursive
functions. In general, the body of a recursive function has the following form:

if test for simple case:
 Compute a simple solution without using recursion.
else:
 Break the problem down into subproblems of the same form.
 Solve each of the subproblems by calling this function recursively.
 Reassemble the subproblem solutions into a solution for the whole.

This structure provides a template for writing recursive functions and is therefore
called the recursive paradigm. You can apply this technique to programming
problems as long as they meet the following conditions:

1. You must be able to identify simple cases for which the answer is easily

determined.

2. You must be able to identify a recursive decomposition that lets you break any
complex instance of the problem into simpler problems of the same form.

The collect_contributions example illustrates the power of recursion. As
with any recursive technique, the original problem is solved by breaking it down into
smaller subproblems that differ from the original only in their scale. Here, the original
problem is to raise $1,000,000. At the first level of decomposition, each subproblem
is to raise $100,000. These problems are then subdivided to create smaller problems
until the problems are simple enough to be solved immediately without recourse to
further subdivision.

A recursive formulation of the factorial function
The combinations module in Figure 5-2 includes a simple implementation of a
function to compute factorials, which looks like this:

def fact(n):
 result = 1
 for i in range(1, n + 1):
 result *= i
 return result

This implementation uses a for loop to cycle through the integers between 1 and n.
Strategies based on looping are said to be iterative.

You can, however, also implement the fact function recursively by taking
advantage of an important mathematical property of factorials. Each factorial is
related to the factorial of the next smaller integer in the following way:

n! = n × (n – 1)!

162 Functions

Thus, 4! is 4 × 3!, 3! is 3 × 2!, and so on. To make sure that this process stops at some
point, mathematicians define 0! to be 1. Thus, the conventional mathematical
definition of the factorial function looks like this:

n! =

1 if n = 0

n × (n – 1)! otherwise

This definition is recursive, because it defines the factorial of n in terms of a simpler
instance of the factorial function: finding the factorial of n – 1. The new problem has
the same form as the original, which is the fundamental characteristic of recursion.
You can then use the same process to define (n – 1)! in terms of (n – 2)!. Moreover,
you can carry this process forward step by step until the solution is expressed in terms
of 0!, which is equal to 1 by definition.

From your perspective as a programmer, the most important consequence of the
definition from mathematics is that it provides a template for a recursive solution. In
Python, you can implement a function fact that computes the factorial of its
argument as follows:

def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n - 1)

If n is 0, the result of fact is 1. If not, the implementation computes the result by
calling fact(n - 1) and then multiplying the result by n. This implementation
follows directly from the mathematical definition of the factorial function and has
precisely the same recursive structure.

Tracing the recursive process
If you work from the mathematical definition, writing the recursive implementation
of fact is straightforward. On the other hand, even though the definition is easy to
write, the brevity of the solution may seem suspicious. When you are learning about
recursion for the first time, the recursive implementation of fact seems to leave
something out. Even though it clearly reflects the mathematical definition, the
recursive formulation makes it hard to identify where the actual computational steps
occur. When you call fact, for example, you want the computer to give you the
answer. In the recursive implementation, all you see is a formula that transforms one
call to fact into another one. Because the steps in that calculation are not explicit, it
seems somewhat magical when the computer gets the right answer. If you trace
through the logic the computer uses to evaluate any function call, however, you
discover that no magic is involved. When the computer evaluates a call to the

 5.7 Introduction to recursion 163

recursive fact function, it goes through the same process it uses to evaluate any other
function call.

To visualize the process, suppose that you have executed the statement

print("fact(4) =", fact(4))

in the IDLE interpreter. When this statement calls fact, Python creates a new stack
frame and copies the argument value into the formal parameter n. The frame for fact
temporarily supersedes the frame executing the print call as shown in the following
diagram:

The computer now begins to evaluate the body of the function, starting with the
if statement. Because n is not equal to 0, control proceeds to the else clause, where
the program must evaluate and return the value of the expression

n * fact(n - 1)

Evaluating this expression requires computing the value of fact(n - 1), which
introduces a recursive call. When that call returns, all the program has to do is to
multiply the result by n. The current state of the computation can therefore be
diagrammed as follows:

As soon as the call to fact(n - 1) returns, the result is substituted for the expression
underlined in the diagram, which allows computation to proceed.

The next step in the computation is to evaluate the call to fact(n - 1), beginning
with the argument expression. Because the current value of n is 4, the argument

164 Functions

expression n - 1 has the value 3. The computer then creates a new frame for fact in
which n is initialized to this value. Thus, the next frame looks like this:

There are now two frames labeled fact. In the most recent one, the computer is just
starting to calculate fact(3). This new frame hides the previous frame for fact(4),
which will not reappear until the fact(3) computation is complete.

Computing fact(3) again begins by testing the value of n. Since n is still not 0,
the else clause evaluates fact(n - 1), which creates another stack frame:

Following the same logic, the program must now call fact(1), which in turn calls
fact(0), creating two new stack frames, as follows:

 5.7 Introduction to recursion 165

At this point, however, the situation changes. Because the value of n is 0, the
function can return its result immediately. The value 1 is returned to the calling frame,
which resumes its position on top of the stack, as shown:

From this point, the computation proceeds back through each of the recursive
calls, completing the calculation of the return value at each level. In this frame, for
example, the call to fact(n - 1) can be replaced by the value 1, as shown in the stack
frame. The code then computes the result by multiplying the current value of n by 1
and then returns that result to its caller, like this:

Because n is now 2, evaluating the return statement causes the value 2 to be passed
back to the previous level, as follows:

166 Functions

At this stage, the program returns 3 × 2 to the previous level, so that the frame for the
initial call to fact looks like this:

The final step in the calculation process consists of calculating 4 × 6 and returning
the value 24 to the call to print in the IDLE interpreter.

The recursive leap of faith
The point of including the complete trace of the fact(4) computation is to convince
you that the computer treats recursive functions just like all other functions. When
you are faced with a recursive function, you can—at least in theory—mimic the
operation of the computer and figure out what it will do. By drawing all the frames
and keeping track of all the variables, you can duplicate the entire operation and come
up with the answer. If you do so, however, you will usually find that the complexity
of the process ends up making the computation much harder to follow.

Whenever you try to understand a recursive program, it is useful to put the
underlying details aside and focus instead on a single level of the operation. At that
level, you are allowed to assume that any recursive call automatically gets the right
answer as long as the arguments to that call are in some sense simpler than the original
arguments. This psychological strategy—assuming that any simpler recursive call
will work correctly—is called the recursive leap of faith. Learning to apply this
strategy is essential to using recursion in practical applications.

As an example, consider what happens when this implementation is used to
compute fact(n) with n equal to 4. To do so, the recursive implementation must
compute the value of the expression

n * fact(n - 1)

By substituting the current value of n into the expression, you know that the result is

4 * fact(3)

Stop right there. Computing fact(3) is simpler than computing fact(4). Because
it is simpler, the recursive leap of faith allows you to assume that it works. Thus, you

 5.7 Introduction to recursion 167

should assume that the call to fact(3) correctly computes the value of 3!, which is
3 × 2 × 1, or 6. The result of calling fact(4) is therefore 4 × 6, or 24.

Whenever you try to understand a recursive function, it is better to focus on the
big picture instead of the details. Once you have made the recursive decomposition
and identified the simple cases, be satisfied that the computer can handle the rest.

The Fibonacci function
In a mathematical treatise entitled Liber Abbaci published in 1202, the Italian
mathematician Leonardo Fibonacci proposed a problem that has had a wide influence
on many fields, including computer science. The problem was phrased as an exercise
in population biology—a field that has become increasingly important in recent years.
Fibonacci’s problem concerns how the population of rabbits would grow from
generation to generation if the rabbits reproduced according to the following,
admittedly fanciful, rules:

• Each pair of fertile rabbits produces a new pair of offspring each month.
• Rabbits become fertile in their second month of life.
• Old rabbits never die.

If a pair of newborn rabbits is introduced in January, how many pairs of rabbits are
there at the end of the year?

You can solve Fibonacci’s problem by keeping a count of the rabbits at each
month during the year. At the beginning of January, there are no rabbits, since the
first pair is introduced sometime in that month, which leaves one pair of rabbits on
February 1st. Because the initial pair of rabbits is newborn, they are not yet fertile in
February, which means that the only rabbits on March 1st are the original pair of
rabbits. In March, however, the original pair is now of reproductive age, which means
that a new pair of rabbits is born. The new pair increases the colony’s population—
counting by pairs—to two on April 1st. In April, the original pair goes right on
reproducing, but the rabbits born in March are as yet too young. Thus, there are three
pairs of rabbits at the beginning of May. From here on, with more rabbits becoming
fertile each month, the rabbit population begins to explode.

At this point, it is useful to record the population data so far as a sequence of terms,
indicated by the subscripted value ti , each of which shows the number of rabbit pairs
at the beginning of the i th month from the start of the experiment on January 1st. The
sequence itself is called the Fibonacci sequence and begins with the following terms,
which represent the results of our calculation so far:

 t0 t1 t2 t3 t4
 0 1 1 2 3

168 Functions

You can simplify the computation of further terms in this sequence by making an
important observation. Because in this problem pairs of rabbits never die, all the
rabbits that were around in the previous month are still around. Moreover, every pair
of fertile rabbits has produced a new pair. The number of fertile rabbit pairs capable
of reproduction is simply the number of rabbits that were alive in the month before
the previous one. The net effect is that each new term in the sequence must simply
be the sum of the preceding two. Thus, the next several terms in the Fibonacci
sequence look like this:

 t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
 0 1 1 2 3 5 8 13 21 34 55 89 144

The number of rabbit pairs at the end of the year is therefore 144.

From a programming perspective, it helps to express the rule for generating new
terms in the following more mathematical form:

tn = tn-1 + tn-2

An expression of this type, in which each element of a sequence is defined in terms
of earlier elements, is called a recurrence relation.

The recurrence relation alone is not sufficient to define the Fibonacci sequence.
Although the formula makes it easy to calculate new terms in the sequence, the
process has to start somewhere. In order to apply the formula, you need to have at
least two terms already available, which means that the first two terms in the
sequence—t0 and t1—must be defined explicitly. The complete specification of the
terms in the Fibonacci sequence is therefore

tn =

n if n is 0 or 1

tn-1 + tn-2 otherwise

This mathematical formulation is an ideal model for a recursive implementation
of a function fib(n) that computes the n th term in the Fibonacci sequence. All you
need to do is plug the simple cases and the recurrence relation into the standard
recursive paradigm. The recursive implementation of fib(n) looks like this:

def fib(n):
 if n == 0 or n == 1:
 return n
 else:
 return fib(n - 1) + fib(n - 2)

Now that you have a recursive implementation of the function fib, how can you

go about convincing yourself that it works? You can always begin by tracing through

 Summary 169

the logic. Consider, for example, what happens if you call fib(5). Because this is
not one of the simple cases enumerated in the if statement, the implementation
computes the result by evaluating the line

return fib(n - 1) + fib(n - 2)

which in this case is equivalent to

return fib(4) + fib(3)

At this point, the computer calculates the result of fib(4), adds that to the result of
calling fib(3), and returns the sum as the value of fib(5).

But how does the computer evaluate fib(4) and fib(3)? The answer, of course,
is that it uses precisely the same strategy it did to calculate fib(5). The essence of
recursion is to break problems down into simpler ones that can be solved by calls to
exactly the same function. Those calls get broken down into simpler ones, which in
turn get broken down into even simpler ones, until at last the simple cases are reached.

Although you could certainly work through the necessary steps, it is best to regard
this entire mechanism as irrelevant detail. Instead, all you need to do is remember
the recursive leap of faith. Your job at this level is to understand how the call to
fib(5) works. In the course of walking though the execution of that function, you
have managed to transform the problem into computing the sum of fib(4) and
fib(3). Because the argument values are smaller, each of these calls represents a
simpler case. Applying the recursive leap of faith, you can assume that the program
correctly computes each of these values, without going through all the steps yourself.

 Summary
In this chapter, you learned about functions, which enable you to refer to an entire set
of operations with a single name. More importantly, by allowing the programmer to
ignore the internal details and concentrate only on the effect of a function as a whole,
functions provide a critical tool for reducing the conceptual complexity of programs.

The important points introduced in this chapter include:

• A function consists of a set of program statements that have been collected

together and given a name. Other parts of the program can then call that function,
possibly passing it information in the form of arguments and receiving a result
returned by that function.

• A function that returns a value must have a return statement that specifies the
result. Functions may return values of any type.

170 Functions

• Variables declared within a function are local to that function and cannot be used
outside it. Internally, all the variables declared within a function are stored
together in a stack frame.

• Parameters are local variables that act as placeholders for the argument values.

• Parameters in Python come in two types: positional and keyword. Python
initializes positional parameter variables by copying the argument values in the
order in which they appear. Arguments specified by keyword are copied into the
parameter variable with the same name.

• Python allows a function to specify a default values for each parameter, which is
used if the caller fails to supply a value.

• If any parameters remain uninitialized after positional, keyword, and default
processing is complete, Python reports an error.

• When a function returns, it continues from precisely the point at which the call
was made. Computer scientists refer to this point as the return address.

• You can create your own libraries by collecting the necessary code in a module
whose name ends with the standard .py file type. You can then use the entries
exported by this library by importing them into your application.

• In understanding the concept of a library, it is useful to differentiate the roles of
the client, who uses the library, and the implementer, who writes the necessary
code. The shared understanding between the client and the implementer is called
the interface.

• Figure 5-3 lists some of the functions available in Python’s random library. These
functions enable you to write applications that simulate random behavior.

• In Python, function definitions can be nested inside other functions. The nested
functions are called inner functions.

• An inner function has access to the local variables in the function that encloses it.

• Python determines the value associated with an identifier by looking at the
following contexts in order: local, enclosing, global, and built-in.

• The portion of a program in which an identifier is defined is called its scope.

• Python’s implementation of function calls makes it possible for a function to call
itself, because the local variables for each call are stored in different stack frames.
Functions that call themselves are said to be recursive.

• Before you can use recursion effectively, you must learn to limit your analysis to
a single level of the recursive decomposition and to rely on the correctness of all
simpler recursive calls without tracing through the entire computation. Trusting
these simpler calls to work correctly is often called the recursive leap of faith.

 Review questions 171

 Review questions
1. Define the following terms as they apply to functions: call, argument, return.

2. How do you specify the result of a function in Python?

3. Can there be more than one return statement in the body of a function?

4. Variables declared within a function are called local variables. What is the

significance of the word local in this context?

5. What is a stack frame?

6. What do computer scientists mean by the term return address?

7. In your own words, describe the process by which Python uses the arguments in

a function call to initialize the parameters variables. Be sure that your
explanation covers positional, keyword, and default parameters

8. Describe the differences between the roles of client and implementer.

9. What is an interface?

10. How would you use the random.randint function to generate a randomly

chosen integer between 1 and 100? How would you accomplish the same result
using random.randrange?

11. If you run the RandomCircles.py program shown in Figure 5-5, you expect to

see 10 circles on the graphics window because N_CIRCLES has the value 10. In
fact, you sometimes see fewer circles. Why might this be?

12. What are the three functions exported by the gtools library in Figure 5-6?

13. What is an inner function?

14. True or false: An inner function has access to the local variables in the enclosing

function.

15. What is meant by the term scope as it applies to variable names?

16. List the order in which Python searches contexts for the value on an identifier.

17. Describe the difference between the strategies of iteration and recursion.

18. What is meant by the phrase recursive leap of faith? Why is this concept

important for you as a programmer?

172 Functions

19. In the section entitled “Tracing the recursive process,” the text goes through a
long analysis of what happens internally when fact(4) is called. Using this
section as a model, trace the execution of fib(3), sketching out each stack frame
created in the process.

 Exercises
1. Write a function random_average(n) that generates n random real numbers

between 0 and 1 and then returns the average of those n values. Statistically,
calling random_average(n) will produce results that become closer to 0.5 as the
value of n increases. Write a main program that displays the result of calling
random_average on 1, 10, 100, 1000, 10000, 100000, and 1000000.

2. Heads. . . .

Heads. . . .
Heads. . . .
A weaker man might be moved to re-examine his faith, if in
nothing else at least in the law of probability.

—Tom Stoppard, Rosencrantz and Guildenstern Are Dead, 1967

Write a function consecutive_heads(number_needed) that simulates tossing
a coin repeatedly until the specified number of heads appear consecutively. At
that point, your program should display a line on the console that indicates how
many coin tosses were needed to complete the process. The following console
log shows one possible execution of the program:

3. I shall never believe that God plays dice with the world.

—Albert Einstein, 1947

Despite Einstein’s metaphysical objections, the current models of physics, and
particularly of quantum theory, strongly suggest that nature does indeed involve
random processes. A radioactive atom, for example, does not decay for any
specific reason that we mortals understand. Instead, that atom has a probability
of decaying randomly within a particular period of time.

 Exercises 173

Because physicists consider radioactive decay a random process, it is not
surprising that random numbers can be used to simulate it. Suppose you start
with a collection of atoms, each of which has a certain probability of decaying in
any unit of time. You can then approximate the decay process by taking each
atom in turn and deciding randomly whether it decays.

Write a function simulate_radioactive_decay that models the process of
radioactive decay. The first parameter is the initial population of atoms; the
second is the probability that any of those atoms will decay within a year. For
example, calling

simulate_radioactive_decay(10000, 0.5)

simulates what happens over time to a sample that contains 10,000 atoms of some
radioactive material, where each atom has a 50 percent chance of decaying in a
year. Your function should produce a trace on the console showing how many
atoms remain at the end of each year until all of the atoms have decayed. For
example, the output of your function might look like this:

As the numbers indicate, roughly half the atoms in the sample decay each year.
In physics, the conventional way to express this observation is to say that the
sample has a half-life of one year.

4. Random numbers offer an interesting strategy for approximating the value of p.

Imagine that you have a green dartboard hanging on your wall that consists of a
circle painted on a square backdrop, as in the following diagram:

174 Functions

What happens if you throw a sequence of darts completely randomly, ignoring
any darts that miss the board altogether? Some of the darts will fall inside the
green circle, but some will be outside the circle in the white corners of the square.
If the throws are random, the ratio of the number of darts landing inside the circle
to the total number of darts hitting the square should be approximately equal to
the ratio between the two areas. The ratio of the areas is independent of the actual
size of the dartboard, as illustrated by the formula

 @ = =

To simulate this process in a program, imagine that the dartboard is drawn on

the standard Cartesian coordinate plane with its center at the origin and a radius
of 1 unit. The process of throwing a dart randomly at the square can be modeled
by generating two random numbers, x and y, each of which lies between –1 and
+1. This (x, y) point always lies somewhere inside the square. The point (x, y)
lies inside the circle if

 < 1

This condition, however, can be simplified considerably by squaring each side
of the inequality, which yields the following more efficient test:

x2 + y2 < 1

If you perform this simulation many times and compute what fraction of the darts
falls inside the circle, the result will be an approximation of p/4.

Write a program that simulates throwing 10,000 darts and then uses the results
to display an approximate value of p. Don’t worry if your answer is correct only
in the first few digits. The strategy used in this problem is not particularly
accurate, even though it often provides useful approximations. In mathematics,
this technique is called Monte Carlo integration, after the capital city of Monaco,
famous for its casinos.

5. The combinations function C(n, k) determines the number of ways you can

choose k values from a set of n elements, ignoring the order of the elements. If
the order of the value matters—so that, in the case of the coin example, choosing
a penny and then a dime is seen as distinct from choosing a dime and then a
penny—you need to use a different function, which computes the number of
permutations, which are all the ways of ordering k elements taken from a
collection of size n. This function is denoted as P(n, k), and has the following
mathematical formulation:

P(n, k) =

 Exercises 175

Although this definition is mathematically correct, it is not well suited to
implementation in practice because the factorials involved quickly get very large.
For example, if you use this formula to calculate the number of ways to select
two cards from a standard 52-card deck (assuming that the order matters), you
would end up trying to evaluate the following fraction:

even though the answer is the much more manageable 2652 (52 ´ 51).

Write a function permutations(n, k) that computes the P(n, k) function
without calling the fact function. Part of your job in this problem is to figure
out how to compute this value efficiently. To do so, you will probably find it
useful to play around with some relatively small values to get a sense of how the
factorials in the numerator and denominator of the formula behave.

6. Rewrite the DrawHouse.py program from Figure 4-11 so that the helper

functions are defined as inner functions that share access to the gw variable.

7. Create a library file called alignment.py that exports the align_right function

from Chapter 1 along with the similar functions align_left and align_center
that perform left and center alignment, respectively. In writing align_center,
you will have to make some decision as to where it add the extra space if the
number of spaces required is odd. The comments associated with the function
should document your decision.

8. The values of the combinations function C(n, k) described in this chapter are

often displayed using a triangular arrangement that begins

and then continues for as many rows as desired. This figure is called Pascal’s
Triangle after its inventor, the seventeenth-century French mathematician Blaise
Pascal. Pascal’s Triangle has the interesting property that every interior entry is
the sum of the two entries above it.

Write a function display_pascal_triangle(n) that displays Pascal’s
Triangle from row 0 up to row n, as shown in the following IDLE session:

176 Functions

The interesting challenge in this assignment is aligning the output, for which the
library module you wrote for the preceding exercise will come in handy.

9. The fact that every entry in Pascal’s Triangle is the sum of the two entries above

it makes it possible to calculate C(n, k) recursively. Use this insight to write a
recursive implementation of the combinations function without using any loops
or calls to fact.

10. Spherical objects, such as cannonballs, can be stacked to form a pyramid with

one cannonball at the top, sitting on top of a square composed of four
cannonballs, sitting on top of a square composed of nine cannonballs, and so
forth. Write a recursive function cannonball that takes as its argument the
height of the pyramid and returns the number of cannonballs it contains. Your
function must operate recursively and must not use any iterative constructs, such
as while or for.

11. Rewrite the fib function so that it operates iteratively rather than recursively.

12. Rewrite the digit_sum function from page 45 so that it operates recursively

instead of iteratively. To do so, you need to identify both the simple cases and
the necessary recursive insight.

13. Rewrite the gcd function that uses Euclid’s algorithm shown on page 72 so that

it computes the greatest common divisor recursively using the following rules:

• If y is zero, then x is the greatest common divisor.

• Otherwise, the greatest common divisor of x and y is always equal to the
greatest common divisor of y and the remainder of x divided by y.

C H A P T E R 6
Writing Interactive Programs

Quit worrying about failure. Failure’s easy. Worry about
if you’re successful, because then you have to deal with it.

— Adele Goldberg, interview with John Mashey, 2010

Adele Goldberg (1945–)

Adele Goldberg received her Ph.D. in Information Science from the University of Chicago and took a
research position at the Xerox Palo Alto Research Center (PARC), which introduced the graphical user
interface—an idea that has since become central to modern computing. Together with others in the Learning
Research Group at PARC, Goldberg designed and implemented the programming language Smalltalk, which
took the ideas of object-oriented programming developed in Scandinavia and integrated them into a
programming environment designed to support constructivist learning in which students build knowledge
from their experiences. Drawing on the state-of-the-art technology invented at PARC, Smalltalk was among
the first programming environments designed for use with graphical displays. Along with her colleagues
Alan Kay and Dan Ingalls, Goldberg received the Software Systems Award from the Association for
Computing Machinery, the leading professional society for computer science, in 1987.

178 Writing Interactive Programs

So far, the only interactions you have had with Python programs have taken place in
the context of the IDLE interpreter. When you enter an expression on the IDLE
console, the Python interpreter evaluates that expression and displays the result.
When you run a program from the command line, your experience so far is that the
program runs to completion with no further interaction with the user.

This style of interaction, whether executed in IDLE or from the console, is called
synchronous, because user actions are synchronized with the program operation. A
graphical user interface (often shortened to the acronym GUI, which is pronounced
like gooey), by contrast, is asynchronous, in that it allows the user to intercede at any
point, typically by using the mouse or the keyboard to trigger an action. Actions that
occur asynchronously with respect to the program operation, such as clicking the
mouse or typing on the keyboard, are generically referred to as events. Interactive
programs that operate by responding to these events are said to be event-driven. The
primary goal of this chapter is to teach you how to write simple event-driven
programs.

Historically, the development of the graphical user interface has been closely
associated with the object-oriented paradigm, which is itself commonly abbreviated
as OOP. There are at least two reasons that the GUI and OOP have worked well
together (beyond the fact that they have both become popular three-letter buzzwords
in the computing industry). First, graphical displays are characterized by having
many independent objects that form a hierarchical relationship that fits easily into the
object-oriented paradigm. Second, it is easy to think of events as messages, which
are a central foundation of the object-oriented model. Clicking the mouse, for
example, sends a message to the application, which then responds in an appropriate
way.

 6.1 First-class functions
Before looking at the details of how event-driven programs are implemented in
Python, it is useful to spend a little more time considering the question of how Python
implements the idea of a function. In the programs you have seen so far in this book,
the ideas of functions and data have remained separate. Functions provide the means
for representing an algorithm. Those functions then operate on data values, which
act as the raw material on which computation is performed. Functions have been part
of the algorithmic structure, not part of the data structure. Being able to use functions
as data values, however, often makes it much easier to design effective interfaces,
because this facility allows clients to specify operations as well as data.

In Python, functions are values that are simultaneously part of both the algorithmic
structure and the data structure of a program. Given a functional value, you can assign
it to a variable, pass it as a parameter, or return it as a result. When a programming

 6.1 First-class functions 179

language allows functions to behave just like any other data value, computer scientists
say that the language supports first-class functions.

As noted in Chapter 1, a data type is defined as a combination of a domain and a
set of operations. For the function data type, the domain is the vast spectrum of
functions that you can to define in Python. The operation that is particular to the
function data type is application, which is the process of calling that function with a
list of arguments.

Assigning functions to variables
As a starting point in understanding the concept of treating functions as data objects,
it makes sense to look at the process of assigning a function value to a variable. The
function abs for example is one of Python’s built-in functions. You could assign that
function value to a variable using the assignment statement

fn = abs

Like any assignment statement, this line creates a variable named fn and assigns it a
value, which is the built-in function abs. You can diagram the resulting situation like
this:

Since the variable fn contains a function as its value, you can call fn, just as you call
the built-in function abs. Calling fn(-3), for example, returns the integer 3.

As with any variable, you can also change the value that fn contains. If you have
imported the math library, you could execute the assignment

fn = math.sqrt

which would change the value stored in the variable as follows:

Calling fn(25) at this point would return 5.0 as a floating-point value.

Although the idea of assigning functions to variable may initially seem rather
esoteric, you have already seen it done. The Python statement

from math import sqrt

is equivalent to the statements

180 Writing Interactive Programs

import math
sqrt = math.sqrt

The assignment stores the function value math.sqrt in the global variable sqrt,
which is then available in the current module.

Closures
For functions defined in a library or at the top level of a module, assigning that
function to a variable corresponds to storing its name in a variable, as the box
diagrams in the previous section suggest. The situation is more interesting if you
assign an inner function, as described in section 5-6, to a variable. Inner functions
have access to the local variables declared in the enclosing function. In Python, that
access is part of the function value, which combines the code that implements it with
the variables in its scope. This combination of code and variables is called a closure.
Closures are an amazingly powerful feature of languages like Python and will prove
essential to writing interactive programs.

Passing functions as parameters
Since functions in Python are first-class values, they can be passed as parameters.
One example of an application in which doing so makes intuitive sense is the
following function:

def print_function_table(fn, min, max):
 for i in range(min, max + 1):
 print("fn(" + str(i) + ") = " + str(fn(i)))

The first parameter is a function that takes a number and returns a result. The effect
of print_function_table is to count from min to max, generating a line of output
that shows the value of the function at each of those values. For example, if this
definition of print_function_table is stored in the Python module fntable, you
could generate the following IDLE session:

 6.2 A simple interactive example 181

The first argument to print_function_table can be any function. For example,
using math.sqrt as the argument generates the following IDLE session:

 6.2 A simple interactive example
Before becoming immersed in the details, it helps to consider a simple example that
illustrates the graphics library’s model for user interaction. The DrawDots.py
program in Figure 6-1 draws a small dot whenever the user clicks the mouse button.

182 Writing Interactive Programs

For example, if you click the mouse near the upper left corner of the window, the
program will draw a dot in that position, as shown in the following diagram:

If you then go on to click the mouse in other positions, dots will appear there as well.
You could, for example, draw a picture of the constellation Ursa Major, which is more
commonly known as the Big Dipper. All you would have to do is click the mouse
once in the position of each star, as follows:

Although the code in Figure 6-1 is extremely short, the program is different
enough from the ones that you’ve seen so far that it makes sense to go through it in
detail. The function begins by defining the function click_action, which specifies
what happens when the user clicks the mouse. The next statement creates the graphics
window, precisely as you always have. The final statement in the DrawDots.py
program establishes the link between the graphics window and the behavior specified
by click_action. Executing the line

gw.add_event_listener("click", click_action)

tells the graphics window that it wants to respond to mouse clicks. Moreover, the
response to that mouse click is specified by click_action, which is called
automatically whenever a click occurs.

 6.3 Controlling properties of objects 183

It is useful to note that the code in Figure 6-1 never calls click_action explicitly.
The call, when it happens, comes from the code that implements the graphics library.
Functions that the program does not call directly but that instead occur in response to
some event are referred to as callback functions. The name reflects the relationship
between the client program and the libraries it uses. As a client, your program calls
add_event_listener to register interest in a particular event. As part of that
process, you provide the library with a function that it can call when the event occurs.
It is, in a way, analogous to providing a callback number. When the library
implementation needs to call you back, you’ve given it the means to do so.

Now that you have a sense of how callback functions work in general, you are in
a better position to understand the click_action function, which looks like this:

def click_action(e):
 gw.add(create_filled_circle(e.get_x(), e.get_y(),
 DOT_SIZE / 2))

The function takes a parameter e, which provides the function with data about the
details of the event. In this case, e is a mouse event, which keeps track of the location
of the mouse along with other data. Callback functions that respond to mouse events
can determine the location of the mouse by invoking the methods e.get_x() and
e.get_y(). Each of these methods returns a coordinate in pixels measured relative
to the origin in the upper left corner of the window.

The click_action function calls create_filled_circle to create the dot and
then adds it to the window so that its center appears as the current mouse position.
The variable gw, which is a local variable inside draw_dots, is accessible to the
click_action code because its definition appears in the enclosing function.

 6.3 Controlling properties of objects
Before moving on to look at more sophisticated examples of interactivity, it is
important to have a more complete understanding of how to manipulate graphical
objects that have already been placed on the screen. So far, the objects that you’ve
added to the graphics window retain their initial location and dimensions. When you
build interactive programs, you need to be able to change these properties.

The classes in the graphics library export a richer set of methods than you have
had a chance to use so far. Figure 6-2 lists the complete set of methods supported by
every graphical object and a few that apply only to specific classes. Each of the
method descriptions consists of a single line that offers an overview of what the
method does. For more details, you can look up the documentation on the web.

184 Writing Interactive Programs

GraphicsLibraryMethods.png

 6.4 Responding to mouse events 185

Instead of going through each of these methods in detail, this chapter presents
several programming examples that introduce new methods only as they are needed.
As a result, you have a chance to learn about each of the new methods in the context
of an application that makes use of it.

 6.4 Responding to mouse events
The "click" event used in the DrawDots.py program is only one of several mouse
events that Python allows you to detect. The mouse events implemented by the
GWindow class are shown in Figure 6-3. Each of these event names allows you to
respond to a specific type of action with the mouse, most of which will seem familiar
from using your computer. The "mousemove" event, for example, is generated when
you move the mouse in the window without pressing the mouse button. The "drag"
event occurs when you move the mouse while holding the button down. The name
of the event comes from the fact that the interaction model of moving the mouse with
the button down is often used to drag objects around on the window. You press the
mouse button over an object to grab it and then drag it to the desired position.

The sections that follow offer several examples that illustrate conventional styles
of using the mouse to create and reposition objects in the graphics window.

A simple line-drawing program
In all likelihood, you have already used some application that allows you to draw
lines on the screen by dragging the mouse. To create a line, you press the mouse
button at the point at which you’d like the line to start and then drag the mouse with
the button down until you reach the point at which you want the line to end. As you
drag the mouse, the application typically updates the line so that you can see what
you have drawn so far. When you release the mouse button, the line stays in that
position, and you can repeat the process to create as many new lines as you wish.

186 Writing Interactive Programs

Suppose, for example, that you press the mouse button somewhere on the screen
and then drag the mouse rightward an inch, holding the button down. What you’d
like to see is the following picture:

If you then move the mouse downward without releasing the button, the displayed
line will track the mouse, so that you might see the following picture:

As you drag the mouse, the application repeatedly updates the line, making it
appear to stretch as the mouse moves. Because the effect is precisely what you would
expect if you joined the starting point and the mouse cursor with a stretchy elastic
line, this technique is called rubber-banding.

When you release the mouse, the line stays where it is. If you then press the mouse
button again on that same point, you can go ahead and draw an additional line segment
by dragging the mouse to the end point of the new line, as follows:

At least in terms of the conceptual strategy, this problem doesn’t initially seem
that different from the one used earlier in the DrawDots.py program. When the user

 6.4 Responding to mouse events 187

presses the mouse button, the program creates a zero-length line that starts and ends
at the current mouse position. As the user drags the mouse to a new position, all the
program needs to do is change the endpoint of that line to the new mouse coordinates.
The program therefore needs to listen for both the "mousedown" and "drag" events
and then implement the necessary operations on a GLine object that is shared
throughout the entire program.

Unfortunately, writing the code for the DrawLines.py program is not quite as
simple as the preceding paragraph suggests. If you try to solve this program by
storing the shared GLine object in the closure, you would be tempted to write a
program that looks something like this:

def draw_lines():

 def mousedown_action(e):
 line = GLine(e.get_x(), e.get_y(),
 e.get_x(), e.get_y())
 gw.add(line)

 def drag_action(e):
 line.set_end_point(e.get_x(), e.get_y())

 gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT)
 line = None
 gw.add_event_listener("mousedown", mousedown_action)
 gw.add_event_listener("drag", drag_action)

As the bug symbol indicates, however, this strategy fails because of the way Python
treats local variables.

Most modern programming languages require you to indicate what variables are
local to a function using a specification called a declaration. Python doesn’t. To
make the language easier for novices, Python looks through the code for a function
for all variables that appear on the left side of an assignment and then automatically
declares those variables as local. Because the variable line appears on the left side
of an assignment in mousedown_action, Python treats it as a new local variable with
no connection to the line variable that appears in the enclosing draw_lines
function. As a result, the line variable in mousedown_action is entirely separate
from the line variable in draw_lines and drag_action.

Although Python now includes a mechanism for indicating that a function should
use an enclosing definition instead of creating a new local variable, the syntax for
doing so is confusing to new students and makes programs that use it more difficult
to read and maintain. A better strategy—and certainly the one more likely to be
adopted by professional programmers—is to collect the variables that need to be

188 Writing Interactive Programs

shared into a single object and then rely on closures to ensure that all the inner
functions have access to those values. The only problem with adopting that strategy
at this point in the text is that the process of creating objects and assigning to their
components is not covered in detail until Chapter 10.

Fortunately, the fact that this problem usually arises in graphical programs makes
it possible to implement a simple workaround. Every program that uses the Portable
Graphics Library defines a GWindow object that is stored by convention in a variable
named gw. Assuming that you define gw in the main program, any callback functions
you define will have access to this variable. That fact means that you can store any
data you need to share inside the GWindow object.

For example, instead of defining a variable named line as in the buggy version
of DrawLines.py, you define a new component of the gw object called gw.line. The
revised code appears in Figure 6-4.

 6.4 Responding to mouse events 189

The only differences between the code in Figure 6-4 and the earlier buggy version
of DrawLines.py is that all occurrences of the variable line in the original program
have been replaced by gw.line in place of the earlier variable line. Because no
assignments are made to the gw variable itself outside of the main program, that
variable is shared through the closure. Functions like mousedown_action and
drag_action can refer to the individual components of gw without breaking the
sharing arrangement that allows these programs to work.

Most of the graphical programs in this text use this strategy of storing shared state
inside the gw variable. You will have a chance to learn more about objects and their
uses in Chapter 10.

Dragging objects on the canvas
The DragObjects.py program in Figure 6-5 on the next page offers a slightly more
sophisticated example of an event-driven program that uses the mouse to reposition
objects on the display. This program begins by adding a blue rectangle and a red oval
to the window, just as in the GRectPlusGOval.py program from Chapter 4. The rest
of the program represents the code pattern for dragging objects.

As in the DrawLines.py program in Figure 6-4, the callback functions in the
DragObjects.py program need to assign new values to shared state variables. The
main function therefore must store the following information in components of the
GWindow object so that the inner functions can manipulate those values:

1. gw.last_x, which is the x coordinate at which the last mouse event occurred

2. gw.last_y, which is the corresponding y coordinate

3. gw.gobj, which is the object being dragged

The mousedown_action function consists of the following code:

def mousedown_action(e):
 gw.last_x = e.get_x()
 gw.last_y = e.get_y()
 gw.gobj = gw.get_element_at(gw.last_x, gw.last_y)

The first two statements in simply record the x and y coordinates of the mouse in the
state variables gw.last_x and gw.last_y. The third statement records the object
being moved through the use of an important new method in the GWindow class called
get_element_at, which takes an x and a y coordinate and then checks to see what
object displayed on the window contains that location. Here, it is important to
recognize that there are two possibilities. First, you could be pressing the mouse button

190 Writing Interactive Programs

DragObjects.py

 6.4 Responding to mouse events 191

on top of an object, which means that you want to start dragging it. Second, you
could be pressing the mouse button somewhere else on the canvas at which there is
no object to drag. If just one object exists at the specified location, get_element_at
returns that object. If more than one object covers that space, get_element_at
chooses the one in front of the others in the stacking order. If no objects exist at that
location, get_element_at returns the special value None. In any of those cases, the
mousedown_action function assigns that value to the state variable gw.gobj.

The drag_action function consists of the following code:

def drag_action(e):
 if gw.gobj is not None:
 gw.gobj.move(e.get_x() - gw.last_x,
 e.get_y() - gw.last_y)
 gw.last_x = e.get_x()
 gw.last_y = e.get_y()

The if statement checks to see whether there is an object to drag. If the value of
gobj is None, there is nothing to drag, so the rest of the function can just be skipped.
If there is an object, you need to move it by some distance in each direction. That
distance does not depend on the current coordinates of the mouse but rather on how
far it has moved from where it was when you last noted its position. Thus, the
arguments to the move method are—for both the x and y components—the location
where the mouse is now minus where the mouse was at the time of the last event.
Those coordinates are stored in the variables gw.last_x and gw.last_y. Once you
have moved the object, you must then update these values to ensure that they are
correct for the next call to mouse_dragged.

The DragObjects.py program also registers its interest in "click" events, which
trigger a call to the following function:

def click_action(e):
 if gw.gobj is not None:
 gw.gobj.send_to_front()

The point of adding this function is to allow the user to change the stacking order,
which, as noted in Chapter 4, is the order in which objects are layered on the screen.

In the DragObjects.py program, clicking on an object has the effect of moving
it to the front of the stacking order. Implementing this behavior correctly, however,
requires understanding the rules that the Portable Graphics Library uses for mouse
events. A "click" event occurs when a "mousedown" event is followed within a
relatively short amount of time by a "mouseup" event. By the time Python processes
the "click" event, the "mousedown" and "mouseup" events have already occurred.
Although DragObjects.py does not specify any action for "mouseup", it responds

192 Writing Interactive Programs

to the "mousedown" event by calling mousedown_action. Thus, by the time the call
to click_action occurs, the mousedown_action function will already have set the
value of gw.gobj.

 6.5 Timer-based animation
Interactive programs change their behavior not only in response to user events, but
also over time. In a computer game, for example, objects on the screen typically
move in real time. Updating the contents of the graphics window so that they change
over time is called animation.

The GWindow class in the Portable Graphics Library exports two methods that
support animation by allowing the application to invoke a callback function after a
specified delay. The method

gw.set_timeout(function, delay)

creates a one-shot timer that calls function after delay milliseconds. The method

gw.set_interval(function, delay)

creates an interval timer that calls function repeatedly every delay milliseconds. Each
of these methods returns an object called a timer that makes it possible to control the
animation process.

As an example, executing

timer = gw.set_interval(step, 20)

creates an interval timer and stores the resulting timer object in the variable timer.
The interval timer then begins generating calls to the function step once every 20
milliseconds, or every fiftieth of a second. The name step is chosen here to suggest
that each call represents a single step in the animation, which is called a time step.
The step function takes no arguments, so any information it needs must be
communicated through the closure of the function in which step is defined.

Timers that initiate events every 20 milliseconds allow you to change the state of
the graphics window quickly enough so that the changes appear smooth to the human
eye. You can therefore move an object on the screen by creating an interval timer
that executes its callback function every 20 milliseconds and then having the callback
function make an incremental change to the position of that object.

The reason for storing the timer object is that doing so allows you to invoke its
stop method, which turns off the timing process and prevents any subsequent

 6.5 Timer-based animation 193

invocations of the callback function. In the context of an animation, for example, you
can call timer.stop()when the animated object reaches its final location.

A simple example of animation
A simple example of timer-based of animation appears in Figure Error! Reference
source not found.-6, which moves a square diagonally across the screen from its
initial position in the upper left corner to its final position in the lower right, moving
one pixel in each dimension on every time step.

The code for the callback function looks like this:

def step():
 square.move(dx, dy)
 if square.get_x() + SQUARE_SIZE > gw.get_width():
 timer.stop()

194 Writing Interactive Programs

The first line adjusts the position of the square by the values dx and dy. The rest of
the function tests whether the square is still inside the window and stops the timer if
it has moved beyond the boundary.

Tracking the state of an animation
As animations become more complex, keeping track of the state of the animation
becomes a bit tricky. Suppose, for example, that you want to add animation to the
RandomCircles.py program in Figure 5-5 on page 154. Instead of having the circles
all show up at once, what you want is for the circles to appear slowly, one at a time.
Each circle begins as a single point and then grows until it reaches its desired size.
The program should then creates the next circle and lets it grow, continuing in this
fashion until all ten circles are displayed on the screen.

It is, of course, tempting to start this program by building on the earlier example.
That strategy would suggest adopting the following pseudocode structure:

for i in range(N_CIRCLES):
 Create a circle.
 Animate that circle so that it grows to full size.
 Wait for that animation to complete.

Unfortunately, that strategy doesn’t work well if you use the Portable Graphics
Library, which expects all interactions to be event-driven, in the sense that all actions
take place in response to events that occur asynchronously. This event model rules
out the earlier pseudocode approach and requires a different strategy, in which all
aspects of the animation are implemented inside the step function. The step
function therefore has the following pseudocode form:

def step():
 if the current circle is still growing:
 Increase the size of the current circle.
 elif there are more circles to create:
 Create another circle.
 else:
 timer.stop()

The code for GrowingCircles.py appears in Figure 6-7 on the next page. The

code for the create_new_circle function is largely the same as the code for
create_random_circle in Figure 5-5. The only differences are that

1. The create_new_circle function creates circles whose initial size is 0.

2. The create_new_circle function records the eventual and current size of the
circle in the state components gw.desired_size and gw.current_size.

 6.5 Timer-based animation 195

GrowingCircles.py

196 Writing Interactive Programs

The code for the step function follows the pseudocode outline shown earlier on this
page. The only new feature is the call to set_bounds, which resets the location and
size of the current circle so that it grows by one pixel in each time step.

It is worth noting that the main program explicitly initializes the state variables
gw.desired_size and gw.current_size to 0. Setting these two variables to the
same value ensures that create_new_circle is called on the first time step

 6.6 Expanding the graphics library
Ever since Chapter 4, you’ve been using classes from the Portable Graphics Library
to create simple drawings on the screen. So far, however, you have seen only a small
part of what the graphics library has to offer. Now that you know how to write
programs that involve animation and interactivity, it makes sense to learn more about
the graphics library and how to use it. This section introduces three new classes—
GArc, GPolygon, and GCompound—that allow you to create more interesting
graphical displays.

The GArc class
The GArc class is used to display an arc formed by selecting part of the perimeter of
an oval. The GArc function itself takes six parameters—x, y, width, height, start,
and sweep—which are illustrated in Figure 6-8. The first four parameters specify the
location and size of the rectangle that encloses the arc and therefore have precisely

 6.6 Expanding the graphics library 197

the same interpretation as those parameters in calls to GRect or GOval. The next two
parameters specify the start angle, which is the angle at which the arc begins, and the
sweep angle, which is the number of degrees through which the arc extends. In
keeping with mathematical convention, angles in the graphics library are measured
in degrees counterclockwise from the +x axis, as follows:

The effect of these parameters is most easily demonstrated by example. The four
sample runs in Figure 6-9 show the effect of the code below each diagram. The code
fragments create arcs using different values for start and sweep. Each of the arcs
has a radius of r pixels and is centered at the point (cx, cy).

The GArc class implements the methods shown in Figure 6-10 on the next page.
As you can see, these methods include set_filled and set_fill_color, just as
GRect and GOval do. It is not immediately apparent, however, exactly what filling
an arc means. In the interpretation of arc-filling used in the Portable Graphics
Library, the unfilled version of a GArc is not simply the boundary of its filled
counterpart. If you display an unfilled GArc, only the arc itself is shown. If you call

198 Writing Interactive Programs

set_filled(True) on that arc, the graphics library connects the end points of the
arc to the center from which the arc was drawn and then fills the interior of that region.
The following sample run illustrates the difference by showing both unfilled and
filled versions of the same 60-degree arc:

The important lesson to take from this example is that the geometric boundary of
a GArc changes if you set it to be filled. A filled arc is a wedge-shaped region that
has a well-defined interior. An unfilled arc is simply a section taken from the
boundary of an ellipse. If you want to display the outline of the wedge that calling
set_filled would generate, the simplest strategy is to call set_filled(True) and
then use set_fill_color("White") to set the interior of the region to white.

The GPolygon class
The GPolygon class makes it possible to display a polygon, which is simply the
mathematical name for a closed shape whose boundary consists of straight lines. The
line segments that form the outline of a polygon are called edges. The point at which
a pair of edges meets is called a vertex. Many polygonal shapes are familiar from the
real world. Each cell in a honeycomb is a hexagon, which is the common name for a
polygon with six sides. A stop sign is an octagon with eight identical sides. Polygons,
however, are not required to have equal sides and angles. The figures in the left
margin, for example, illustrate four polygons that fit the general definition.

 6.6 Expanding the graphics library 199

The GPolygon class is easy to use if you keep the following points in mind:

• Unlike the functions that create the other shapes, the GPolygon function does not

create the entire figure. What happens instead is that calling GPolygon creates an
empty polygon. Once you have created an empty polygon, you then add vertices
to it by calling various other methods described later in this section.

• The origin of a GPolygon is not defined to be its upper left corner. Many
polygons, after all, don’t have an upper left corner. What happens instead is that
you—as the programmer who is creating the specific polygon—choose a
reference point that defines the location of the polygon as a whole. You then
specify the coordinates for each vertex in terms of where they lie in relation to the
reference point. This approach makes it easier to move the polygon as a unit.

The creation of a GPolygon is easiest to illustrate by example. Suppose that you

want to create a GPolygon representing the diamond-shaped figure shown in the
margin. Your first design decision consists of choosing where to put the reference
point. For most polygons, the most convenient point is the geometric center of the
figure. If you adopt that model, you then need to create an empty GPolygon and add
four vertices to it, specifying the coordinates of each vertex relative to the coordinates
of the center. Assuming that the width and height of the diamond are stored in the
constants DIAMOND_WIDTH and DIAMOND_HEIGHT, you can create the diamond-shaped
GPolygon using the following code:

diamond = GPolygon()
diamond.add_vertex(-DIAMOND_WIDTH / 2, 0)
diamond.add_vertex(0, DIAMOND_HEIGHT / 2)
diamond.add_vertex(DIAMOND_WIDTH / 2, 0)
diamond.add_vertex(0, -DIAMOND_HEIGHT / 2)

When you use the add_vertex method to construct a polygon, the coordinates of
each vertex are expressed relative to the reference point. In some cases, it is easier to
specify the coordinates of each vertex in terms of the preceding one. To enable this
approach, the GPolygon class offers an add_edge method, which is similar to
add_vertex except that the parameters specify the displacement from the previous
vertex to the current one. You can therefore create exactly the same GPolygon by
making the following sequence of calls:

diamond = GPolygon()
diamond.add_vertex(-DIAMOND_WIDTH / 2, 0)
diamond.add_edge(DIAMOND_WIDTH / 2, DIAMOND_HEIGHT / 2)
diamond.add_edge(DIAMOND_WIDTH / 2, -DIAMOND_HEIGHT / 2)
diamond.add_edge(-DIAMOND_WIDTH / 2, -DIAMOND_HEIGHT / 2)
diamond.add_edge(-DIAMOND_WIDTH / 2, DIAMOND_HEIGHT / 2)

200 Writing Interactive Programs

Note that the first vertex must still be added using add_vertex, but that subsequent
ones can be defined by specifying the edge displacements.

Once you have defined the diamond shape by either of these methods, you can add
the diamond at the center of the window using the following statement:

gw.add(diamond, gw.get_width() / 2, gw.get_height() / 2)

The graphics window then looks like this:

For many polygonal figures, it is easier to specify the edges using the method
add_polar_edge. This method is identical to add_edge except that its arguments are
the length of the edge and its direction, expressed in degrees counterclockwise from
the +x axis.

The add_polar_edge method makes it easy to create figures in which you know
the angles of the edges but would need trigonometry to calculate the vertices. The
following function, for example, uses add_polar_edge to create a regular hexagon
in which the length of each edge is determined by the parameter side:

def create_hexagon(side):
 hex = GPolygon()
 hex.add_vertex(-side, 0)
 angle = 60
 for i in range(6):
 hex.add_polar_edge(side, angle)
 angle -= 60
 return hex

As always, the first vertex is added using add_vertex. Here, the initial vertex is the
one at the left edge of the hexagon. The first edge then extends from that point at an
angle of 60 degrees. Each subsequent edge has the same length, but sets off at an
angle 60 degrees to the right of the preceding one. When all six edges have been
added, the final edge ends up at the original vertex, thereby closing the polygon.

 6.6 Expanding the graphics library 201

Once you have defined this method, executing the statement

gw.add(create_hexagon(50), gw.get_width() / 2,
 gw.get_height() / 2)

produces the following display:

Figure 6-11 lists the methods that apply to the GPolygon class. As with the other
bounded figures, GPolygon implements set_filled and set_fill_color.

As another example of using the GPolygon class, the create_star function in
Figure 6-12 at the top of the next page creates a GPolygon whose edges form a
five-pointed star, as follows:

Although the star is more complicated mathematically than the earlier examples,
the most difficult part is determining the coordinates of the starting point at the left
edge of the star. Calculating the x coordinate is easy because the starting point is
simply half the width of the star to the left of its center. Calculating the distance in
the y direction requires a bit of trigonometry, which can be illustrated as follows:

202 Writing Interactive Programs

Each of the points around the periphery of a five-pointed star forms an angle that is a
tenth of a complete circle, which is 36 degrees. If you draw a line that bisects that
angle—leaving 18 degrees on either side—that line will hit the geometric center of
the star, forming the right triangle shown in the diagram. The value of dy is therefore
equal to dx multiplied by the tangent of 18 degrees, as shown in the code.

The other tricky calculation is that of the edge length, which is illustrated in the
following diagram:

To determine the value of edge, you need to subtract the dotted portion of the
horizontal line from its entire length, which is given by dx. The length of the dotted
portion is easily computed using trigonometry as dy multiplied by the tangent of 36

 6.6 Expanding the graphics library 203

degrees. Once you have computed these values, the rest of the create_star function
follows much the same pattern as the code for create_hexagon.

The GCompound class
The GCompound class makes it easy to assemble a collection of graphical objects into
a single unit. As with GPolygon, calling GCompound creates an empty structure that
you then have to fill by calling add, just as if you were adding those objects to the
graphics window. Once you have assembled the objects, you can add the whole
GCompound to the window, at which point it functions as a single object.

As a simple example, the function create_crossed_box shown in Figure 6-13
creates a GCompound consisting of a rectangle and the two diagonal lines that cross it.
For example, the declaration

box = create_crossed_box(BOX_WIDTH, BOX_HEIGHT)

sets the variable box so that it holds a new GCompound object that looks like this:

Like the GPolygon class, the GCompound class defines its own coordinate system
in which all coordinate values are expressed relative to a reference point. This design
has two advantages. First, separating the process of defining the shape and setting its
coordinates means that you can define a GCompound without having to know exactly
where it will appear. That property is particularly useful if the location of an object
in the graphics window depends on its size. Second, there are often more appropriate
choices to use as a reference point than the conventional upper left corner. The

204 Writing Interactive Programs

create_crossed_box function, for example, returns a GCompound in which the
reference point is at the center, which is often a more convenient choice. You can
then place the crossed box at the center of the window using the following code:

cx = gw.get_width() / 2
cy = gw.get_height() / 2
gw.add(box, cx, cy)

Executing these statements creates the following image on the graphics window:

 Summary
In this chapter, you learned how to create interactive programs. The important points
introduced in this chapter include:

• The Portable Graphics Library uses an event-driven model in which the user’s

actions generate events that occur asynchronously with respect to the operation of
the program. Each event triggers a function call that responds to that event.

• Functions in Python are first-class values in the sense that they can be used in all
the ways that any other value can. Functions can be assigned to variables, passed
as parameters to other functions, and returned as a function result.

• The graphics library exports a large collection of methods that apply to every
graphical object. A list of these methods appears in Figure 6-2 on page 184.

• Programs indicate their interest in responding to mouse events by calling the
add_event_listener method on the graphics window.

• Mouse events are associated with an event type indicated by a string. The names
of the different event types appear in Figure 6-3 on page 185.

• Each call to add_event_listener specifies the function that should respond to
that type of event. These functions are generically known as callback functions.

• Callback functions used to respond to mouse events take a single parameter that
includes information about the event. The only mouse-event properties used in
this text are the methods get_x and get_y, which return the position in the window
at which the mouse event occurred.

 Summary 205

• Callback functions are conventionally declared within the body of an enclosing
function so that the callback function has access to the local variables of the
function in which the callback function is declared.

• A callback function can examine local variables in the enclosing context without
taking any special action. If a callback function wants to change the value of a
variable in the enclosing context, it cannot do so using an assignment statement,
because Python would interpret the assignment as an implicit declaration of a new
local variable. This text avoids that problem by embedding any shared variables
that need to change inside the GWindow object.

• The GWindow class includes a method get_element_at(x, y) that returns the
graphical object at that location in the window. If there is no object at that
location, get_element_at returns the special value None.

• The usual strategy for implementing animation in the Portable Graphics Library
is to use a timer, which executes a callback function after a specified delay. If the
delay is 20 milliseconds or less, motion on the screen appears continuous.

• The GWindow class in the Portable Graphics Library exports two methods that
support animation. The set_timeout method creates a one-shot timer that
invokes a callback function after a specified delay. The set_interval method
creates an interval timer that invokes the callback function repeatedly every time
the delay time expires.

• The set_timeout and set_interval methods return a timer object, which is
typically stored in a variable called timer. Invoking the stop method on the timer
object turns off the timer and terminates the animation process.

• The GArc class makes it possible to display elliptical arcs defined by a bounding
rectangle and two angles: a start angle that indicates where the arc starts and a
sweep angle that indicates how far the arc extends. Filled arcs appear as wedges
in which the endpoints of the arc are connected to the center.

• The GPolygon class makes it possible to display an arbitrary polygon. The
GPolygon function itself creates an empty polygon; you create the actual polygon
by calling some combination of the methods add_vertex, add_edge, and
add_polar_edge.

• The GCompound class represents a graphical object that contains other graphical
objects. Creating a GCompound allows the collection to be treated as a unit.

• Both the GPolygon and GCompound classes use an internal coordinate system
relative to the object itself. This strategy makes it possible to create the object
without knowing where it will appear in the window.

206 Writing Interactive Programs

 Review questions
1. In the context of the Portable Graphics Library, what is an event?

2. Are events in the Portable Graphics Library synchronous or asynchronous?

3. What reasons are offered in this chapter for the close association of graphical

user interfaces and object-oriented programming?

4. Why are functions in Python said to be first-class functions?

5. True or false: In Python, you can pass a function as a parameter to some other

function.

6. What are the two parameters to the add_event_listener method?

7. What event type do you use to respond to a mouse click?

8. What are the two methods used in this chapter to get more specific information

about a mouse event?

9. What is a callback function?

10. How does a callback function usually share information with the function that

defines it?

11. How does Python’s reliance on implicit declarations complicate the definition of

callback functions?

12. What strategy does this chapter recommend for ensuring that callback functions

can change data values shared with other functions?

13. What is meant by the term rubber-banding?

14. What value does the get_element_at method return if no object exists at the

specified location?

15. How does the get_element_at method decide which object to return if more

than one object covers the specified location?

16. Describe in your own words the strategy for implementing animation in the

Portable Graphics Library.

17. What is the difference between a one-shot timer and an interval timer? How do

you specify which type you are creating?

18. How do you stop a timer?

 Exercises 207

19. Describe the significance of the start and sweep parameters in the call to the GArc
function.

20. What does it mean if the sweep argument to the GArc function is negative?

21. Describe the arcs produced by each of the following calls to GArc, where cx and
cy are the coordinates of the center of the window and r has the value 100:

a) GArc(cx, cy, 2 * r, 2 * r, 0, 270)
b) GArc(cx, cy, 2 * r, 2 * r, 135, -90)
c) GArc(cx, cy, 2 * r, 2 * r, 180, -45)
d) GArc(cx, cy, 3 * r, r, -90, 180)

22. How does the GArc class interpret the notion of a filled arc?

23. Describe the differences between the methods add_vertex, add_edge, and
add_polar_edge in the GPolygon class.

24. Which of the three methods listed in the preceding question is conventionally
used to add the first vertex to a GPolygon?

25. In your own words, describe the purpose of the GCompound class.

26. What advantages does the text cite for having the GPolygon and GCompound
classes define their own reference point?

 Exercises
1. Drawing on the print_function_table function for inspiration, implement a

function

def plot(gw, fn, x_min, x_max, y_min, y_max)

that plots the function fn on the graphics window by creating small GLine
segments and adding them to the graphics window. The parameters x_min,
x_max, y_min, and y_max specify a translation between data values and window
coordinates. The left edge of the window, for example, should correspond to the
value x_min in the domain of the function.

For example, calling

plot(gw, math.sin, -2 * math.pi, 2 * math.pi, -1, 1)

should generate a plot of the trigonometric sine function for values of x ranging
from -2π to +2π and displayed so that the vertical space in the window runs from
-1 at the bottom to +1 at the top (note that this interpretation requires you to flip
Python’s coordinate system so that it matches the traditional Cartesian model in

208 Writing Interactive Programs

which y values increase as you move upward). After you make this call, the
graphics window should look like this:

Similarly, calling

plot(gw, math.sqrt, 0, 4, 0, 2)

should plot the math.sqrt function on a graph that extends from 0 to 4 along
the x-axis and from 0 to 2 along the y-axis, like this:

2. Modify the DrawDots.py program so that clicking the mouse draws a small ´

every time you click the mouse. The ´, which consists of two GLine objects,
should be positioned so that the intersection appears at the point where the mouse
was clicked.

3. In addition to line drawings of the sort generated by the DrawLines.py program,

interactive drawing programs allow you to add other shapes to the canvas. In a
typical drawing application, you create a rectangle by pressing the mouse at one
corner and then dragging it to the opposite corner. For example, if you press the
mouse at the location in the left diagram and then drag it to the position where
you see the cursor in the right diagram, the program creates the rectangle shown:

 Exercises 209

The rectangle grows as you drag the mouse. When you release the mouse button,
the rectangle is complete and stays where it is. You can then go back and add
more rectangles in the same way.

4. Use the GOval, GLine, and GRect classes to create a cartoon drawing of a face

that looks like this:

Once you have this picture, add a callback function for the "mousemove" event
so that the pupils in the eyes follow the cursor position. For example, if you
move the cursor to the lower right side of the screen, the pupils should shift so
that they appear to be looking at that point, as follows:

Although it doesn’t matter much when the cursor is outside the face, it is
important to compute the position of the pupil independently for each eye. If you
move the mouse between the eyes, for example, the pupils should point in
opposite directions so that the face appears cross-eyed.

210 Writing Interactive Programs

5. Write a program that draws a filled black square in the center of the canvas. Once
you have that part of the program working, animate your program so that the
color of the square changes once a second to a new, randomly chosen color. Your
program should run for a minute and then stop.

6. Using the AnimatedSquare.py program as a model, write a program

BouncingBall.py that bounces a ball inside the boundaries of the graphics
window. Your program should begin by placing a GOval in the center of the
window to represent the ball. On each time step, your program should shift the
position of the ball by dx and dy pixels, where both dx and dy initially have the
value 1. Whenever the leading edge of the ball touches one of the boundaries of
the window, your program should make the ball bounce by negating the value of
dx or dy, as appropriate. Don’t worry about getting your program to stop; just
let it run until the user decides to terminate the program.

Keep in mind that the values of dx and dy must be reassigned whenever a
bounce occurs, which your program must detect inside the step function that
runs each time the interval timer ticks. These variables must therefore be defined
as components of the GWindow variable.

7. Rewrite the BouncingBall.py program from exercise 6 so that clicking the

mouse starts and stops the motion of the ball. Although it is possible to
implement this behavior by starting and stopping the timer, it is simpler to keep
the timer running and use a Boolean flag variable called ball_is_moving to
indicate whether the step function should update the position of the ball. Using
this design, all you have to do in the click_action function is reverse the sense
of this flag, changing False to True and vice versa.

8. Rewrite the BouncingBall.py program from exercise 7 so that the ball is

implemented as a GCompound containing a GOval shifted by the radius of the ball
in both the x and y directions. The advantage of making this change is that the
coordinates of the GCompound now refer to the center of the ball, which makes
the code to see whether the ball is bouncing more symmetrical and therefore
easier to understand.

9. Write a program that draws a picture of a pumpkin pie divided into equal wedge-

shaped pieces where the number of pieces is indicated by the constant N_PIECES.
Each wedge should be a separate GArc, filled in orange and outlined in black.
The following screen image, for example, shows the diagram when N_PIECES is
6.

 Exercises 211

Once you have this display, add event processing to your application so that
clicking on any of the wedges removes that wedge from the display. For
example, if you click on the wedge in the upper right, the screen image should
look like this:

10. The title character in the PacMan series of games is easy to draw in Python using

a filled GArc. As a first step, write a program that adds a PacMan figure at the
left edge of the window, as follows:

Once you have this part working, add the code to make the PacMan figure move
rightward until it reaches the right edge of the graphics window. As PacMan
moves, your program should change the start and sweep angles so that the mouth
appears to open and close as shown in the following image sequence:

212 Writing Interactive Programs

11. The PacMan shape appears in an optical illusion called a subjective contour,

popularized in an article by the Italian psychologist Gaetano Kanizsa in the April
1976 issue of Scientific American, which includes this image:

Although the simplest way to produce this picture is to draw a white rectangle
on top of four complete circles, a skeptic might claim that the color of the
rectangle is brighter than its background. Make it impossible to defend this claim
by drawing this figure using only the four filled arcs.

12. Another illusion that uses filled arcs is the Wundt illusion, first described by

Wilhelm Max Wundt in 1898.

In this illusion, the lower curve looks longer than the upper curve, although the
two are in fact the same size. Write a program that draws these segments using
the graphics library. To do so, you need to draw a filled arc, overlay it with a
smaller arc filled in white, and then complete the border with an unfilled arc.

 Exercises 213

13. Write a program that draws the following optical illusion on the graphics
window:

The illusion arises from the fact that it is possible to see the white surfaces as
either the tops or the bottoms of cubes stacked to form a pyramid.

Each of the individual cubes is composed of three diamond-shaped polygons
whose sides have different fill colors, as follows:

In writing this exercise, you should create a function that returns one of these
cubes as a GCompound and then assemble the pyramid from those compounds.

14. In J. K. Rowling’s Harry Potter and the Deathly Hallows, those who believe in

the legend named in the title recognize one another through a symbol that
combines three elements—a triangle representing the cloak of invisibility, a
circle representing the stone of resurrection, and a line representing the elder
wand—superimposed as follows:

Write a function create_deathly_hallows_symbol that takes the width and
height of the figure and returns a GCompound that includes all three of these
elements. The triangle should be a GPolygon, the circle should be a GOval, and
the line should be a GLine. The geometry is straightforward for both the line and

214 Writing Interactive Programs

the triangle, but rather complicated for the circle, which must exactly touch the
edges of the triangle. Although you could figure out the necessary relationships
by using the Pythagorean theorem, you can instead simply use the following
formula for the radius r as a function of the width w and the height h:

Use the create_deathly_hallows_symbol function to write a program that
displays the symbol in the center of the window. Once you’ve done that, add the
code needed to let the user drag the symbol around the window.

15. In New York’s Times Square, you can get the news of the day by watching

headlines on large display screens that show a single line of text. The headline
initially begins to appear at the right edge of the screen and then moves quickly
from right to left. Your job in this exercise is to write a program that simulates
this type of headline display by moving a GLabel across the screen.

Suppose, for example, that you want to use your program to display the
famous Chicago Tribune headline from when the paper incorrectly called the
result of the 1948 presidential election:

DEWEY DEFEATS TRUMAN

Your program should create a GLabel containing the headline and then position
it so that the entire text of the label is clipped beyond the right edge of the screen.
Your program should then implement a timer-based graphical animation that
moves the GLabel a few pixels to the left on each time step. After a few time
steps, the display will show the first letter of the headline, as follows:

The headline continues to scroll across the screen, so that a few seconds later the
entire first word is visible:

 Exercises 215

As the label continues to scroll, letters will disappear off the left edge of the
screen as new letters appear on the right. Your program should continue to scroll
letters toward the left until the entire GLabel disappears from view.

16. Write a program to play the classic arcade game of Breakout, which was

developed in 1976 by Steve Wozniak, who would later become one of the
founders of Apple. In Breakout, your goal is to clear a collection of bricks by
hitting each of them with a bouncing ball.

The initial configuration of the Breakout game appears in the leftmost
diagram in Figure 5-14. The colored rectangles in the top part of the screen are
bricks, two rows each of red, orange, yellow, green, and blue. The slightly larger
rectangle at the bottom is the paddle. The paddle is in a fixed position in the
vertical dimension, but moves back and forth across the screen along with the
mouse until it reaches the edge of its space.

A complete Breakout game consists of three turns. On each turn, a ball is
launched from the center of the window toward the bottom of the screen at a
random angle. That ball bounces off the paddle and the walls of the world. Thus,
after two bounces—one off the paddle and one off the right wall—the ball might
have the trajectory shown in the middle diagram.

216 Writing Interactive Programs

As you can see from the middle diagram, the ball is about to collide with one
of the bricks on the bottom row. When that happens, the ball bounces just as it
does on any other collision, but the brick disappears.

The play continues in this way until one of the following conditions occurs:

• The ball hits the lower wall, which means that you must have missed it with
the paddle. In this case, the turn ends and the next ball is served. After three
turns, the game is over, and the player loses.

• The last brick is eliminated, in which case the player wins.

After all the bricks in a particular column have been cleared, a path will open
to the top wall, as shown in the rightmost diagram in Figure 6-14. When this
delightful situation occurs, the ball will often bounce back and forth several times
between the top wall and the upper line of bricks without the user ever having to
worry about hitting the ball with the paddle. This condition is called “breaking
out.” It is important to note that, even though breaking out is a very exciting part
of the player’s experience, you don’t have to do anything special in your program
to make it happen. The game operates the same as always: balls bounce off walls,
collide with bricks, and obey the laws of physics.

C H A P T E R 7
Strings

The work [of conducting the census should] be done so far
as possible by mechanical means. In order to accomplish
this the records must be put in such shape that a machine
could read them. This is most readily done by punching
holes in cards.

— Herman Hollerith, An Electric Tabulating
System, 1889

Herman Hollerith (1860–1929)

The idea of encoding text in machine-readable form dates back to the nineteenth century and the work of the
American inventor Herman Hollerith. After studying engineering at City College of New York and the
Columbia School of Mines, Hollerith spent a couple of years working as a statistician for the U.S. Census
Bureau before accepting a teaching position at MIT. While at the Census Bureau, Hollerith had become
convinced that the data produced by the census could be counted more quickly and accurately by machine.
In the late 1880s, he designed and built a tabulating machine that was used to conduct the 1890 census in
record time. The company he founded to commercialize his invention, originally called the Tabulating
Machine Company, changed its name in 1924 to International Business Machines (IBM). Hollerith’s
card-based tabulating system pioneered the technique of textual encoding described in this chapter—a
contribution that was reflected in the fact that early versions of the FORTRAN language used the letter H (for
Hollerith) to indicate text data.

218 Strings

Although you have been using strings ever since Chapter 1, you have only scratched
the surface of what you can do with string data. This chapter introduces the features
available in Python’s built-in string type, which provides a convenient abstraction for
working with strings of characters. Understanding how to work with strings will
make it much easier to write interesting applications. Before considering the details
of how strings work, however, it helps to take a step back and look at how computers
store data in the first place.

 7.1 Binary representation
Today’s computers represent information in a simple but powerful form that allows
information—no matter how complex—to be stored as a sequence of primitive values
that can exist in only one of two possible states. Each of those primitive values is
called a bit.

The interpretation of the values for each bit depends on how you choose to view
the underlying information. If you think of the bits that form the internal circuitry of
the machine as tiny light switches, you might label those states as off and on. If you
think of each bit as a logical value, you might instead use the Boolean labels false and
true. However, because the word bit comes from a contraction of the term binary
digit, it is more common to label those states as 0 and 1, which are the digits of the
binary number system on which computer arithmetic is based.

Binary notation
The idea of writing numbers in binary notation predates the development of the
electronic computer by thousands of years. The Chinese I Ching from ... uses binary
notation to number the 32 different symbols. The German mathematician Gottfried
Wilhelm von Leibniz (1646–1716) offered a detailed account of the binary system in
a paper published by the French Royal Academy of Science in 1703. In that paper
(which cites the I Ching as an earlier source), Leibniz writes:

Ordinary arithmetic calculation is performed following a progression by
tens. One uses the ten characters 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, which signify
zero, one, and the following numbers up to nine, inclusive. On going up
to ten, one starts again, and writes ten as 10; ten times ten, or one hundred,
as 100; ten times one hundred, or one thousand, as 1000; and ten times a
thousand as 10000. And so on.

But instead of the progression by tens, I have used for several years the
simplest progression of all, which goes by twos, which I find to be the
perfection of the science of numbers. I therefore do not use any characters
other than 0 and 1, and on going up to two, I start again. That is why two
is written here as 10; and two times two or four as 100; and two times four
or eight as 1000 . . .

Leibniz

 7.1 Binary representation 219

Leibniz’s second paragraph describes the binary system as “the simplest
progression of all.” Each digit in a binary number counts for twice as much as its
neighbor on the right. That rule makes it easy to translate a number written in binary
back to its decimal equivalent: all you need to do is add the place values of each digit
in the number. For example, if Leibniz were to use binary notation to represent the
year of his birth, he would write the number like this:

The following diagram shows that this value indeed corresponds to the value 1646:

For the most part, numeric representations in this book use decimal notation for
readability. If the base is not clear from the context, the text follows the usual
convention of using a subscript to denote the base. For example, the equivalence of
the binary value 11001101110 and the decimal value 1646 can be made explicit by
writing the numbers like this:

110011011102 = 164610

Storing integers as sequences of bits
The binary representation described by Leibniz makes it easy to store integers as a
sequence of individual bits. In modern computer hardware, individual bits are
collected together into larger units that are then treated as integral units of storage.
The smallest such combined unit is called a byte, which consists of eight bits. Bytes
are then assembled into larger structures called words, where a word is usually
defined to be the size required to hold an integer value of the type most appropriate
for the hardware. Today, machines typically organize their memory into words that
are either four or eight bytes long (32 or 64 bits).

To get a sense of how computers can store integers internally, consider the byte
containing the following binary digits:

220 Strings

That sequence of bits represents the number forty-two, which you can verify—just as
Leibniz would have done—by calculating the contribution for each of the individual
bits, as follows:

Bytes can store integers between 0 and 255, which is 28 - 1. Numbers outside this
range must be stored in larger units that use more bits of memory.

Hexadecimal notation
Although the bit diagrams make it clear how computers store integer values
internally, these diagrams also demonstrate the fact that writing numbers in binary
form is terribly inconvenient. Binary numbers are cumbersome, mostly because they
tend to be so long. Decimal representations are intuitive and familiar but make it
harder to understand how the number translates into bits.

For applications in which it is useful to understand how a number translates into
its binary representation without having to work with binary numbers that stretch all
the way across the page, computer scientists use hexadecimal (base 16) notation
instead. In hexadecimal notation, there are sixteen digits that represent the values
from 0 to 15. Although the decimal digits 0 through 9 are perfectly adequate for the
first ten digits, classical arithmetic does not define the extra symbols you need to
represent the remaining six. Computer science traditionally uses the letters A through
F for this purpose, as follows:

A = 10
B = 11
C = 12
D = 13
E = 14
F = 15

What makes hexadecimal notation useful is the fact that you can easily convert

between hexadecimal values and the underlying binary representation. All you need
to do is combine the bits into groups of four. For example, the number forty-two can
be converted from binary to hexadecimal like this:

 7.1 Binary representation 221

The first four bits represent the number 2, and the next four represent the number 10.
Converting each of these to the corresponding hexadecimal digit gives 2A as the
hexadecimal form. You can then verify that this number still has the value 42 by
adding up the digit values, as follows:

As noted earlier, the text follows the convention of using a subscript to denote the
base if it is not clear from context. Thus, the number forty-two can be written down
like this in decimal, binary, octal, and hexadecimal:

4210 = 001010102 = 528 = 2A16

Python allows you to write integer constants in any of these bases. Decimal numbers
require no special marker, but you can specify a number in binary, octal, or
hexadecimal by adding the prefix 0b, 0o, or 0x at the beginning of a string of digits.
Thus, you can represent the integer forty-two in Python in any of these ways:

42 0b00101010 0o52 0x2A

The most important thing to remember is that the number itself is always the same;
the numeric base affects only the representation. Forty-two has an intrinsic meaning
that is independent of the base, which is perhaps easiest to see in the representation
an elementary school student might use:

The number of tick marks in this representation is forty-two. The fact that a number
is written in binary, decimal, or any other base is a property of the representation, not
of the number itself. Numbers do not have bases; representations do.

Representing nonnumeric data
Although the discussion so far has focused on how computers store numbers, this
chapter is about strings, which are an important example of nonnumeric data. The
challenge in having computers represent nonnumeric data lies in finding a way to
store that information inside the computer.

222 Strings

The simplest strategy for representing nonnumeric data is to assign numbers to the
individual data values you need to represent. For example, the conventional way to
represent the months of the year—even without a computer—is to give each month a
number: January has the value 1, February has the value 2, and so on, up to December,
which has the value 12. This strategy is called enumeration.

Once you have enumerated a set of values, you can represent those values in
memory by using the appropriate numeric code. For example, the numeric value 12
corresponds to the month of December. Internally, that value is stored as an integer
expressed—as you saw in the preceding sections—as a sequence of binary digits.
There is no indication in the hardware as to whether that value represents the integer
12 or the numeric representation for the month of December. The meaning of a
particular value depends on how it is used. If the program uses the value
arithmetically, it is interpreted as the integer 12. If it instead uses that value to select
from a list of month names, that value indicates December. In either case, the number
stored inside the computer is exactly the same.

The strategy of using numbers to represent nonnumeric data is one of the most
important ideas in the history of computation. One of the clearest and earliest
expositions of that idea comes from Ada Lovelace, daughter of the poet Lord Byron
and his wife Anna Isabella Byron. In the 1840s, Lady Lovelace collaborated with the
English mathematician and inventor Charles Babbage on the design of his Analytical
Engine, a calculating machine that anticipated several essential features of modern
computers, including the ability to solve different tasks by changing its programming.
Indeed, much of what we know about the Analytical Engine—which sadly was never
completed—comes from Lovelace’s translation of a detailed description of
Babbage’s work by the Italian engineer Luigi Menabrea. Her translation, entitled
Sketch of the Analytical Engine Invented by Charles Babbage, Esq., was published in
1843, along with her explanatory notes that were almost three times as long as the
original paper. Lovelace recognized that the algebraic patterns for which the
Analytical Engine was designed could be extended to include concepts beyond simple
numbers. Her notes envision a world of possibilities for the Analytical Engine that
someday “might compose elaborate and scientific pieces of music of any degree of
complexity or extent.”

In an interview for a film about Ada Lovelace’s life and work, Doron Swade, who
led the effort to rebuild Babbage’s earlier Difference Engine for the Science Museum
in London, offers the following description of Ada’s contribution:

Ada saw something that, in some sense, Babbage failed to see. In Babbage’s
world, his engines were bound by number. . . . What Lovelace saw—what Ada
Byron saw—was that number could represent entities other than quantity. So,
once you had a machine for manipulating numbers, if those numbers
represented other things—letters, musical notes—then the machine could
manipulate symbols of which number was one instance.”

Ada Lovelace

Charles Babbage

 7.1 Binary representation 223

Representing characters
The primitive elements of string data are individual characters. Like the months of
the year, characters can be represented inside the computer by assigning each
character a numeric code. You could, for example, assign successive integers to
represent each of the letters in the alphabet, using 0 for the letter A, 1 for letter B, and
so on. In 1605, the English philosopher and scientist Francis Bacon did precisely that
when he devised a technique for encoding messages that is now known as Bacon’s
cipher. What is, however, even more astonishing is that Bacon based his cipher on
the binary representation of these numbers, almost a century before Leibniz published
his paper on binary arithmetic. Bacon’s cipher, however, was not used in practice
and had little or no influence on the later development of computation.

The first binary encoding scheme for characters used extensively in practice was
the Baudot code, which was invented in 1870 by the French engineer Émile Baudot,
one of the pioneers of the telegraph. In Baudot’s scheme, each of the 26 letters was
assigned a numeric code. The encoding also included a few special characters to
represent the space character, the two characters that telegraph printers used to
designate the end of a line, and transitions to an alternate character set used for digits
and punctuation. The letters of the alphabet did not appear in order, but were instead
chosen so that the most common letters, such as E and T, would require pressing just
one of the five keys on the input device that Baudot designed.

The fact that the letters do not appear consecutively in the Baudot code does not
make the encoding scheme any less effective. The only essential characteristic of an
encoding system is that the sender and receiver agree on how to convert letters to
numeric codes. The need for a common encoding shared by senders and receivers
increases the importance of standardization. As long as all telegraph operators used
the same code, they were able to communicate with one another.

In the early years of the computing industry, standardization was complicated by
the existence of incompatible character encodings. The American Standards
Association (now known as the American National Standards Institute or ANSI)
began work on a standardized character encoding in 1960, which was formalized in
1963 as the American Standard Code for Information Interchange or ASCII. Early
IBM machines used a different character set derived from the coding system used for
punched cards. That early character set evolved into a competing standard called the
Extended Binary Coded Decimal Interchange Code or EBCDIC. Over time, ASCII
and its successors have become the dominant standard in the industry.

In its original design, ASCII contained 128 characters, which is enough to store
the uppercase and lowercase letters of the Latin alphabet, the standard decimal digits,
a variety of punctuation symbols, and a set of nonprinting characters called control
characters. The characters in the original ASCII set appear in Figure 7-1. The gray

Francis Bacon

Émile Baudot

224 Strings

boxes in the table correspond to control characters that have lost their significance
over time. The few remaining control characters recognized by Python are indicated
using a backslash (\) followed by a letter that suggests that character’s function. For
example, the character \n represents the newline character, which marks the end of
a line. None of the other control characters are used in this book.

The characters in Figure 7-1 are arranged according to their internal values, which
are expressed in hexadecimal. The character A, for example, appears in the row
labeled 4x and the column labeled 1, so its internal representation is 4116, which is
the decimal number 65. There is no need to learn these values, although certain
patterns are important. This text, for example, relies on the following properties:

• The digit characters are consecutive.

• The uppercase and lowercase letters form two consecutive sequences.

The ASCII coding system quickly proved to be inadequate as computing expanded
into the global environment. With the advent of the World Wide Web in the 1990s,
it became necessary to expand the encoding system to embrace a broader collection
of languages. The result of that expansion was a new standard called Unicode, which
supports a much larger set of characters. The version of Unicode implemented in
Python allows for 1,114,111 (11000016) characters.

Converting between numeric codes and characters
Python makes it easy to convert back and forth between characters and their
underlying numeric representation in Unicode. The built-in function chr takes an
integer value and returns a one-character string that contains the character with that
code. For example, you can see from Figure 7-1 that calling chr(0x41)—or,
equivalently, chr(65)—returns the string "A". The built-in function ord applies the

 7.2 String functions and operators 225

same conversion in the opposite direction. It takes a one-character string and returns
the corresponding Unicode value. Thus, calling ord("A") returns the integer 65.

As a modern-day programmer, you should never have to know any of the Unicode
values and should certainly not write programs that use numeric values to represent
characters. At the same time, it is important to know that characters have a numeric
representation and that you can use the ord function to obtain it. Later examples in
this chapter, for example, will need to use the character code for "A". Those programs
will not, however, use the explicit value 65, which would make the code difficult to
read. Those programs will instead use ord("A") to indicate this value.

 7.2 String functions and operators
From the brief discussion of strings in Chapter 1, you already know that Python uses
the + operator to signify concatenation, which consists of joining the strings together
end to end. You also know that you can determine the length of a string by calling
the built-in function len. For example, if ALPHABET is defined as

ALPHABET = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

calling len(ALPHABET) returns the value 26. Similarly, if you define a variable
empty using the declaration

empty = ""

the expression len(empty) has the value 0. The string containing no characters at
all, which comes up frequently in programming, is called the empty string.

In addition to the these operations, you have also used the relational operators (==,
!=, <, <=, >, and >=) to compare string values. For example, the programs in Chapter
7 that used a blank line to signal the end of the input used the == operator to test
whether the variable line was equal to the empty string. The relational operators
compare strings using lexicographic order, which is similar to traditional
alphabetical order but which uses the underlying Unicode values of each character to
make the comparison. Lexicographic order means that case is significant, so "a" is
not equal to "A". In lexicographic order, "a" is greater than "A" because the Unicode
value for a lowercase a (6116 or 97) is greater than the Unicode value for an uppercase
A (4116 or 65).

Beyond these operations you have already seen, Python defines several other tools
for working with strings. The sections that follow describe the built-in operators and
functions organized into logically related groups. The methods that apply to string
objects are introduced in section 7.4.

226 Strings

Repeating a string
In Python, you can use the * operator to specify a string composed by concatenating
multiple copies of a shorter string. For example, the expression

"ab" * 3

returns the six-character string "ababab". Python’s use of the * operator seems
appropriate, not only because it suggests multiplicity but also because it corresponds
to the mathematical definition of multiplication as repeated addition, as follows:

"ab" * 3 is the same as "ab" + "ab" + "ab"

As it does in arithmetic expressions, the * operator takes precedence over the +
operator, so that the expression

"Rose" + " is a rose" * 3 + "."

performs the * operator first and therefore returns the string

"Rose is a rose is a rose is a rose."

This sentence appears in Gertrude Stein’s poem “Sacred Emily” from 1913.

Selecting an individual character
You can select an individual character from a Python string by enclosing its index in
square brackets. Character positions in a string are numbered starting from 0. For
example, the characters in the constant ALPHABET defined on the previous page are
numbered as in the following diagram:

The expression ALPHABET[10], for example, is the one-character string "K".

It is often useful, however, to specify a character by indicating how far that
character is from the end of the string. Python allows a string index to be negative, in
which case the position is determined by counting backwards from the end. The
characters in ALPHABET can therefore also be numbered like this:

Using this numbering scheme, the expression ALPHABET[-3] selects the third
character from the end, or "X".

 7.2 String functions and operators 227

Negative index numbers are never necessary but in some cases turn out to be
convenient. In particular, it is more concise to select the last character in the string s
by writing s[-1] than the longer and less evocative s[len(s) - 1].

Slicing
While concatenation makes longer strings from shorter pieces, you often need to do
the reverse: separate a string into the shorter pieces it contains. A string that is part
of a longer string is called a substring. Python makes it easy and convenient to extract
substrings by extending the square-bracket notation for character selection so that you
can specify not only a single index position but also a range of index positions
marking the boundaries of a substring. In Python, using square brackets to select a
range of characters is called slicing.

In its simplest form, a slice in Python is written using two indices separated by a
colon inside the square brackets, like this:

str[start:limit]

As with the range function defined in Chapter 2, the index expressions inside the
square brackets specify a half-open interval in the sense that the index range includes
start but stops just before limit. Thus, the expression

ALPHABET[1:4]

returns the three-character substring "BCD", which starts at index position 1 and ends
just before index position 4. Similarly, the expression

ALPHABET[1:-1]

returns the 24-character substring "BCDEFGHIJKLMNOPQRSTUVWXY", which stops just
short of the index position indicated by –1, which uses negative indexing to specify
the last character in the string.

Python allows you to leave out the index expressions on either side of the colon.
If the first index is missing, it is assumed to be the beginning of the string, so that

ALPHABET[:5]

selects the substring "ABCDE" consisting of the first five characters in ALPHABET. If
the second expression is missing, it is taken to be the length of the string. Thus,

ALPHABET[13:]

selects the substring "NOPQRSTUVWXYZ", which contains the characters from index
position 13 up to the end of the string.

228 Strings

The square-bracket syntax also accepts an optional third component, as follows:

str[start:limit:stride]

When the stride component appears, it indicates the distance between characters
chosen for inclusion in the substring. For example, the expression

ALPHABET[9:20:5]

selects characters from ALPHABET starting at position 9, ending before position 20,
and moving ahead five characters on each stride. This expression therefore selects
the characters in index positions 9, 14, and 19 to produce the string "JOT". The
expression

ALPHABET[::2]

uses the default values for start and limit but uses a stride of 2 to select every other
character from ALPHABET, which produces the string "ACEGIKMOQSUWY".

As with the built-in range function, the stride component can be negative, in
which case the characters are selected by counting backwards through the string.
When the stride value is negative, the start component defaults to the last character
in the string, and the limit component defaults to the beginning of the string. For
example, the expression

ALPHABET[::-1]

returns the characters in ALPHABET, chosen from back to front to produce the
26-character string "ZYXWVUTSRQPONMLKJIHGFEDCBA".

Programmers entranced by Python’s particularly succinct style of expression are
often tempted to use this form of slicing to reverse a string. Doing so, however, makes
the resulting program difficult to follow for programmers unfamiliar with this
Python-specific idiom. One way to restore the desired readability is to embed this
operation in a function whose name makes the effect of the operation clear, like this:

def reverse_string(s):
 return s[::-1]

Although some readers may be mystified as to how this implementation achieves the
desired effect, those readers can use the name of the function to understand the
program on a more holistic level.

 7.3 Common string patterns 229

 7.3 Common string patterns
Although section 7.2 gives you a sense of what string operators Python offers, the
discussion gives you little guidance as to how you can use these operators most
effectively. When you are learning to program, it is often easier to ignore as many
details as possible and instead write your programs by relying on code patterns that
implement common operations. The two most important string patterns are iterating
through the characters in a string and growing a string by concatenation. The sections
that follow describe these patterns.

Iterating through the characters in a string
When you work with strings, one of the most important patterns involves iterating
through the characters in a string. In its simplest form, which you have already seen
in Chapter 1, iterating through the characters in a string requires the following code:

for ch in s:
 . . . body of loop that uses the character ch . . .

On each loop cycle, the variable ch is bound to a one-character string chosen from
successive index positions of the string s. The body of the loop then uses that
character to perform some computation. You can, for example, count the number of
spaces in a string using the following function:

def count_spaces(s):
 ns = 0
 for ch in s:
 if ch == " ":
 ns += 1
 return ns

Growing a string through concatenation
The other string pattern that is important to memorize involves creating a new string
one character at a time. The details of the loop depend on the application, but the
general pattern for creating a string by concatenation looks like this:

result = ""
for whatever loop header line fits the application:
 result += the next piece of the result

For example, the n_copies function returns a string consisting of n copies of s,
achieving the effect of the expression s * n without using the * operator:

230 Strings

def n_copies(n, s):
 result = ""
 for i in range(n):
 result += s
 return result

Combining the iteration and concatenation patterns
Many string-processing functions use the iteration and concatenation patterns
together. For example, the following function returns a copy of the string s with all
spaces removed:

def remove_spaces(s):
 result = ""
 for ch in s:
 if ch != " ":
 result += ch
 return result

As a second example, the following function offers another strategy—arguably

more readable but certainly less efficient—for implementing the reverse_string
function first defined on page 228:

def reverse_string(s):
 result = ""
 for ch in s:
 result = ch + result
 return result

This implementation builds up the reversed string by concatenating each character
onto the front of the existing result. For example, calling reverse("stressed")
assigns the following values to result as it goes through the for loop:

""
"s"
"ts"
"rts"
"erts"
"serts"
"sserts"
"esserts"
"desserts"

 7.4 String methods 231

 7.4 String methods
Strings in Python support a range of operations beyond those you have seen so far in
this chapter. Those operations, however, are implemented in a slightly different style.
In Python, the built-in string type is implemented as a class similar to those in the
Portable Graphics Library. Like all classes in an object-oriented language, the string
class implements most of its operations in the form of methods that are applied to
string objects.

As with the methods you’ve used in the graphics library, method calls on the string
class are written using the receiver syntax:

receiver.name(arguments)

Figure 7-2 lists the most common methods that Python defines as part of its built-in
string class. These methods under the first four subheadings in Figure 7-2 are
explored in detail in the sections that follow. The methods under the subheading
“Splitting and joining strings” are discussed in Chapter 8.

Finding patterns
From time to time, you will find it useful to search a string to see whether it contains
a particular substring. To support such search operations, Python’s string class
exports a method called find, which comes in two forms. The simplest form of the
call is

s.find(pattern)

where pattern is the substring you’re looking for. When called, the find method
searches through s looking for the first occurrence of the pattern. If the search value
is found, find returns the index position at which the match begins. If the character
does not appear before the end of the string, find returns -1.

The find method takes optional start and end arguments that limit the range of
the search. These arguments are illustrated by the following examples, where s
contains the string "hello, world":

s.find("o") ® 4
s.find("o", 5) ® 8
s.find("o", 5, 7) ® -1

The Python string class also includes an rfind method that works like find, except
that it searches backward from the end of the specified range for the last instance of
the pattern.

232 Strings

StringMethods.png

 7.4 String methods 233

The startswith method returns True if the receiver string begins with the
specified prefix. For example, the expression

answer.startswith("y") or answer.startswith("Y")

is True if answer begins with either "y" or "Y". The endswith method is symmetric
and returns True if the string ends with the specified suffix.

Creating transformed strings
Python’s string class exports several methods for changing the case of characters
within a string. The method upper, for example, returns a string in which all
lowercase characters in the original string have been converted to their uppercase
equivalents. Thus, if s contains the string "hello, world", calling s.upper()
returns "HELLO, WORLD". The lower method performs the case conversion in the
opposite direction. If the constant ALPHABET is defined as shown on page 225, calling
ALPHABET.lower() returns "abcdefghijklmnopqrstuvwxyz". The capitalize
method returns a string in which the first character is capitalized and all other letters
are converted to their lowercase forms.

The “Creating transformed strings” subheading of Figure 7-2 lists several other
methods that often come in handy. The lstrip, rstrip, and strip methods return
a copy of the receiver string after removing all whitespace characters (“invisible”
characters such as spaces or tabs) from one or both ends of the string. The replace
method returns a copy of the receiver string after replacing all instances of the first
argument with the second. This function makes it possible to simplify the definition
of remove_spaces from page 230 as follows:

def remove_spaces(s):
 return s.replace(" ", "")

It is important to remember that the methods in Python’s string class do not change

the value of the receiver but instead return an entirely new string. Thus, calling
s.upper() doesn’t change the value of the variable s. If you want to change the
value of s to its uppercase equivalent, you need to use an assignment statement to
store the value back into the variable, as in

s = s.upper()

The upper method makes it easy to write a predicate function called
equals_ignore_case that checks whether two strings are equal if the comparison
ignores the distinction between uppercase and lowercase characters, as follows:

def equals_ignore_case(s1, s2):
 return s1.upper() == s2.upper()

234 Strings

Testing for character properties
When you work with individual characters in a string, it is often useful to determine
whether those characters fall into particular categories, such as letters or digits. The
string class in Python includes methods that check to see whether the receiver string
fits one of the specified categories. For example, the expression ch.isdigit() has
the value True if ch contains a digit character and the value False if ch contains any
other type of character. Similarly, ch.isspace() returns True if ch is one of the
whitespace characters, as defined on page 233.

In most cases, the methods that fall under the “Testing for character properties”
subheading are applied to a single character. These methods, however, can also be
applied to longer strings. For example, if line contains the string "1729", calling
line.isdigit() returns True because every character in line is a digit. The rules
for applying these methods to multicharacter strings are summarized in the short
descriptions provided in Figure 7-2.

Formatting methods
The first three methods under the “Formatting methods” subheading in Figure 7-2
implement left, right, and center padding for strings. The ljust, rjust, and center
methods in the string class therefore serve as library counterparts to the align_left,
align_right, and align_center functions you implemented in Chapter 5, exercise
7. That exercise suggests that these functions are important enough to include in a
library, and Python has done just that. The f-string model offers a sophisticated
facility for specifying how numbers and other types are formatted for display on the
console or other output devices. That method and other strategies for controlling how
strings appear are described in more detail in the section on “Formatting strings” later
in this chapter.

 7.5 Building string applications
The easiest way to improve your understanding of strings is to look at several sample
applications. The sections that follow walk you through four applications that use
strings in different ways.

Checking for palindromes
A palindrome is a word that reads identically backward and forward, such as level or
noon. The goal of this section is to write a predicate function is_palindrome that
checks whether a string is a palindrome. Calling is_palindrome("level") should
return True; calling is_palindrome("xyz") should return False.

 7.5 Building string applications 235

As with most programming problems, there is more than one strategy for solving
this problem. The following code illustrates one strategy:

def is_palindrome(s):
 for i in range(len(s) // 2):
 if s[i] != s[-(i + 1)]:
 return False
 return True

This implementation uses a for loop to run through each index position in the first
half of the string, checking whether the character in that position matches the one in
the symmetric position relative to the end of the string.

If, however, you make use of the functions you already have, you can code
is_palindrome in a much simpler form, as follows:

def is_palindrome(s):
 return s == reverse_string(s)

Although both implementations of is_palindrome return the correct result, there
are various tradeoffs that may lead you to choose one over the other. The first
implementation is likely to be more efficient because it doesn’t require creating any
new strings. Despite the difference in efficiency, the second version has many
advantages, particularly as an example for new programmers. For one thing, it takes
advantage of existing code by making use of the reverse_string function. For
another, it hides the complexity involved in calculating the index positions required
by the first version. It takes at least a minute or two for most students to figure out
why the code includes the selection expression s[-(i + 1)] or why the upper limit
of the for range is len(s) // 2. By contrast, the line

return s == reverse_string(s)

reads as fluidly as English: a string is a palindrome if it is equal to the same string
when you reverse it. That, after all, is precisely the definition of a palindrome.

Particularly as you are learning about programming, it is better to work toward the
clarity shown in the second implementation of is_palindrome than to try and match
the efficiency of the first. Given the speed of modern computers, it is almost always
worth sacrificing some efficiency to make a program easier to understand.

Generating acronyms
An acronym is a new word formed by combining, in order, the initial letters of a
series of words. For example, NATO is an acronym formed from the first letters in
North Atlantic Treaty Organization. The goal of this section is to write a function
called acronym that takes a string and returns its acronym. For example, calling

236 Strings

acronym("North Atlantic Treaty Organization")

should return the string "NATO". Similarly, calling

acronym("port out starboard home")

should return the acronym "posh".

When you first look at the problem, it might seem that the obvious approach is to
start with the first character and then search for spaces in a while loop. Each time
the function finds a space, it can concatenate the next character onto the end of the
string variable used to hold the result. When no more spaces appear in the string, the
acronym is complete. This strategy can be translated into a Python implementation
as follows:

def acronym(s):
 result = s[0]
 sp = s.find(" ")
 while sp != -1:
 result += s[sp + 1]
 sp = s.find(" ", sp + 1)
 return result

Although this implementation works for some strings, it fails for others. For

example, it produces the correct algorithm only if each pair of words is separated by
exactly one space. If some of the words are separated using hyphens—as in "self-
contained underwater breathing apparatus", which produces the acronym
"scuba"—this implementation will fail to return the correct result. Worse still, the
function will generate an error condition if the word ends with a space, because the
selection expression s[sp + 1] will try to select the character after the end of the
string, which doesn’t exist.

Although the following implementation is not as easy to follow, it correctly
handles the special cases in which the earlier version fails:

def acronym(s):
 result = ""
 in_word = False
 for ch in s:
 if ch.isalpha():
 if not in_word:
 result += ch
 in_word = True
 else:
 in_word = False
 return result

 7.5 Building string applications 237

This implementation uses the standard idiom to go through the string character by
character, looking at each one. It determines the word boundaries by using the
variable in_word, which is True if the process is scanning letters and False if it is
scanning nonletters. New letters get added to the acronym only if the code sees a
letter when in_word was previously False.

Translating English to Pig Latin
To give you more of a sense of how to implement string-processing applications, this
section describes a Python function that takes a line of text and translates each word
in that line from English to Pig Latin, a made-up language familiar to most children
in the English-speaking world. In Pig Latin, words are formed from their English
counterparts by applying the following rules:

1. If the word contains no vowels, no translation is done, which means that the Pig

Latin word is the same as the original.

2. If the word begins with a vowel, the Pig Latin translation consists of the original
word followed by the suffix way.

3. If the word begins with a consonant, the Pig Latin translation is formed by
extracting the string of consonants up to the first vowel, moving that collection
of consonants to the end of the word, and then adding the suffix ay.

As an example, suppose that the English word is scram. Because the word begins
with a consonant, you divide it into two parts: one consisting of the letters before the
first vowel and one consisting of that vowel and the remaining letters:

You then interchange these two parts and add ay at the end, as follows:

Thus the Pig Latin word for scram is amscray. For a word that begins with a vowel,
such as apple, you simply add way to the end, which leaves you with appleway.

The code for the PigLatin.py program appears in Figure 7-3. The file exports
two functions for clients to use. The word_to_pig_latin function converts a word
to its Pig Latin equivalent. The to_pig_latin function takes a line of text and
converts the entire line to Pig Latin by divides the line into words and then converting
each word. Characters that are not part of a word are copied directly to the output
line so that punctuation and spacing remain unaffected. The following IDLE session
shows a few calls to the function to_pig_latin, which also works for single words:

238 Strings

PigLatin-py-p1.png

 7.5 Building string applications 239

It is worth taking a careful look at the implementations of to_pig_latin and
word_to_pig_latin in Figure 7-3. The to_pig_latin function finds the word
boundaries in the input, which provides a useful pattern for separating a string into
individual words. The word_to_pig_latin function uses slicing to extract pieces of
the English word and then uses concatenation to put them back together in their Pig
Latin form.

Implementing simple ciphers
Codes and ciphers have been around in some form or another for most of recorded
history. There is evidence to suggest that coded messages were used in ancient Egypt,
China, and India, possibly as early as the third millennium BCE, although few details
of the cryptographic systems have survived. In Book 6 of the Iliad, Homer suggests
the existence of a coded message when King Proitos, seeking to have the young
Bellerophontes killed,

240 Strings

sent him to Lykia, and handed him murderous symbols, which
he inscribed on a folding tablet, enough to destroy life . . .

Shakespeare’s Hamlet, of course, has Rosencrantz and Guildenstern carry a similarly
dangerous missive, but Hamlet’s message is secured under a royal seal. In the Iliad,
nothing in the text suggests that the message is sealed, which implies that the meaning
of the “murderous symbols” must somehow be disguised.

One of the first encryption systems whose details survive is the Polybius square,
developed by the Greek historian Polybius in the second century BCE. In this system,
the letters of the alphabet are arranged to form a 5´5 grid in which each letter is
represented by its row and column number. Suppose, for instance, that you want to
transmit following English version of Pheidippides’s message to Sparta:

THE ATHENIANS BESEECH YOU TO HASTEN TO THEIR AID

This message can be transmitted as a series of numeric pairs, as follows:

44 23 15 11 44 23 15 33 24 11 33 43 12 15 43 15 15 13 23 54
34 45 44 34 23 11 43 44 15 33 44 34 44 23 15 24 42 11 24 14

The real advantage of the Polybius square is not that it allows for secret messages,

but that it simplifies the problem of transmission. Each letter in the message can be
represented by holding between one and five torches in each hand, which allows a
message to be communicated visually over a great distance. By reducing the alphabet
to an easily transmittable code, the Polybius square anticipates such later
developments as Morse code and semaphore, not to mention modern digital
encodings such as ASCII or Unicode.

In De Vita Caesarum, written sometime around 110 CE, the Roman historian
Suetonius describes an encryption system used by Julius Caesar, as follows:

If he had anything confidential to say, he wrote it in cipher, that
is, by so changing the order of the letters of the alphabet, that not
a word could be made out. If anyone wishes to decipher these,
and get at their meaning, he must substitute the fourth letter of
the alphabet, namely D, for A, and so with the others.

Even today, the technique of encoding a message by shifting letters a certain distance
in the alphabet is called a Caesar cipher. According to the passage from Suetonius,
each letter is shifted three positions ahead in the alphabet. For example, if Caesar had
had time to translate his final words according to his coding system, ET TU BRUTE
would have come out as HW WX EUXWH, because E gets moved three letters ahead
to H, T gets moved three to W, and so on. Letters that get advanced past the end of
the alphabet wrap around back to the beginning, so that X becomes A, Y becomes B,
and Z becomes C.

Polybius square

 7.5 Building string applications 241

The caesar_cipher function in Figure 7-4 translates the letters in a string
according to the rules for constructing a Caesar cipher. The code uses ord to convert
characters into their Unicode values and then uses the remainder operator to
implement the cyclical shift that wraps around to the beginning of the alphabet. Once
the caesar_cipher function has computed the new character code, it uses chr to
convert the Unicode value back into a string. The code makes sure that the operands
to % are positive to avoid relying on Python’s mathematical assumptions.

The following IDLE session demonstrates the operation of caesar_cipher:

Cryptography played an important role in the early history of computing. During
World War II, a team of mathematicians and engineers at Bletchley Park in England

242 Strings

used electromechanical devices to break the German Enigma code. That
accomplishment, in which the pioneering computer scientist Alan Turing played a
major role, proved vital to the Allied war effort. Although this work was kept secret
for many years after the war, it has recently been popularized in a series of films
including Breaking the Code, Enigma, and The Imitation Game.

 7.6 Formatting strings
Modern computing has its roots in machines designed for processing and tabulating
data. As noted in the introduction to this chapter, Hermann Hollerith designed a
tabulating machine that was used to process the 1890 census in the United States,
thereby making it possible to complete the process in substantially less time. The
company that Hollerith founded went on to become International Business Machines
(IBM), which dominated the computing industry for most of the 20th century.

The early IBM machines were used primarily to automate such record-keeping
operations as accounting, inventory control, and payroll processing. Those
applications produced printed reports designed for human readers, which required
arranging the output in a tabular format with fixed-width columns. The need to
produce easily readable output meant that programming languages designed to
support data processing included features that allowed programmers to specify the
exact format in which the various output values should appear.

Although precisely formatted output is no longer as important as it was in the past,
modern languages typically offer some strategy for controlling output format. Python
is particularly generous in this regard. Over its history, Python has embraced three
different strategies for controlling output formatting:

1. Percent-sign formatting. Early versions of Python redefined the remainder

operator (%) for the string class, turning it into a general tool for substituting
values into an existing string. Because the Python style guidelines now
discourage this approach, it does not make sense to cover it in detail.

2. The format method in the string class. Beginning with Python version 2.0, the
string class includes a method called format that allows callers to create new
strings by replacing placeholders with formatted values.

3. Formatted string literals. In December 2016, Python version 3.6 introduced
formatting at the language level. The model is similar to the format method, but
more concise and easier to use, as you saw in Chapter 1.

Formatted string literals (or f-strings for short) are so much easier to use that they

have rendered the earlier models largely obsolete. You may at some point find that
you need to read programs that use the older styles, but it doesn’t make sense to use
those models in the programs you write.

Alan Turing

 7.6 Formatting strings 243

Suppose that you have two variables, n1 and n2, each of which contains an integer.
What you would like to do is produce an output line of the form

___ times ___ equals ___.

in which the underscored components are replaced by n1, n2, and their product. For
example, if n1 and n2 contain 6 and 7, the output should look like this:

Although you can solve this problem by concatenating the components of the
output line in a call to the print function, you’ve known since Chapter 1 that the
simplest way to produce this output line is to use the following line:

print(f"{n1} times {n2} equals {n1 * n2}.")

The expressions inside the curly braces are called placeholders. When Python
evaluates an f-string, it replaces the text inside the braces with the value of the
expression evaluated at that point in the execution of the program, automatically
converting the result to a string if necessary.

So far, the examples of the f-string model have done nothing more than substitute
values for placeholders. The real power of these the placeholder model lies in the
ability to control how the inserted values are formatted. In addition to the expression
that indicates what value should be inserted, Python allows programmers to specify a
format specification consisting of a colon and a sequence of format-control options
just before the closing brace. The complete list of options is long, but the following
are among the most useful:

• Fill. If the converted value is shorter than the minimum field width described later

in this list, the output needs to be padded to reach the required width. By default,
the value is padded with spaces, but you can change this behavior by starting the
options specification with some other character.

• Alignment. The most common values for the alignment option are <, ^, >, which
specify left, center, and right alignment, respectively. By default, Python uses
right alignment for numeric values and left alignment for other values.

• Sign. The sign option is usually omitted, in which case negative numbers are
preceded by a minus sign. Specifying + as the sign option ensures that all numbers
include either a plus or a minus sign. Using a space ensures that positive numbers
are preceded by a space, which helps to maintain alignment.

• Grouping. The most common grouping option is the comma, which indicates that
commas should be used to separate numeric output at three-digit boundaries.

244 Strings

• Width. The width option is an integer that indicates the minimum width of the
field in terms of the numbers of characters. If the converted value is shorter than
the width, it will be padded as specified by the alignment option.

• Precision. The precision option appears after the width option, preceded by a
period so that the pair look like a floating-point number. The interpretation of the
precision option depends on the conversion type but usually controls the number
of digits after the decimal point.

• Type. The last character in the format specification indicates the type of
conversion. The most common conversion types appear in Figure 7-5. Uppercase
format codes force uppercase letters in the conversion.

The number of possible combinations of the various formatting options is so large

that it is impossible to cover them all. The easiest way to familiarize yourself with
the available formatting options is through experimentation. Look through the
descriptions for a feature that sounds like something you might want to use and then
give it a try. Even so, it helps to offer a couple of simple examples.

The following function takes an integer and then prints the representation of that
integer in decimal, binary, octal, and hexadecimal notation:

def base_representations(v):
 print(f"{v:d} dec = {v:b} bin = {v:o} oct = {v:X} hex")

Calling base_representations(42) produces the following output:

 7.6 Formatting strings 245

As a second example, the function

def trig_table(step):
 print(" x sin(x) cos(x)")
 for x in range(0, 360, step):
 r = math.radians(x)
 sinr = math.sin(r)
 cosr = math.cos(r)
 print(f" {x:3d} {sinr: 7.5f} {cosr: 7.5f}")

produces a table of sines and cosines for angles ranging from 0 to 360 degrees in
increments specified by the step parameter. The results of each mathematical
function are displayed in a fixed-point format that is seven characters wide, with five
digits after the decimal point, allowing extra space for a negative sign. Calling
trig_table(30), for example, produces the following table:

Python’s f-strings are useful in writing test programs for the code you write. By
reducing the amount of code you need to write, f-strings make the process less
onerous, which in turn makes it more likely that programmers will write those tests.
Here, for example, is a test program for the acronym function:

def test_acronym():

 def test(s, expected):
 result = acronym(s)
 print(f"acronym(\"{s}\") -> \"{result}\"" +
 f" (should be \"{expected}\")")

 test("self-contained underwater breathing apparatus",
 "scuba")
 test("port out starboard home", "posh")
 test("North Atlantic Treaty Organization", "NATO")

246 Strings

 Summary
In this chapter, you have learned how to use Python’s built-in string type, which
makes it easy to write string-processing applications without worrying about the
details of the underlying representation. Important points in this chapter include:

• The fundamental unit of information in a modern computer is a bit, which can be

in one of two possible states. The state of a bit is usually represented in memory
diagrams using the binary digits 0 and 1, but it is equally appropriate to think of
these values as off and on or false and true, depending on the application.

• Sequences of bits are combined inside the hardware to form larger structures,
including bytes, which are eight bits long, and words, which are large enough to
contain a standard integer.

• Computer scientists tend to record the values of bit sequences in hexadecimal
(base 16), which allows binary values to be represented in a more compact form.

• Numbers don’t have bases; representations do.

• Nonnumeric data values are represented by numbering the elements in the domain
and then using those numbers as codes for the original values.

• Characters are represented internally using a coding scheme called Unicode,
which assigns numeric values to characters from a wide range of languages.

• Python allows you to convert between Unicode values and strings using the
built-in functions ord and chr.

• The string class represents a type that is conceptually a sequence of characters.
The character positions in a string are assigned index numbers that start at 0 and
extend up to one less than the length of the string.

• Python allows negative index numbers for strings, which count backward from the
end of the string.

• Python allows you to concatenate n copies of a string s using the notation s * n.

• You can extract a substring in Python using slicing, which ordinarily appears in
the form str[start:limit]. This form of slicing produces a substring that begins at
index position start and continues up to but not including index position limit. If
start is missing, it defaults to 0. If limit is missing, it defaults to the end of the
string.

• The square-bracket syntax for slicing also accepts a third component called the
stride, which specifies how many characters to move ahead while composing the
substring.

• The stride component can be negative, in which case the selection of characters
occurs backward from the end of the string.

 Summary 247

• The idiomatic pattern for iterating through the elements of a string is

for ch in s:
 . . . body of loop that manipulates ch . . .

• The standard pattern for growing a string by concatenation is

result = ""
for whatever loop header line fits the application:
 result += the next piece of the result

• Python implements several strategies that support inserting formatted values into
a string. This chapter describes the use of formatted string literals or f-strings,
which were added to Python’s version 3.6 release in December 2016 and quickly
became the most popular model for format control.

• When you use the f-string model, you add the letter f before the initial quotation
mark and then include placeholders enclosed in curly braces. Evaluation of the
f-string triggers replacement of those placeholders with the values of the
expressions enclosed within the braces. The f-string model allows the user to
specify additional formatting options such as the conversion type, alignment, field
width, and precision.

 Review questions
1. Define the following terms: bit, byte, and word.

2. What is the etymology of the word bit?

3. Convert each of the following decimal numbers to its hexadecimal equivalent:

a. 17 c. 1729
b. 256 d. 2766

4. Convert each of the following hexadecimal numbers to decimal:

a. 17 c. CC
b. 64 d. FAD

5. In his “New Math” song mentioned on page 4, Tom Lehrer notes that “the book

I got this problem out of wants you to do it in base 8.” What is 3428 - 1738?

6. What Python functions allow you to convert back and forth between an integer

and the corresponding Unicode character?

7. What does ASCII stand for?

8. What is the relationship between ASCII and Unicode?

248 Strings

9. By consulting Figure 7-1, determine the Unicode values of the characters "$",
"@", "0", and "x".

10. True or false: In Python, you can determine the length of the string stored in the

variable s by calling len(s).

11. True or false: The index positions in a string begin at 1 and extend up to the

length of the string.

12. How do you extract the character at position k in a string?

13. What are the three components of the square-bracket notation used to indicate

slicing? What are the default values of each component?

14. What is lexicographic ordering?

15. What value does find return if the pattern string does not appear?

16. What is the significance of the optional second argument to find?

17. Suppose that you have declared and initialized the variable s as follows:

s = "hello, world"

Given that declaration, what value is produced by each of the following calls:

a. len(s) f. s.replace("h", "j")
b. s[5] g. s[3:5]
c. s[-3] h. s[7:]
d. s.find("l") i. s[3:3]
e. s.find("l", 5) j. s[::-2]

18. What is the pattern for iterating through each character in a string?

19. What is the pattern for growing a string through concatenation?

20. What value is produced by each of the following f-strings:

a. f"{17} + {25} = {17 + 25}"
b. f"{127:X}"
c. f"{2.7182818:6.4f}"
d. f"{'L':<3s}{'C':^3s}{'R':>3s}"

21. To 16 significant digits, the constant math.pi is 3.141592653589793. What

f-string conversion would you use to produce each line in the following sample
run:

 Exercises 249

 Exercises
1. In exercise 10 from Chapter 3, you wrote a program to find perfect numbers.

Rewrite that program so that it also displays the binary form of these numbers.
As you can see if you run this program, the first few perfect numbers follow an
interesting pattern when you write them out in binary. Euclid discovered this
pattern more than 2000 years ago, and the 18th-century Swiss mathematician
Leonhard Euler proved that all even perfect numbers follow this pattern. The
question of whether any odd perfect numbers exist remains unresolved in
mathematics.

2. Suppose that the startswith and endswith methods were not defined in

Python. Implement the same functionality by defining the more readably named
functions starts_with(s, prefix) and ends_with(s, suffix).

3. Implement the function is_english_consonant(ch), which returns True if ch

is a consonant in English, that is, any alphabetic character except one of the five
vowels: "a", "e", "i", "o", and "u". As with the is_english_vowel function
presented in the text, your method should recognize both lower- and uppercase
consonants.

4. Rewrite the is_palindrome function so that it operates recursively, taking

advantage of the fact that a string is a palindrome if (a) its length is less than two
or (b) its first and last characters match and the substring between those
characters is a palindrome.

5. The concept of a palindrome is often extended to full sentences by ignoring

punctuation, spacing, and differences in the case of letters. For example, the
string "Madam, I'm Adam." is a sentence palindrome, because if you look only
at the letters and ignore any case distinctions, it reads identically backward and
forward.

Write a predicate function is_sentence_palindrome(s) that returns True
if s fits this definition of a sentence palindrome. For example, you should be
able to use your function to reproduce the following IDLE session:

250 Strings

6. Write a function create_regular_plural(word) that returns the plural of

word formed by following these standard English rules:

a. If the word ends in s, x, z, ch, or sh, add es to the word.
b. If the word ends in a y preceded by a consonant, change the y to ies.
c. In all other cases, add just an s.

Design a set of test cases to verify that your function works.

7. In English, the notion of an ongoing action is expressed using the present

progressive tense, which involves the addition of an ing suffix to the verb. For
example, the sentence I think conveys a sense that one is capable of thinking; by
contrast, the sentence I am thinking conveys the impression that one is currently
doing so. The ing form of the verb is called the present participle.

Unfortunately, creating the present participle is not always as simple as
adding the ing ending. One common exception is a word like cogitate that ends
in a silent e. In such cases, the e is usually dropped, so that the participle form
becomes cogitating. Another common exception involves words that end with a
single consonant, which typically gets doubled in the participle form. For
example, the verb run becomes running.

Although there are many exceptions, you can construct a large fraction of the
legal participle forms in English by applying the following rules:

a. If the word ends in an e preceded by a consonant, take the e away before
adding ing. Thus, move should become moving. If the e is not preceded by a
consonant, it should remain in place, so that see becomes seeing.

b. If the word ends in a consonant preceded by a vowel, insert an extra copy of
that consonant before adding ing. Thus, jam should become jamming. If,
however, there is more than one consonant at the end of the word, no such
doubling takes place, so that walk becomes walking.

c. In all other circumstances, simply add the ing suffix.

Write a function create_present_participle(verb) that takes an English
verb, which you may assume is entirely lowercase and at least two characters
long, and forms the participle using these rules.

 Exercises 251

8. As in most languages, English includes two types of numbers. The cardinal
numbers (such as one, two, three, and four) are used in counting; the ordinal
numbers (such as first, second, third, and fourth) are used to indicate a position
in a sequence. In text, ordinals are usually indicated by writing the digits in the
number, followed by the last two letters of the English word that names the
corresponding ordinal. Thus, the ordinal numbers first, second, third, and fourth
often appear in print as 1st, 2nd, 3rd, and 4th. The ordinals for 11, 12, and 13,
however, are 11th, 12th, and 13th. Devise a rule that determines what suffix
should be added to each number, and then use this rule to write a function
create_ordinal_form(n) that returns the ordinal form of the number n as a
string.

9. The waste of time in spelling imaginary sounds and their history

(or etymology as it is called) is monstrous in English . . .
—George Bernard Shaw, 1941

In the early part of the 20th century, there was considerable interest in both
England and the United States in simplifying the rules used for spelling English
words, which has always been a difficult proposition. One suggestion advanced
as part of this movement was to eliminate all doubled letters, so that bookkeeper
would be written as bokeper and committee would become comite. Write a
function remove_doubled_letters(s) that returns a new string in which any
duplicated characters in s have been replaced by a single copy.

10. When large numbers are written on paper, it is traditional—at least in the United

States—to use commas to separate the digits into groups of three. For example,
the number one million is usually written as 1,000,000. Implement a function
add_commas(digits) that takes a string of digits representing a number and
returns the string formed by inserting commas at every third position, starting on
the right. Your implementation of add_commas—which should not use the
grouping option in the f-string model to perform this operation—should be able
to reproduce the following IDLE session:

252 Strings

11. As written, the PigLatin.py program in Figure 7-3 behaves oddly if you enter
a string that includes words beginning with an uppercase letter. For example, if
you were to capitalize the first word in the sentence and the name of the Pig Latin
language, you would see the following output:

Rewrite the word_to_pig_latin function so that any word that begins with a
capital letter in the English line still begins with a capital letter in Pig Latin.
Thus, after you make the necessary changes in the program, the output should
look like this:

12. Most people in English-speaking countries have played the Pig Latin game at

some point in their lives. There are other invented “languages” in which words
are created using some simple transformation of English. One such language is
called Obenglobish, in which words are created by adding the letters ob before
the vowels (a, e, i, o, and u) in an English word. For example, under this rule,
the word english gets the letters ob added before the e and the i to form
obenglobish, which is how the language got its name.

In official Obenglobish, the ob characters are added only before vowels that
are pronounced, which means that a word like game would become gobame
rather than gobamobe because the final e is silent. While it is impossible to
implement this rule perfectly, you can do a pretty good job by adopting the rule
that the ob should be added before every vowel in the English word except

• Vowels that follow other vowels

• An e that occurs at the end of the word

Write a function obenglobish that takes an English word and returns its
Obenglobish equivalent, using the translation rule given above. Your function
should allow you to generate the following IDLE session:

 Exercises 253

13. Although Caesar ciphers are simple, they are also extremely easy to break. A

somewhat more secure scheme allows each letter in the message to be
represented consistently by some other letter, but not one chosen by shifting the
character a fixed distance in the alphabet. This kind of coding scheme is called
a letter-substitution cipher.

The key in a letter-substitution cipher is a 26-character string that shows the
enciphered counterpart of each of the 26 letters of the alphabet. For example, if
the communicating parties choose "QWERTYUIOPASDFGHJKLZXCVBNM" as the key
(which is unimaginatively generated by typing the letter keys on the keyboard in
order), that key then corresponds to the following mapping:

Write a function encrypt that takes a string and a 26-character key and
returns the string after applying a letter-substitution cipher with that key. For
example, your function should be able to produce the following sample run:

The words squeamish ossifrage were part of the solution to a cryptographic
puzzle published in Scientific American. The puzzle was developed by Ron
Rivest, Adi Shamir, and Leonard Adleman, who invented the widely used RSA
encryption algorithm, named from the first letters of their surnames.

14. Write a predicate function is_key_legal, which takes a string and returns True

if that string would be a legal key in a letter-substitution cipher. A key is legal
only if it meets the following two conditions:

1. The key is exactly 26 characters long.

2. Every uppercase letter appears in the key.

254 Strings

These conditions automatically rule out the possibility that the key contains
invalid characters or duplicated letters. After all, if all 26 uppercase letters appear
and the string is 26 characters long, there isn’t room for anything else.

15. Letter-substitution ciphers require the sender and receiver to use different keys:

one to encrypt the message and one to decrypt it when it reaches its destination.
Your task in this exercise is to write a function invert_key that takes an
encryption key and returns the corresponding decryption key. In cryptography,
that operation is called inverting the encryption key.

The idea of inverting a key is most easily illustrated by example. Suppose,
for example, that the key is "QWERTYUIOPASDFGHJKLZXCVBNM" as in exercise
14. That key represents the following translation rule:

The translation table shows that A maps into Q, B maps into W, C maps into E, and
so on. To turn the encryption process around, you have to read the translation
table from bottom to top, looking to see what letter in the original text would
have produced each letter in the encrypted version. For example, if you look for
the letter A in the bottom line of the key, you discover that the corresponding
letter in the original must have been K. Similarly, the only way to get a B in the
encrypted message is to start with an X in the original one. The first two entries
in the inverted translation table therefore look like this:

If you continue this process by finding each letter of the alphabet on the bottom
of the original translation table and then looking to see what letter appears on
top, you will eventually complete the inverted table, as follows:

The inverted key is simply the 26-character string on the bottom row, which in
this case is "KXVMCNOPHQRSZYIJADLEGWBUFT".

16. Rewrite the FactorialTable.py program from Figure 2-4 on page 54 so that it

uses the formatting features of f-strings instead of the align_right function.

17. The genetic code for all living organisms is carried in its DNA—a molecule with

the remarkable capacity to replicate its own structure. The DNA molecule itself
consists of a long strand of chemical bases wound together with a similar strand
in a double helix. DNA’s ability to replicate comes from the fact that its four

 Exercises 255

constituent bases—adenosine, cytosine, guanine, and thymine—combine with
each other only in the following ways:

• Cytosine on one strand links only with guanine on the other, and vice versa.

• Adenosine links only with thymine, and vice versa.

Biologists abbreviate the names of the bases to a single letter: A, C, G, or T.

Inside the cell, a DNA strand acts as a template to which other DNA strands
can attach themselves. As an example, suppose that you have the following DNA
strand, in which the position of each base has been numbered as in a string:

Your mission in this exercise is to determine at what point a shorter DNA strand
can attach itself to the longer one. If, for example, you are trying to find a match
for the strand

the rules dictate that this strand can bind to the longer one only at position 1:

By contrast, the strand

matches at either position 2 or position 7.

Write a function find_dna_match(s1, s2, start=0) that returns the first
position at which the DNA strand s1 can attach to the strand s2 after the start
position, which defaults to 0. If there is no match, find_dna_match should
return -1.

18. When Charles Babbage designed his computing machines in the early 19th

century, his initial motivation was to automate the production of mathematical
tables, which were produced by hand and often contained frequent errors.

256 Strings

Figure 7-6 shows a table of logarithms (using the math.log10 function) for the
integers between 1 and 100, arranged—just as in Babbage’s Table of the
Logarithms of the Natural Numbers—into five vertical columns on the page.

Write a Python program to produce a multicolumn table of logarithms in the
style of Figure 7-6.

19. The first program for Babbage’s Analytical Engine—and therefore presumably

the first program ever—was written by Ada Lovelace in 1843. Its purpose was
to calculate the Bernoulli numbers, a mathematical series discovered by the
Swiss mathematician Jakob Bernoulli at the beginning of the 18th century.
Bernoulli numbers can be defined recursively as follows, where C(n, k) is the
combinations function introduced on page 142:

B(n) =

 1 if n = 0

 otherwise

Write a Python program to list the Bernoulli numbers, displaying the results
in tabular form so that each value shows six digits after the decimal point.

C H A P T E R 8
Lists

I’m not rich because I invented VisiCalc, but I feel that I’ve
made a change in the world. That’s a satisfaction money
can’t buy.

— Dan Bricklin, November 1985, as quoted
in Robert Slater, Portraits in Silicon

Bob Frankston and Dan Bricklin

In modern computing, one of the most visible applications of the data structures described in this chapter is
the electronic spreadsheet, which uses a two-dimensional array to store tabular information. The first
electronic spreadsheet was VisiCalc, which was released in 1979 by Software Arts, Incorporated, a small
startup company founded by MIT graduates Dan Bricklin and Bob Frankston. VisiCalc proved to be a
popular application, leading many larger firms to develop competing products, including Lotus 1 2 3 and,
more recently, Microsoft Excel.

258 Lists

Up to now, the programs in this book have worked with individual data items. The
real power of computing, however, comes from the ability to work with collections
of data. This chapter introduces the idea of an array, which is the general term that
programmers use to indicate an ordered collection of values. Arrays are important in
programming largely because ordered collections occur quite frequently in the real
world. Whenever you want to represent a set of values in which it makes sense to
think about those values as forming a sequence, arrays are likely to play a role in the
solution.

At the same time, arrays—as a separate data type—are becoming less important
because most programming languages today offer more powerful types that provide
not only the limited set of operations historically associated with arrays but also a
range of more sophisticated operations that programmers find extremely useful.
Python, for example, does not include arrays in their traditional form but instead
implements the array idea using a built-in data structure called a list.

 8.1 Introduction to arrays and lists
An array is a collection of individual values in which the elements are identified by a
position number. You must be able to enumerate the individual values of an array in
order: here is the first, here is the second, and so on. Conceptually, it is easiest to
think of an array as a sequence of boxes, with one box for each data value. Each of
the values in an array is called an element.

As noted in the introduction to this chapter, Python implements the array concept
using the more powerful list class, which is one of Python’s built-in data types.
Like every other data type in Python, lists can be stored in variables, passed as
arguments to a function, and returned from functions as a result. And like every other
data type, lists in Python support a set of operations appropriate to the type. For lists,
that set of operations allows you to manipulate both the contents and the ordering of
elements. These operations are outlined in the sections that follow.

Python list notation
Creating a list in Python is much easier than it is in most other programming
languages. As you know from Chapter 1, all you need to do is enclose the elements
of the list in square brackets, using commas to separate the elements. For example,
the following constant declaration defines COINS as a list of integers that corresponds
to coins in the United States:

COINS = [1, 5, 10, 25, 50, 100]

After you make this definition, the value of the constant COINS is a list that
corresponds to the following box diagram:

 8.1 Introduction to arrays and lists 259

The small numbers underneath the boxes in this diagram represent the position of that
value in the list, which is called its index. As you already know, index numbers in
Python always begin with 0 and run up to one less than the number of elements, just
as they do for strings.

You can apply the built-in len function to a list to determine the number of
elements it contains. The expression

len(COINS)

therefore has the value 6.

The elements of a list need not be numbers but can instead be any Python value.
For example, the following variable declaration defines hogwarts as a list containing
the names of the four houses at the Hogwarts School of Witchcraft and Wizardry from
J. K. Rowling’s Harry Potter novels:

hogwarts = [
 "Gryffindor", "Hufflepuff", "Ravenclaw", "Slytherin"
]

The box diagram for this list looks like this:

The expression len(hogwarts) has the value 4.

As with strings, you can select an individual element of a list by writing the name
of the list and following it with the index written in square brackets. For example,
given the earlier definitions in this section, the expression COINS[2] is 10, because
that is the value at index 2 in the COINS list. Similarly, hogwarts[0] has the value
"Gryffindor". If you select an index position that falls outside the limits of a list,
Python treats that selection as an error.

Sequence types
Unless you’ve already forgotten everything you learned in Chapter 7, you must have
noticed by now that the discussion of lists from the preceding section is starting to
sound familiar. Strings and lists share several fundamental properties. Both types
number their elements beginning with index position 0, both types use the len

260 Lists

function to determine the number of elements, and both types indicate selection using
square brackets.

As it happens, the similarities between strings and lists extend well beyond these
particular characteristics. In Python, strings and lists are examples of a more general
class of objects called a sequence, which refers to any ordered collection. Strings are
sequences of characters; lists are sequences of any Python value.

In keeping with the general principles of object-oriented programming—which
you will have more of a chance to explore in Chapter 10—the fact that strings and
lists are both sequences mean that strings and lists implement a common set of
operations that apply to all sequences. In particular, most of the string operations you
learned about in Chapter 7 apply equally well to lists. For example, lists support all
of the following operations, which you already know from working with strings:

• The len function
• Index numbering that begins at 0 and extends up to the length minus 1
• Negative index numbering that counts from the end of the sequence
• Selection of an individual element using square brackets
• Slicing in all its forms
• Checking whether a value is contained in a list using the in operator
• Concatenation using the + or += operator
• Repetition using the * operator

The effect of each of these operations is illustrated in the following IDLE session:

 8.1 Introduction to arrays and lists 261

Perhaps more importantly, both strings and lists support iteration using the for
statement. For example, you can use the following function to print the elements of
a list on the console, one per line:

def print_list(list):
 for element in list:
 print(element)

This function allows you to reproduce the following IDLE session:

Assigning to list elements
Despite their many similarities, strings and lists differ in one important respect. In
Python, strings are immutable, which means that you can’t change their elements.
Lists, by contrast, are mutable, which means, among other things, that you can assign
a new value to a list element. For example, if some future leaders of Hogwarts
decided that they might need to honor a more worthy wizard, evaluating the
expression

hogwarts[3] = "Dumbledore"

would change the value of the hogwarts list to

Passing lists as parameters
When you pass a list as a parameter to a function, it is important to keep in mind that
all objects in Python are represented internally as references, as described in Chapter
4. As a result, if a function makes changes to the elements of a list, the caller will see
those changes because the caller and the function share access to the same list.

262 Lists

It is important to note that this behavior is not a violation of the rules for parameter
passing presented in Chapter 5. In the list of rules presented in the section entitled
“The steps in calling a function,” rules 3 and 4 read as follows:

3. Each positional argument is copied into the corresponding parameter variable.
4. All keyword arguments are copied to the parameter with the same name.

These rules say explicitly that both positional and keyword arguments are copied into
the appropriate parameter variable, but passing a list as a parameter results in the
values being shared. The explanation of this apparent inconsistency is that Python
does indeed copy the argument, but that argument is just a reference. Python copies
the reference but does not copy the internal data. The effect of this strategy is that a
function and its caller have access to the same elements.

 8.2 List methods
As was true for strings, Python’s list class also exports several methods that provide
additional operations beyond those that apply to all sequences. Figure 8-1 at the top
of the next page describes several of the most important methods implemented by the
list class. These methods are detailed in the sections that follow.

Methods that leave the original list unchanged
Python’s list class exports several methods that leave the original list unchanged. The
index method, for example, returns the first index at which the argument appears in
the list. The index method is therefore in some ways analogous to the find method
for strings. Like find, the index method takes an optional argument to specify the
index position at which to start the search for a matching element. Unlike find, the
index method raises a ValueError exception if no matching element is found. You
can test for this condition using a try statement, which is described in the section
entitled “Exception handling” later in this chapter.

The count method returns the number of list elements that match the argument.
For example, if scores contains a list of the scores students received on an exam, the
expression scores.count(100) would return the number of students who achieved
a perfect score of 100.

The copy method returns a new list that contains the same elements as the original.
The result of the copy method occupies a different address in memory and therefore
no longer shares the list elements with the original. The use of copy is therefore
different from assignment, which copies the reference to a list, leaving its values
shared. Although the copy method creates a new set of memory cells for the elements
of the list, it initializes the values of those cells by assignment from the old cells. If

 8.2 List methods 263

those elements are themselves lists or any other object, the list produced by copy will
contain the same internal references as the original. Computer scientists say that the
copy method makes a shallow copy of the original because the copy operation does
not descend below the top level of the list.

Methods that add and remove elements
The list class includes six methods that add or remove elements from a list. The
append and extend methods support adding new elements to the end of the list;
append adds a single element, and extend adds all the elements in a second list. The

264 Lists

insert method makes it possible to add elements in the middle of a list. The index
number in the insert method specifies the index position before the insertion. For
example, calling

list.insert(0, 17)

inserts the value 17 at the beginning of the list before element 0.

The clear, remove, and pop methods remove elements from a list. The clear
method is the easiest to describe, since it has the effect of removing all the elements,
leaving the list empty. The remove and pop methods each remove one element from
the list. The primary difference is that remove takes the value of the element you
want to remove, while pop takes the index. Another difference is that pop returns the
value that was removed. As noted in Figure 8-1, the index number is optional in the
pop method. If it is missing, pop removes and returns the last element.

Methods that reorder the elements of a list
The list class includes two methods—reverse and sort—that reorder the elements
of an existing list. The reverse method simply reverses the elements of the list
without allocating any new list storage. Although you can easily implement a
function that duplicates its operation, the reverse method in the list class operates
more efficiently because it is built into the Python language.

The sort method rearranges the elements of a list so that they appear in ascending
order. If you call sort with no argument, Python sorts the list using the style of
comparison that is appropriate to its elements. If you sort a list of numbers, Python
reorders the elements so that they increase numerically. If you sort a list of strings,
Python arranges the elements in lexicographic order.

The sort method takes two optional parameters, which must be specified as
keyword arguments. The key parameter allows you to specify a key function, which
takes a single argument and returns the value that sort should use in the comparison.
For example, if lines is a list of strings, you can sort lines by increasing length by
calling lines.sort(key=len). Similarly, you can sort lines alphabetically
ignoring case by calling lines.sort(key=str.upper). In this example, upper is
a method belonging to Python’s string class, which means that you need to include
the class name str so that Python knows where to find its definition. The reverse
parameter allows you to invert the order. For example, calling
lines.sort(reverse=True) sorts lines in reverse lexicographic order.

In many cases, you don’t need to change the order of a list but can instead simply
iterate through the list in a different order. The built-in functions reversed and

 8.2 List methods 265

sorted take any iterable object and return a new iterable object that cycles through
the elements in a different order. For example, the statement

for line in reversed(lines):

leaves lines unchanged but cycles through them backward starting at the end. The
sorted function also takes the optional key and reversed arguments from sort.

String methods that involve lists
The list operations described in Figure 8-1 include three methods that are part of the
string class but which are covered here because they also require an understanding of
lists. The split method separates a string into substrings by dividing it at each
instance of a separator string and then returns a list of the individual substrings. For
example, if date contains "16-Jul-1969" (the date on which Apollo 11 landed on
the moon), calling date.split("-") returns the following list:

If you leave out the separator string from the call to split, Python divides the
string at any sequence of whitespace characters. For example, suppose that the
variable line is defined as

line = "abc def ghi "

where three spaces separate the substrings "abc" and "def" and a space appears at
the end of the string. Calling line.split() produces the three-element list

If you instead call line.split(" ") using an explicit space character as the
separator, Python splits the string at each individual occurrence of a space character
to produce the following six-element list:

The splitlines method is handy when you are working with a string that
consists of a sequence of lines ending with the newline character. As an example, the
first page of Dr. Seuss’s One Fish, Two Fish, Red Fish, Blue Fish contains the words
of the title divided into lines, which are stored internally like this:

266 Lists

Calling text.split("\n") returns a list with five elements, the last of which is the
empty string corresponding to the characters after the final newline. What you almost
certainly want to do instead is to divide the title into its four components, which is
exactly what splitlines does.

The join method reverses the operation of split and allows you to create a string
from a list of substrings, inserting a separator between each one. You apply the join
method to the separator string, passing in the list as an argument. Thus, the expression

" ".join(["this", "is", "a", "test"])

joins the four strings in the list together to produce the string "this is a test", in
which the substrings are separated by the space character.

 8.3 List comprehensions
Although Python’s notation for initializing a list by enclosing its elements in square
brackets is very convenient, it suffers from a lack of flexibility. Suppose, for example,
you are writing an application and discover that it would be useful to have a list of
the powers of ten. If you know in advance how many powers of ten you need, you
can initialize the list using Python’s square-bracket syntax. For example, if you know
that your application uses only the powers of ten up to a million (106) , you can use
the following declaration:

powers_of_ten = [1, 10, 100, 1000, 10000, 100000, 1000000]

But what if you aren’t sure how many powers of ten your clients will need? It would
be better if you could structure your program so that the number of elements is
specified by a constant called N_POWERS, making it easy to change. To produce the
list that includes the first seven powers of ten, you would set N_POWERS to 7.

Given that the number of elements in powers_of_ten might change, you can no
longer simply list the elements inside square brackets but must instead compute the
desired values. One strategy for doing so is to initialize powers_of_ten to be an
empty list and then append N_POWERS elements to it using a for loop, like this:

powers_of_ten = []
for i in range(N_POWERS):
 powers_of_ten.append(10 ** i)

Although this code is already reasonably concise, Python supports an even more

compact syntactic form called a list comprehension, which allows the programmer
to specify a for loop inside the square brackets, thereby combining the processes of
creating the list and assigning the elements. The code to initialize powers_of_ten
using list comprehension looks like this:

 8.3 List comprehensions 267

powers_of_ten = [10 ** i for i in range(N_POWERS)]

In its simplest form, list comprehension uses the syntactic pattern

[exp for var in iterable]

which returns a list consisting of the value of exp repeated for each of the cycles of
the for loop. The following IDLE session shows three examples of this pattern:

You can also include an if clause in the list-comprehension pattern to select
elements that satisfy some condition. Using this option, the pattern looks like this:

[exp for var in iterable if condition]

Once again, the simplest way to illustrate the use of this pattern is with a couple of
examples in an IDLE session:

It is always possible to expand a list comprehension into a for statement that
produces a variable with the same value. For example, the pattern

[exp for var in iterable if condition]

produces a value that is the same as the contents of the variable seq after executing
the following code:

seq = []
for var in iterable:
 if condition:
 seq.append(exp)

Even though it is possible to achieve the same result using statements that you
already know, using list comprehensions offer the following advantages:

268 Lists

• List comprehensions are shorter. The expanded form of this pattern requires four
lines to accomplish what the list-comprehension form manages in one.

• List comprehensions are typically more efficient. Python interpreters are usually
able to optimize the performance of a list comprehension more effectively than
code written in an expanded form. In particular, Python can often allocate space
for the list at the beginning rather than having to add an element on each cycle.

• List comprehensions can be embedded as expressions. A list comprehension is a
standalone expression that can be used as part of a more general Python
computation. For example, you can pass a list comprehension as an argument to
a function without having to create a variable to hold the result.

• List comprehensions are more likely to match algorithmic descriptions. Formal
descriptions of algorithms are often written in a form that is easily translated into
a list comprehension.

List comprehensions in Python are actually more powerful than the examples here

suggest. A single list comprehension can include several nested for loops and any
number of if clauses. The simple pattern, however, covers the vast majority of
applications you are likely to encounter in practice.

 8.4 Using lists for tabulation
The data structure of a program is typically designed to reflect the organization of
data in the real-world domain of the application. In general, whenever an application
involves data that can be represented in the form of a list with elements a0, a1, a2, and
so on, a list is the natural choice for the underlying representation. It is also quite
common for programmers to refer to the index of a list element as a subscript,
reflecting the fact that lists are used to hold data that would typically be written with
subscripts in mathematics.

There are, however, important uses of lists in which a different relationship exists
between the data in the application domain and the data in the program. This section
shows how you can use a list to count how many times each character in the alphabet
appears in a string by using the Unicode values of each character to derive an index
position.

The exercises for Chapter 7 ask you to implement a letter-substitution cipher,
which encrypts a message by replacing each letter with an encoded version of that
letter determined through the use of a secret key. Although implementing a
letter-substitution cipher is a good exercise, a more interesting problem is figuring
out how to break a letter-substitution cipher if you do not have access to the key.

 8.4 Using lists for tabulation 269

The problem of breaking a letter-substitution cipher often appears in recreational
puzzles called cryptograms. Edgar Allan Poe was a great fan of cryptograms and
described a technique for solving them in his 1843 novel The Gold Bug:

My first step was to ascertain the predominant letters. . . . Now, in English,
the letter which most frequently occurs is e. Afterwards, the succession
runs thus: a o i d h n r s t u y c f g l m w b k p q x z. E however
predominates so remarkably that an individual sentence of any length is
rarely seen, in which it is not the prevailing character.

As it happens, Poe’s list of the most common letters is by no means accurate.

Computerized analysis reveals that the 12 most common letters in English are

E T A O I N S H R D L U

Given that computerized analyses of English text were not available in his day, Poe
can perhaps be excused for making a few mistakes. Poe was, however, entirely
correct in his claim that the first step in discovering the hidden meaning of a
cryptogram is to construct a table showing how often each letter appears. A program
that does just that appears in Figure 8-2 on the next page.

The following sample run shows the output of CountLetterFrequencies.py
using the first page of One Fish, Two Fish, Red Fish, Blue Fish as input:

The output shows that the file contains four copies of the letters F, I, S, and H, three
E’s, two O’s, and a smattering of letters that each appear exactly once. Note that
letters that never appear in the input are not shown in the output.

Edgar Allan Poe

270 Lists

CountLetterFrequencies.py

 8.4 Using lists for tabulation 271

The implementation strategy used in CountLetterFrequencies.py is to create
a list of 26 integers in which each index position contains the current count of the
letter in the alphabet corresponding to that index. The element at the beginning of
the list contains the number of A’s, and the element at the end of the list contains the
number of Z’s. The code then subdivides the tasks of initializing, updating, and
printing out the letter-frequency data contained in that list into three functions. The
function create_frequency_table creates a list in which each of the 26 letter
counts is set to 0. The update_frequency_table function then updates the contents
of the list by running through every character in a string and incrementing the count
associated with each letter. When all the updates have been made, the program calls
the function print_frequency_table to display the results.

Of these functions, create_frequency_table is by far the simplest. All it has
to do is return a list with 26 elements, each of which is set to 0. The following function
definition uses Python’s repetition operator to accomplish this task:

def create_frequency_table():
 return [0] * 26

The code for the count_letter_frequencies function assigns this result to the
variable counts, which can be diagrammed as follows:

Each time a letter appears in the input, you need to increment the corresponding
element in counts, which occurs in update_frequency_table. As you can see
from Figure 8-2, update_frequency_table uses the standard for-loop pattern to
iterate through the characters in line and then executes the following statement for
each character that passes the isalpha test, marking it as a letter:

counts[ord(ch.upper()) - ord("A")] += 1

This statement is sufficiently complex that it is worth going through it in some
detail. When Python executes this statement, it has already determined that ch is a
letter, but it might be an uppercase letter or a lowercase one. Calling ch.upper()
produces the uppercase value. Calling ord on this character returns the Unicode value
for the character. Subtracting the Unicode value for the character "A" produces the
desired index in the counts array, which is then incremented.

The code for display_frequency_table performs the same conversion in the
opposite direction. The values of i in the for loop run from 0 to 25. To convert that
index into a character requires the following code:

ch = chr(ord("A") + i)

272 Lists

 8.5 Using files
In a practical application to count letter frequencies, you would not want the user to
have to enter the text of each line but would instead like to read the data from a input
file. Before you can change CountLetterFrequencies.py to take its input from a
file, you need know more about how Python works with files.

The concept of a file
Programs use variables to store information: input data, calculated results, and any
intermediate values generated along the way. The information in variables, however,
is ephemeral and disappears when the program stops running. For many applications,
it is important to store data in a more permanent way.

Whenever you want to store information on the computer for longer than the
running time of a program, the usual approach is to store that information in a file,
which in computing contexts refers to any collection of data stored in electronic form
and distinguished from other files by an identifying name. Files are ordinarily stored
on your computer’s hard disk but can also reside on the network or on a removable
storage device, such as a flash memory drive. Files also come in a variety of types.
Computers use files to store music, images, movies, formatted documents, statistical
information, and a wide variety of other data types. The most common type of file—
and the only one considered in this book—is a text file, which contains a sequence of
characters.

To get a sense of how you might use text files, suppose that you want to collect
your favorite quotations from Shakespeare and store them on your computer. One
approach is to store each quotation in a separate file. You might begin your collection
with the following lines from Hamlet:

For your second quotation, you might choose the following lines from Romeo and
Juliet:

 8.5 Using files 273

These diagrams show the name outside the file, in much the same way that variable
diagrams show the variable name on the outside and the value on the inside.

When you look at a file, it often makes sense to regard it as a two-dimensional
structure—a sequence of lines composed of individual characters. Internally,
however, text files are represented as a continuous sequence of characters. In addition
to the printing characters you can see, files also contain newline characters that mark
the end of each line.

Suppose, for example, that you have also created a file called Macbeth.txt
containing the following rhymed couplet:

Although it is entirely reasonable to think of this file as containing two lines of
characters, it is important to remember that the internal structure of the file is
represented as a single sequence of characters, like this:

As this most recent example makes clear, a text file is similar to a string. Both are
ordered sequences of characters. The critical differences are that

• The information stored in a file is permanent. The value of a string variable

persists only as long as the variable does. All program variables disappear when
the program exits. Information stored in a file exists until the file is deleted.

• Files are usually read sequentially. When you read data from a file, you usually
start at the beginning and read through them in order, typically line by line. You
read the first line, then the second, and so on until you reach the end of the file.

Reading text files
The standard pattern for reading a text file in Python uses a new feature called the
with statement, the details of which are beyond the scope of this book. Even without
knowing precisely what it does, you can use the with statement in the file-reading
pattern, which looks like this:

with open(filename) as handle:
 Call methods on the file handle to read the data

In this pattern, filename specifies the name of the file, and handle is a variable used
to hold a reference to the file, which is commonly called a file handle. The statements

274 Lists

in the body then call methods on the file handle to read the data. There are several
strategies for doing so, including the following:

1. Reading the entire file as a single string

2. Reading the file one line at time, processing each line as you go

3. Reading the entire file into a list of strings and then working with that list

The rest of this section describes each of these strategies in more detail.

In many ways, the simplest approach is to read the entire file as a single string by
calling the read method on the file handle. The return value includes the embedded
newline characters. For example, if you execute the code

with open("Macbeth.txt") as f:
 text = f.read()

the variable text is set to the entire contents of the file, like this:

The disadvantage of using the read method is that it has to read the entire contents
of the file into memory at once. If a file is large, the need to allocate storage for a
single string that includes its entire contents can slow your program down. Most
computers today have large memories, which means that you are unlikely to run into
trouble with this strategy unless you are working with extremely large files.

You can avoid having to read an entire file at once by calling the readline
method to read the next line from the file. The string returned by the readline
method includes the newline character at the end of the line. Thus, the code

with open("Macbeth.txt") as f:
 line1 = f.readline()
 line2 = f.readline()

sets the variables line1 and line2 to the two lines in the file, as follows:

Calling the readline method after you have read the last line in a file returns the
empty string. You can therefore process every line in a file by adapting the code for
the read-until-sentinel loop presented in Chapter 2 as follows:

 8.5 Using files 275

with open("Macbeth.txt") as f:
 finished = False
 while not finished:
 line = f.readline()
 if line == "":
 finished = True
 else:
 Perform whatever process is required for the line

Although this implementation works, the code is hard to read. You can use the
fact that file handles are iterable objects to shorten the code considerably, like this:

with open("Macbeth.txt") as f:
 for line in f:
 Perform whatever process is required for the line

You can combine this pattern with CountLetterFrequencies.py to count the
letter frequencies in George Eliot’s 1871 novel Middlemarch, as follows:

with open("Middlemarch.txt") as f:
 counts = create_frequency_table()
 for line in f:
 update_frequency_table(counts, line)
 print_frequency_table(counts)

Running this program produces the following output:

276 Lists

If you sort this output by letter frequency in descending order, you discover that
the 12 most common letters in Middlemarch are

E T A O I N H S R D L U

The only difference between this frequency table and the statistical results for modern
English presented on page 269 is that the H and the S are reversed. In general, the
more text you analyze, the closer the frequencies will align with those calculated for
modern English.

The CountLetterFrequencies.py program can accomplish its task without ever
having to keep track of more than one line from the file at a time. Other programs,
by contrast, may make it necessary to read all the lines of the file before performing
any computation. The simplest example is that of an application that reverses the
order of the lines that file contains. When you read the first line, for example, you
can’t yet do anything useful with it. What your program has to do is store that line
away so that it can print it at the end.

If you are implementing an application that needs access to all the lines in a file,
the usual strategy is to read the contents of the file into a list. Python’s file class
includes a readlines method that works for many applications, but is not ideal for
others. The problem with the readlines method is that each line includes the
newline character that marks the end of the line, which most applications would prefer
not to see. And while it is possible to remove these characters by going through each
element of the list and stripping off the newline at the end, doing so at the client level
is far less efficient than having Python implement this function.

The following pattern offers the simplest strategy for reading a list of lines without
the newlines, which is usually exactly what you want:

with open(filename) as f:
 lines = f.read().splitlines()

The splitlines method in the string class removes the newline characters.

Suppose that WitchesBrew.txt contains the following lines from Macbeth:

 8.5 Using files 277

You can display these lines in reverse order using

with open("WitchesBrew.txt") as f:
 lines = f.read().splitlines()
 lines.reverse()
 for line in lines:
 print(line)

which generates the following output:

Writing text files
Although reading a file is a more common operation, Python also allows you to write
data to a file using the following pattern:

with open(filename, "w") as handle:
 Call methods on the file handle to write the data

The only difference from the pattern used for reading is that the open function takes
a second argument that specifies how the file is used. This optional argument to open
is called the mode. By default, the mode parameter is "r", which signifies that the
file should be opened for reading. If you instead specify "w", the file is opened for
writing. If the file does not exist, Python creates it; if it does, Python deletes the
existing contents of the file and prepares to write new data, just as if the file had been
created from scratch. Another useful mode is "a", which opens a file for writing
without deleting its contents so that you can append new content.

The body of the with statement specifies the code used to write the contents of
the file. The most common method is write, which writes a string to the file. The
following code, for example, creates a file named Seuss.txt containing the text from
the first page of One Fish, Two Fish, Red Fish, Blue Fish:

with open("Seuss.txt", "w") as f:
 f.write("One fish\n")
 f.write("two fish\n")
 f.write("red fish\n")
 f.write("blue fish.\n")

278 Lists

As this code example illustrates, you must specify line breaks in the file by including
the newline character in the string you pass to write. The file created by this code
looks like this:

You can also use the writelines method, which writes data from a list of lines.

Exception handling
When you are writing an application that works with files, it is important to keep in
mind that the call to open might fail. For example, if you request the name of an input
file from the user, and the user types the filename incorrectly, the open function will
be unable to find the mistyped filename. To signal a failure of this sort, the
implementation of open responds by raising an exception, which is the phrase
Python uses to describe the process of reporting an exceptional condition outside the
normal program flow. Python includes a special statement form called try that
allows you as a programmer to specify an interest in responding to exceptions of a
particular type. The simplest form of the try statement appears in the syntax box on
the left.

When Python encounters a try statement, it executes the statements in the body.
Those statements, of course, may call other functions, which may in turn call other
functions, as the computation descends through the levels that implement its
decomposition strategy. In any function nested at any level inside the body raises an
exception, Python stops its normal execution and looks to see whether any function
in the chain of callers has used a try statement that responds to exceptions of that
type. If so, Python executes the except clause, which defines the response to that
exception.

The following definition offers a simple illustration of the try statement in the
form of a function that asks the user to specify the name of a file:

def open_input_file(prompt="Input file: "):
 while True:
 filename = input(prompt)
 try:
 with open(filename):
 return filename
 except IOError:
 print("That file cannot be opened")

 8.5 Using files 279

If the user-specified file exists, open_input_file returns its name. If not, the function
continues to ask for a file name until the user enters one that succeeds.

The code for open_input_file includes a couple of details that are worth noting.
First, the with statement only opens the file to see whether it exists and never reads
any data from the file, which means there is no need to store the file handle. Second,
the except clause specifies the exception type IOError, which is the type that Python
uses to report any errors in the file package. Python defines many other error types,
but those are beyond the scope of this book.

Choosing files interactively
If you are creating a general-purpose application, it doesn’t make sense to include the
name of the file explicitly in the code as in the examples you have seen so far. What
you want to do instead is have Python open a file dialog that allows the user to select
a file. The modules supplied with this book include a filechooser library that lets
the user select files interactively. Figure 8-3 illustrates the use of the filechooser
module by creating a CountLetterFrequenciesInFile.py application that adds
interactive file selection on top of the earlier version of the code. The functions that
perform the actual counts are imported from the CountLetterFrequencies.py
application in Figure 8-2.

280 Lists

The filechooser library exports two functions: choose_input_file and
choose_output_file. Each of these functions pops up a dialog, which then allows
the user to move through the directory structure to select a particular file.
Double-clicking on the filename or highlighting a file and then clicking the Open or
Save button completes the action of the dialog and returns the complete pathname of
the selected file to the calling function. Clicking the Cancel button dismisses the
dialog and returns the empty string to the caller.

 8.6 Multidimensional arrays
In Python, the elements of a list can be of any type. In particular, the elements of a
list can themselves be lists. Lists of lists are used to model the concept of a
multidimensional array, which is an array in which the elements are laid out in more
than one dimension and therefore require more than one index to select an individual
element.

The most common form of multidimensional array is the two-dimensional array,
which is most often used to represent data in which the individual entries form a
rectangular structure marked off into rows and columns. This type of
two-dimensional structure is called a matrix. Arrays with three or more dimensions
are also legal in Python but occur less frequently.

As an example of a two-dimensional array, suppose you want to represent a game
of Tic-Tac-Toe as part of a program. As you probably know, Tic-Tac-Toe is played
on a board consisting of three rows and three columns, as follows:

Players take turns placing the letters X and O in the empty squares, trying to line up
three identical symbols horizontally, vertically, or diagonally.

The most natural strategy for representing the Tic-Tac-Toe board is to use a
two-dimensional array with three rows and three columns. Each of the elements is a
string, which must be one of the following: "" (representing an empty square), "X",
and "O". Since the board is initially empty, you can initialize it like this:

board = [[""] * 3 for i in range(3)]

Given this declaration, you can refer to the characters in the individual squares by
supplying two indices, one specifying the row number and another specifying the

 8.7 Image processing 281

column number. In this representation, each number varies over the range 0 to 2, and
the individual positions on the board have the following designations:

It is important to note that you can’t initialize board like this:

board = [[""] * 3] * 3

While this statement might seem to have the same effect as the earlier one, the three
rows of this board are the same object, so that you can’t change one element without
having that change reflected in the other rows.

 8.7 Image processing
In modern computing, one of the most important applications of two-dimensional
arrays occurs in the field of computer graphics. As you learned in Chapter 4,
graphical images are composed of individual pixels. Figure 4-3 on page 104 offers a
magnified view of the screen that shows how the pixels create the image as a whole.
Those images are most easily represented using two-dimensional arrays.

The GImage class
The Portable Graphics Library defines the GImage class as a graphical object that
contains image data encoded using one of the standard formats. The three most
common are the Portable Network Graphics (PNG) format, the Joint Photographic
Experts Group (JPEG) format, and the Graphics Interchange Format (GIF).

Displaying an image requires two steps. The first is to create or download an
image file. The name of the image file should end with an extension that identifies
the encoding format, which is.png for the images in this book. The second step is to
create a GImage object and add it to the graphics window, just as you would with any
other graphical object. For example, if you have an image file called MyImage.png,
you can display that image in the upper left corner of the graphics window using the
following line:

gw.add(GImage("MyImage.png"))

282 Lists

If you want to center an image in the graphics window, you must first create the
GImage and then use its size to determine where you need to position it, much as you
do with a GLabel. This technique is illustrated by the following code:

image = GImage("MyImage.png")
x = (gw.get_width() - image.get_width()) / 2
y = (gw.get_height() - image.get_height()) / 2
gw.add(image, x, y)

In many cases, you will find that you want to display an image at a different size

on the screen from the size that appears in the file. The easiest way to do so is to use
the scale method, which changes the size of a GObject by the specified scale factor.
If image contains a GImage, calling image.scale(0.5) makes it half as big in each
dimension. Similarly, calling image.scale(2) doubles its size.

The code for the EarthImage.py program in Figure 8-4 at the top of the next page
illustrates the use of scaling to display an image so that it fills the available space.
The image, which shows the earth as seen by the Apollo 17 astronauts on their way
to the moon in December 1972, is stored in an image file named EarthImage.png.
The EarthImage.py program reads that image file into a GImage object and then
adds that object to the window. The line

image.scale(gw.get_width() / image.get_width())

scales the image so that it fills the entire width of the window.

Running the EarthImage.py program produces the following display:

 8.7 Image processing 283

This screenshot also illustrates the inclusion of a citation along with an image.
When you use existing images, you need to be aware of possible restrictions on the
use of intellectual property. Most of the images you find on the web are protected by
copyright. Under copyright law, you must obtain the permission of the copyright
holder in order to use the image, unless your use of the image satisfies the guidelines
for “fair use”—a doctrine that has unfortunately become more murky in the digital
age. Under “fair use” guidelines, you could almost certainly use a copyrighted image
in a paper that you write for a class. On the other hand, you could not put that same
image into a commercially published work without first securing—and probably
paying for—the right to do so.

Even in cases in which your use of an image falls within the “fair use” guidelines,
it is important to give proper credit to the source. As a general rule, whenever you
find an image on the web that you would like to use, you should first check to see
whether that website explains its usage policy. Many of the best sources for images

284 Lists

on the web have explicit guidelines for using their images. Some images are
absolutely free, some are free for use with citation, some can be used in certain
contexts but not others, and some are completely restricted. For example, the website
for the National Aeronautics and Space Administration (https://www.nasa.gov)
has an extensive library of images about the exploration of space. As the website
explains, you can use these images freely as long as you include the citation “Courtesy
NASA/JPL-Caltech” along with the image. The EarthImage.py program follows
these guidelines and includes the requested citation on the graphics window.

Representation of images
In Python, an image is a two-dimensional array in which the image as a whole is a
sequence of rows, and each row is a sequence of individual pixel values. The value
of each element indicates the color that should appear in the corresponding pixel
position on the screen. From Chapter 4, you know that you can specify a color in
Python by indicating the intensity of each of the primary colors. Each of those
intensities ranges from 0 to 255 and therefore fits in an eight-bit byte. The color as a
whole is stored in a 32-bit integer that contains the red, green, and blue intensity
values along with a measure of the transparency of the color, represented by the Greek
letter alpha (a). For the opaque colors used in most images, the value of a is always
255 in decimal, which is 11111111 in binary or FF in hexadecimal.

As an example, the following diagram shows the four bytes that form the color
"Pink", which Python defines using the hexadecimal values FF, C0, and CB as the
red, green, and blue components. Translating those values to their binary form gives
you the following:

 a red green blue

The fact that Python packs all the information about a color into a 32-bit integer
means that you can store an image as a two-dimensional array of integers. Each
element of the entire array contains one row of the image. In keeping with Python’s
coordinate system, the rows of an image are numbered from 0 starting at the top.
Each row is an array of integers representing the value of each pixel as you move
from left to right.

Using the GImage class to manipulate images
The GImage class in the graphics library exports several methods that make it possible
to perform basic image processing. As long as certain conditions are met concerning
the source of the image, you can obtain the two-dimensional array of pixel values by
calling get_pixel_array. Thus, if the variable image contains a GImage, you can
retrieve its pixel array by calling

 8.7 Image processing 285

array = image.get_pixel_array()

The height of the image is equal to the number of rows in the pixel array. The width
is the number of elements in any of the rows, each of which has the same length in a
rectangular image. Thus, you can initialize variables to hold the height and width of
the pixel array like this:

height = len(array)
width = len(array[0])

If you need to create a new pixel array with dimensions width and height, the best
approach is to use list comprehension like this:

array = [[0 for i in height] for j in width]

The GImage class includes several methods to simplify the task of manipulating
image data. These methods appear in Figure 8-5. As you can see from the first
section of the figure, the GImage class supports two constructors, one for reading data
from a file and one to construct a GImage from a two-dimensional array. Given an
initialized image, the get_pixel_array method returns the array of pixels stored
within the image. The GImage class also exports class methods for retrieving the red,
green, and blue components of a pixel from an integer and for assembling red, green,
and blue values into the corresponding integer form.

286 Lists

These new capabilities in the GImage class make it possible for you to write
programs to manipulate images, in much the same way that a commercial system like
Adobe Photoshop™ does. The general strategy looks like this:

1. Use get_pixel_array to obtain the array of pixel values.
2. Perform the desired transformation by manipulating the values in the array.
3. Call the GImage function to create a new object from the modified array.

The following function definition uses this pattern to flip an image vertically:

def flip_vertical(image):
 array = image.get_pixel_array()
 array.reverse()
 return new GImage(array)

A more substantive problem is that of converting a color image to grayscale, a
format in which all the pixels are either black, white, or some intermediate shade of
gray. To do so, you need to go through each element in the pixel array and replace
each pixel with a shade of gray that approximates the apparent brightness of that
color. In computer graphics, that apparent brightness is called luminance.

The goal of a grayscale conversion is to produce a shade of gray that approximates
the brightness of each pixel to the eye. As it turns out, luminance is controlled much
more strongly by how much green appears in the pixel than by the amount of red or
blue. Red and blue tend to make an image appear darker, while green tends to lighten
it up. The formula for luminance adopted by the standards committee responsible for
television signals in the United States looks like this:

luminance = 0.299 x red + 0.587 x green + 0.114 x blue

A complete program to produce a grayscale image appears in Figure 8-6 on the
next page. The main program begins by allowing the user to choose an image file. It
then loads the image and displays the original and grayscale images side by side:

 8.7 Image processing 287

GrayscaleImage.py

288 Lists

 Summary
In this chapter, you have learned how to use lists, which are the data structure that
Python uses to represent an ordered collection of data. The important points
introduced in this chapter include:

• Most programming languages define a type for storing a sequence of elements.

Historically, this type of sequential structure is called an array. Python supports
the idea of an array using a more general structure called a list that implements
additional operations.

• Each element in a list is identified by an integer index that indicates its position in
the list. Index numbers begin with 0.

• Python lists are most often created by enclosing a list of the elements in square
brackets, separated by commas.

• You can select a particular element of a list by indicating the index of the desired
element in square brackets after the list name. This operation is called selection.

• Both lists and strings are examples of a more general class of objects called
sequences, which means that these classes share a set of common operations
associated with sequences.

• Lists in Python are stored as references to the memory containing the values of
the list. An important implication of this design is that passing a list as a parameter
means that the function ands its caller see the same list of elements.

• Lists support a variety of operations implemented as methods. The most important
list methods are listed in Figure 8-1 on page 245.

• Python includes a syntactic form called list comprehension, which makes it easy
to create a list using a for loop and an optional conditional test.

• A file is a collection of data stored in electronic form and distinguished from other
files by an identifying filename.

• Files can contain data of different types. This book works only with text files,
which are sequences of characters.

• The open method creates a file handle, which you can then use to read data from
or write data to a file.

• The methods read, readline, and readlines are useful in reading data from a
text file; the methods write and writelines are used to write data to a file.

• Python’s try-except statement makes it possible for programs to respond to
exceptional conditions, such as a requested input file that doesn’t exist.

• Python supports multidimensional arrays with any number of subscripts. Those
arrays are represented as lists of lists.

 Review questions 289

• Images are represented as two-dimensional arrays of integers, each of which
specifies the red, green, and blue components of the pixel color.

• The Portable Graphics Library includes a class called GImage that supports images
in a way that gives clients access to the underlying pixel array.

 Review questions
1. Define the following terms as they apply to lists: element, index, length, and

selection.

2. How would you create a list called dwarves containing the names of the 13

dwarves who arrived at Bilbo’s doorstep in J. R. R. Tolkien’s fantasy The
Hobbit? Their names, in the order in which they appeared, are Dwalin, Balin,
Kili, Fili, Dori, Nori, Ori, Oin, Gloin, Bifur, Bofur, Bombur, and Thorin.

3. How do you determine the length of a list?

4. True or false: Lists violate the rules for parameter passing by sharing values

rather than copying them.

5. Describe the Python syntax for list comprehension. What are the advantages of

using this syntactic shorthand?

6. What are the principal differences between a text file and a string?

7. Suppose that you have a variable filename that contains the name of a file.

What code would you use to read the contents of that file as a single string?

8. If you are using the readline method to read a file line by line, how do you tell

the difference between a blank line in the file and the end of the file?

9. What is an exception?

10. What is the general form of the try statement?

11. What is a multidimensional array?

12. In your own words, explain why the text attaches a bug symbol to the following

code, which is attempting to initialize a Tic-Tac-Toe board to a 3 ´ 3 matrix, each
of whose elements is the empty string:

board = [[""] * 3] * 3

What is the correct statement for accomplishing this task?

290 Lists

13. What class from the graphics library makes it possible to display images on the
graphics window?

14. Describe how images are represented internally.

15. How do you extract the pixel array from an image?

16. Given a pixel array, how do you determine the width and height of the image?

 Exercises
1. In statistics, a collection of data values is usually referred to as a distribution. A

primary purpose of statistical analysis is to find ways to compress the complete
set of data into summary statistics that express properties of the distribution as a
whole. The most common statistical measure is the mean (traditionally denoted
by the Greek letter µ), which is simply the traditional average. Another common
measure is the standard deviation (traditionally denoted as s), which provides
an indication of how much the values in a distribution x1, x2, . . . , xn differ from
the mean. If you are computing the standard deviation of a complete distribution
as opposed to a sample, the standard deviation can be expressed as follows:

s =

The uppercase sigma (S) indicates a summation of the quantity that follows,
which in this case is the square of the difference between the mean and each
individual data point.

Create a library module called stats that exports the functions mean and
stdev, each of which takes a list of numbers representing a distribution and
returns the corresponding statistical measure. Make sure that the comments are
sufficient for clients to understand how to use these functions.

2. Implement a function create_index_array(n) that returns a list containing n

integer elements, each of which is its own index. For example, calling
create_index_array(8) should return the list

3. Use the list, sort, and join methods to write a function sort_letters that

rearranges the characters in a string so that they appear in lexicographic order.
For example, calling sort_letters("cabbage") should return the string
"aabbceg".

 Exercises 291

4. A histogram is a graph that displays a set of values by dividing the data into
separate ranges and then indicating how many data values fall into each range.
For example, given the set of exam scores

100, 95, 47, 88, 86, 92, 75, 89, 81, 70, 55, 80

a traditional histogram would have the following form:

The asterisks in the histogram indicate one score in the 40s, one in the 50s, five
in the 80s, and so forth. When you generate histograms on the console, however,
it is easier to display them sideways on the page, like this:

Write a program called Histogram that allows the user to select a file
containing exam scores ranging from 0 to 100 and then displays a histogram of
those scores, divided into the ranges 0–9, 10–19, 20–29, and so forth, up to the
range containing only the value 100. Your function should match the format
shown in the sample run as closely as possible.

5. In the third century BCE, the Greek astronomer Eratosthenes developed an

algorithm for finding all the prime numbers up to some upper limit N. To apply
the algorithm, you start by writing down a list of the integers between 2 and N.
For example, if N were 20, you would begin by writing the following list:

You then circle the first number in the list, indicating that you have found a
prime. Whenever you mark a number as a prime, you go through the rest of the
list and cross off every multiple of that number, since none of those multiples
can itself be prime. Thus, after executing the first cycle of the algorithm, you
will have circled the number 2 and crossed off every multiple of 2, as follows:

292 Lists

To complete the algorithm, you simply repeat the process by circling the first
number in the list that is neither crossed off nor circled, and then crossing off its
multiples. In this example, you would circle 3 as a prime and cross off all
multiples of 3 in the rest of the list, which would result in the following state:

Eventually, every number in the list will either be circled or crossed out, as shown
in this diagram:

The circled numbers are the primes; the crossed-out numbers are composites.
This algorithm is called the sieve of Eratosthenes.

Write a program that uses the sieve of Eratosthenes to generate a list of the
primes between 2 and 1000.

6. Write a function create_identity_matrix(n) that returns an n ´ n matrix in

which the elements are 0 except for the main diagonal in which the value is 1. If
you use list comprehensions and the fact that the built-in int function converts
Boolean values to 0 and 1, the implementation should be a single line.

7. Write a program that uses the filechooser library to let the user select an input

file and then prints on the console the longest line contained in that file.

8. Modify the program from the preceding exercise so that your program prints out

the lines of the selected file, sorted in decreasing order by length.

9. Books were bks and Robin Hood was Rbinhd. Little Goody Two

Shoes lost her Os and so did Goldilocks, and the former became a
whisper, and the latter sounded like a key jiggled in a lck. It was
impossible to read “cockadoodledoo” aloud, and parents gave up
reading to their children, and some gave up reading altogether. . . .

—James Thurber, The Wonderful O, 1957

In James Thurber’s children’s story The Wonderful O, the island of Ooroo is
invaded by pirates who set out to banish the letter O from the alphabet. Such
censorship would be much easier with modern technology. Write a program that
asks the user for an input file, an output file, and a string of letters to be
eliminated. The program should then copy the input file to the output file,
deleting any of the letters that appear in the string of censored letters, no matter
whether they appear in uppercase or lowercase form.

 Exercises 293

As an example, suppose that you have a file containing the first few lines of
Thurber’s novel, as follows:

If you run your program with the input

it should write the following file:

If you get greedy and remove all the vowels by supplying the string "aeiou"
as the letters to banish, the contents of the output file corresponding to
TheWonderfulO.txt would be

10. A magic square is a two-dimensional array of integers in which the rows,

columns, and diagonals all add up to the same value. One of the most famous
magic squares appears in the 1514 engraving Melencolia I by Albrecht Dürer
shown in Figure 8-7 at the top of the next page, in which a 4´4 magic square
appears at the upper right, just under the bell. In Dürer’s square, which can be
read more easily in the magnified inset shown at the right of the figure, all four
rows, all four columns, and both diagonals add up to 34.

A more familiar example is the following 3´3 magic square in which each of

the rows, columns, and diagonals add up to 15, as shown:

294 Lists

Implement a function is_magic_square that takes a two-dimensional array
of integers and then tests whether those integers form a magic square. Your
function should return False if the two-dimensional array is not square.

 Exercises 295

11. In the game of Minesweeper, a player searches for hidden mines on a rectangular
grid that might—for a very small board—look like this:

One way to represent that grid in Python is to use a list of Boolean values marking
mine locations, where True indicates the location of a mine. You could, for
example, initialize the variable mine_locations to this list by writing the
following declaration:

mine_locations = [
 [True, False, False, False, False, True],
 [False, False, False, False, False, True],
 [True, True, False, True, False, True],
 [True, False, False, False, False, False],
 [False, False, True, False, False, False],
 [False, False, False, False, False, False]
]

Write a function count_mines that takes a two-dimensional Boolean array
representing the location of the mines and returns a new array with the same
dimensions that indicates how many mines are in the neighborhood of each
location. If a location contains a mine, the corresponding entry in the matrix
returned by count_mines should be -1. Thus, the assignment statement

counts = count_mines(mine_locations)

should initialize counts as follows:

296 Lists

12. Over the last couple of decades, a logic puzzle called Sudoku has become popular
throughout the world. In Sudoku, you start with a 9´9 array of integers in which
some of the cells have been filled with a digit between 1 and 9 as shown on the
left side of Figure 8-8. Your job in the puzzle is to fill each of the empty spaces
with a digit between 1 and 9 so that each digit appears exactly once in each row,
each column, and each of the smaller 3´3 squares. The solution appears at the
right side of Figure 8-8. Each Sudoku puzzle is carefully constructed so that
there is only one solution.

Although the algorithmic strategies you need to solve Sudoku puzzles lie
beyond the scope of this book, you can easily write a function that checks to see
whether a proposed solution follows the Sudoku rules against duplicating values
in a row, column, or outlined 3´3 square. Write a function named
check_sudoku_solution that takes a 9´9 array and returns True if that array
obeys all the rules for a Sudoku square.

13. Write a method flip_horizontal that works similarly to flip_vertical as

presented in the chapter except that it reverses the image in the horizontal
dimension.

14. Write a method rotate_left that takes a GImage and produces a new GImage

in which the original has been rotated 90 degrees to the left.

C H A P T E R 9
Searching and Sorting

I conclude that there are two ways of constructing a software
design: One way is to make it so simple that there are
obviously no deficiencies and the other way is to make it so
complicated that there are no obvious deficiencies. The first
method is far more difficult.

—C. A. R. Hoare, Turing Award Lecture, 1981

C. A. R. Hoare

Charles Antony Richard (Tony) Hoare is Professor emeritus of Computer Science at Oxford University and
a senior researcher at Microsoft’s Research Laboratory in Cambridge, England. After completing a degree
in philosophy at Oxford in 1956, Hoare became fascinated by the emerging world of computer science.
During his graduate-school years, Hoare developed a highly efficient sorting algorithm called Quicksort,
which is described in this chapter and remains in active use today. He also led the effort during the 1960s to
create the first commercial compiler for Algol 60, a programming language that served as an important model
for subsequent languages. Professor Hoare received the ACM Turing Award in 1980.

298 Searching and Sorting

As you have certainly discovered by this point in your study of programming, there
are usually many different strategies that you can use to solve a problem. Choosing
among those different strategies is a central part of the programming process and
typically requires you to evaluate several possible approaches to determine which is
most appropriate to the problem at hand. One important consideration is efficiency.
Algorithms that run more efficiently will presumably require less computing time and
deliver the desired results more quickly.

This chapter explores the topic of algorithmic efficiency in the context of two
fundamental operations in which the choice of algorithm has a significant impact on
the program’s running time. Those operations are

• Searching, which is the process of finding a particular element in an array

• Sorting, which is the process of rearranging the elements in an array so that they
are stored in a well-defined order

Historically, each of these operations is defined in the context of arrays. This
chapter is therefore in some sense a continuation of the discussion of arrays and lists
from Chapter 8. This chapter, however, has another central theme that links it not
only to that chapter but also to the discussion of algorithmic strategies in Chapter 3.

As you will see as you go through the programs in this chapter, there are many
different strategies you can use to implement searching and sorting. These strategies
vary enormously in their efficiency and therefore raise more general issues about
precisely what the term efficiency means in an algorithmic context and how one might
go about measuring that efficiency. These questions form the foundation for the
subfield of computer science known as analysis of algorithms. Although a detailed
understanding of algorithmic analysis requires a reasonable facility with mathematics
and a lot of careful thought, you can get a sense of how it works by investigating the
performance of several different algorithms in an important programming domain.

 9.1 Searching
Although the search problem is usually framed as one of finding the index at which a
particular element occurs in a list, the properties of search algorithms can be
illustrated just as well in the context of the simpler problem of determining whether
an element exists in the list at all. This operation is precisely the one implemented
by Python’s in operator. The expression

key in list

has the value True if key exists at any position in the list and the value False if it
doesn’t.

 9.1 Searching 299

To make this version of the search problem more concrete—and more useful as
well—suppose that you are writing a program to play a word game like Scrabble and
need to know whether a particular string is a valid English word. To do so, you will
need to have access to a list of English words so that you can compare the word you
have against the elements of that list. That list, of course, has conceptual similarities
to a dictionary, but lacks the associated definitions. Computer scientists commonly
refer to a word list without definitions as a lexicon.

As you know from 3, the libraries associated with this book include a module
called english that exports a list called ENGLISH_WORDS that contains 127,145 words
along with a function is_english_word(s) that checks to see whether s is a valid
English word. Although you could simply use the in operator to ask whether

s in ENGLISH_WORDS

determining the answer would take considerable time bccause Python would have to
check through the entire list in ENGLISH_WORDS. The goal of the next two sections is
to explore alternative strategies for implementing this test to find one that offers
considerably better performance.

The linear-search algorithm
The simplest strategy for writing is_english_word—although not necessarily the
most efficient one—is captured in the following advice that the King of Hearts gives
the White Rabbit in Lewis Carroll’s Alice’s Adventures in Wonderland:

Begin at the beginning, and go on till you come to the end: then stop.

Turning that informal statement into an algorithm for searching is not particularly
difficult. The only modification that you need to make is that the algorithm should
also stop if it finds the value it is searching for. Thus, you might express a more
complete account of Lewis Carroll’s searching algorithm as follows:

Begin at the beginning, and go on till you either find the element you’re
looking for or come to the end. If you find the element, you know that it
exists; if you reach the end, you know that the element does not appear.

Because the process starts at the beginning and proceeds in a straight line through the
elements of the array, this algorithm is called linear search.

300 Searching and Sorting

Turning this informal strategy into a Python definition for is_english_word
requires little more than a direct translation of Lewis Carroll’s approach:

def is_english_word(s):
 s = s.lower()
 for i in range(len(ENGLISH_WORDS)):
 if s == ENGLISH_WORDS[i]:
 return True
 return False

The for loop begins at the beginning and continues until it comes to the end of the
ENGLISH_WORDS array. The function returns when it finds the word in the array or,
failing that, at the end of the for loop.

The binary-search algorithm
The version of is_english_word from the previous section runs slowly because the
linear-search algorithm has to looks at each array element in turn to check for a match.
Fortunately, the fact that the ENGLISH_WORDS array is stored in alphabetical order
makes it possible to do much better. A useful strategy for improving the efficiency
of is_english_word is to compare the word you’re looking for against the entry in
the middle of the array. If your word precedes in alphabetical order the value you
find at the middle position, you only have to search the first half of the array.
Conversely, if your word follows the value in the center position, you only have to
search the second half. Repeating this process means that you can throw away half
of the values in the array on each cycle of the search loop. This algorithm, which
appears in Figure Error! Reference source not found.-1 on the next page, is called
binary search.

After converting the parameter s to lower case to ensure that it matches the words
in the lexicon, the binary-search implementation of is_english_word begins by
setting the variables lh and rh to the leftmost and rightmost index positions in the
array. At the beginning, the leftmost index is 0, and the rightmost index is one less
than the length of the ENGLISH_WORDS array. If the string contained in s is in the
lexicon, it must lie somewhere in this range of indices. The rest of the function
consists of a loop that successively narrows this range by comparing s against the
entry in the middle of the index range and using the result of that comparison to decide
how to adjust the index bounds. The loop continues until the word is found or until
there are no elements left in the range, which means that the word is not in the lexicon.

 9.1 Searching 301

The binary-search implementation of is_english_word is important enough that
it makes sense to go through an example. Suppose that you want to check whether
lexicon is really an English word or simply part of a technical vocabulary that
computer scientists use. To do so, you can execute the following code:

if is_english_word("lexicon"):
 print("lexicon is a valid word")

The ENGLISH_WORDS array contains 127145 words, which means that the initial
values of lh and rh are 0 and 127144. On the first cycle of the loop, the code
computes the midpoint of the remaining range by averaging lh and rh, using the //
operator to ensure that the result is an integer. The code then stores this position in
the variable mid. The word at index 63572 is the unusual but nonetheless legitimate
word lightered. Since lexicon comes before lightered in lexicographic order,
is_english_word needs to search only the indices between lh and mid - 1.
Substituting the current values of these variables shows that the new search range is
limited to the indices between 0 and 63571. The process then continues until it either
finds the specified word or there are no elements left in the index range.

302 Searching and Sorting

Calling is_english_word("lexicon") makes the sequence of comparisons
shown in the following console log:

As you can see from the trace output, the binary-search algorithm is able to find
the word lexicon by making just 12 comparisons, even though the lexicon contains
127,145 words. The linear-search algorithm has to look at every one of those words,
which means that the binary-search approach reduces the number of required
comparisons by a factor of 10,000.

 9.2 Simple strategies for sorting
Although the differences in efficiency between linear search and binary search are
certainly significant, the importance of choosing the right algorithm is even more
evident in the problem of sorting, which consists of rearranging the elements in a list
so that they appear in some well-defined order. For example, suppose you have stored
the following integers in the variable array, which is implemented as a list in Python:

 9.2 Simple strategies for sorting 303

Your mission is to write a function sort(array) that rearranges the elements into
ascending order, like this:

The selection sort algorithm
There are many algorithms you could choose to sort an array into ascending order.
One of the simplest is called selection sort, which is implemented in Figure 9-2.
Given an array of size N, the selection sort algorithm goes through each element
position and finds the value that should occupy that position in the sorted array. When
it finds the appropriate element, the algorithm exchanges that element with the value
previously occupying the desired position to ensure that no elements are lost. Thus,
on the first cycle, the algorithm finds the smallest element and swaps it with the first
element, which appears at index position 0. On the second cycle, it finds the smallest
remaining element and swaps it with the second element. Thereafter, the algorithm
continues this strategy until all positions in the array are correctly ordered.

304 Searching and Sorting

For example, if the initial contents of the array are

the first cycle through the outer for loop identifies the 19 in index position 5 as the
smallest value in the entire array and then swaps it with the 56 in index position 0 to
leave the following configuration:

On the second cycle, the algorithm finds the smallest element between positions 1
and 7, which turns out to be the 25 in position 1. The program goes ahead and
performs the exchange operation, leaving the array unchanged from that in the
preceding diagram. On each subsequent cycle, the algorithm performs a swap
operation to move the next smallest value into its appropriate final position. When
the for loop is complete, the entire array is sorted.

Empirical measurement of performance
How efficient is the selection sort algorithm as a strategy for sorting? To answer
questions of this kind, it helps to collect empirical data about how long it takes a
computer to complete a task for problems of varying size. When I ran the selection
sort algorithm on my MacBook Pro laptop, for example, I observed the following
running times, where N represents the number of elements in the array:

N Running time
 10 0.000013 sec
 100 0.000581 sec
 1000 0.0579 sec
 10,000 5.738 sec
 100,000 574.2 sec
 1,000,000 57,395.0 sec

For an array of 100 integers, the selection sort algorithm completes its work in less
than a millisecond. Even for 10,000 integers, this implementation of sort takes just
a few seconds, which seems fast enough in terms of our human sense of time. As the
array sizes get larger, however, the performance of selection sort begins to go
downhill. For an array of 100,000 integers, the algorithm requires 574 seconds, which
is almost 10 minutes. If you’re sitting in front of your computer waiting for it to
reply, that seems a long time. But that number pales into insignificance when you
compare it to the time required to sort 1,000,000 integers, which—at least when coded
in Python using the selection sort algorithm—takes almost 16 hours.

 9.2 Simple strategies for sorting 305

The performance of selection sort rapidly gets worse as the array size increases.
As you can see from the timing data, every time you multiply the number of values
by 10, the time required to sort the array goes up a hundredfold. Sorting a list of ten
million numbers would therefore take somewhere around 1600 hours, which is on the
order of 66 days. If your business required sorting arrays on this scale, you would
have no choice but to find a more efficient approach.

Analyzing the performance of selection sort
What makes selection sort perform so badly as the number of values to be sorted
becomes large? To answer this question, it helps to think about what the algorithm
has to do on each cycle of the outer loop. To correctly determine the first value in the
array, the selection sort algorithm must consider all N elements as it searches for the
smallest value. Thus, the time required on the first cycle of the loop is presumably
proportional to N. For each of the other elements in the array, the algorithm performs
the same basic steps but looks at a smaller number of elements each time. It looks at
N–1 elements on the second cycle, N–2 on the third, and so on, so the total running
time is roughly proportional to

N + N–1 + N–2 + . . . + 3 + 2 + 1

Because it is difficult to work with an expression in this expanded form, it is useful
to simplify it by applying a bit of mathematics. As you may have learned in an algebra
course, the sum of the first N integers is given by the formula

or, after evaluating the multiplication sign in the numerator,

If you write out the values of this function for various values of N, you get a table
that looks like this:

N
 10 55
 100 5050
 1000 500,500
 10,000 50,005,000
 100,000 5,000,050,000
 1,000,000 500,000,500,000

Because the running time of the selection sort algorithm is presumably related to the
amount of work the algorithm needs to do, the values in this table should be roughly
proportional to the observed execution time of the algorithm, which turns out to be

306 Searching and Sorting

true. If you look at the measured timing data for selection sort in Figure 9-3, for
example, you discover that the algorithm requires 574.2 seconds to sort 100,000
numbers. In that time, the selection sort algorithm has to perform 50,005,000
operations in its innermost loop. Assuming that there is indeed a proportionality
relationship between these two values, dividing the time by the number of operations
gives the following estimate of the proportionality constant:

 ≈ 1.15 ´ 10–7 seconds

If you apply this same proportionality constant to the other entries in the table, you
discover that the formula

1.22 ´ 10–7 seconds ´

offers a reasonable approximation of the running time for all but the smallest values
of N, where the time required for other statements in the program have more
significance. The table in Figure 9-3 includes these estimated times and the relative
error between the observed and estimated times.

 9.3 Computational complexity
The problem with carrying out a detailed analysis like the one shown in Figure 9-3 is
that you end up with too much information. Although it is occasionally useful to have
a formula for predicting exactly how long a program will take, you can usually get
away with more qualitative measures. The reason that selection sort is impractical
for large values of N has little to do with the precise timing characteristics of a
particular implementation running on the laptop I happen to have at the moment. The
problem is simpler and more fundamental. At its essence, the problem with selection
sort is that doubling the size of the input array increases the running time of the
selection sort algorithm by a factor of four, which means that the running time grows
more quickly than the number of elements in the array.

 9.3 Computational complexity 307

The most valuable qualitative insights you can obtain about algorithmic efficiency
are usually those that help you understand how the performance of an algorithm
responds to changes in problem size. For algorithms that operate on numbers, it
generally makes sense to let the numbers themselves represent the problem size. For
algorithms that operate on arrays, you can use the number of elements. When
evaluating algorithmic efficiency, computer scientists traditionally use the letter N to
indicate the size of the problem, no matter how it is calculated. The relationship
between N and the performance of an algorithm as N becomes large is called the
computational complexity of that algorithm.

Big-O notation
Computer scientists use a special formulation called big-O notation to denote the
computational complexity of algorithms. Big-O notation was introduced by the
German mathematician Paul Bachmann in 1892—long before the development of
computers. The notation itself is very simple and consists of the letter O, followed
by a formula enclosed in parentheses. When it is used to specify computational
complexity, the formula is usually a simple function involving the problem size N.
For example, in this chapter you will soon encounter the big-O expression

O(N2)

which reads aloud as “big-oh of N squared.”

Big-O notation is used to specify qualitative approximations and is ideal for
expressing the computational complexity of an algorithm. Coming as it does from
mathematics, big-O notation has a precise definition, which appears later in this
chapter in the section entitled “A formal definition of big-O.” At this point, however,
it is more important for you to gain some intuition into what big-O means.

Standard simplifications of big-O
When you use big-O notation to express computational complexity, the goal is to
offer a qualitative insight as to how changes in N affect the algorithmic performance
as N becomes large. Because big-O notation is not intended to be a quantitative
measure, it is not only appropriate but desirable to make the formula inside the
parentheses as simple as possible. The most common simplifications you can make
when using big-O notation to express computational complexity are as follows:

1. Eliminate any term whose contribution to the total ceases to be significant as N

becomes large. When a formula involves several terms added together, one of
the terms often grows much faster than the others and ends up dominating the
entire expression as N becomes large. For large values of N, this term alone will
control the running time of the algorithm, and you can ignore the other terms in
the formula entirely.

308 Searching and Sorting

2. Eliminate any constant factors. When you calculate computational complexity,
your main concern is how running time changes as a function of the problem size
N. Constant factors have no effect on the overall pattern. If you bought a
machine that was twice as fast as your old one, any algorithm that you executed
on your machine would run twice as fast as before for every value of N. The
growth pattern, however, would remain exactly the same. Thus, you can ignore
constant factors when you use big-O notation.

The computational complexity of selection sort
You can apply the simplification rules from the preceding section to derive a big-O
expression for the computational complexity of selection sort. From the analysis in
the section “Analyzing the performance of selection sort” earlier in the chapter, you
know that the running time of the selection sort algorithm for an array of N elements
is proportional to

Although it would be mathematically correct to use this formula directly in the big-O
expression

O()

you would never do so in practice because the formula inside the parentheses is not
expressed in the simplest form.

The first step toward simplifying this relationship is to recognize that the formula
is actually the sum of two terms, as follows:

 +

You then need to consider the contribution of each of these terms to the total formula
as N increases in size, which is illustrated by the following table:

N
 10 50 5 55
 100 5000 50 5050
 1000 500,000 500 500,500
 10,000 50,000,000 5000 50,005,000
 100,000 5,000,000,000 50,000 5,000,050,000

 9.3 Computational complexity 309

As N increases, the term involving N2 quickly dominates the term involving N. As a
result, the simplification rule allows you to eliminate the smaller term from the
expression. Even so, you would not write that the computational complexity of
selection sort is

O()

because you can eliminate the constant factor. The simplest expression you can use
to indicate the complexity of selection sort is

O(N2)

This expression captures the essence of the performance of selection sort. As the size
of the problem increases, the running time tends to grow by the square of that
increase. Thus, if you double the size of the array, the running time goes up by a
factor of four. If you instead multiply the number of input values by 10, the running
time explodes by a factor of 100.

Deducing computational complexity from code
It is often possible to determine the computational complexity of a function simply
by looking at the code, as in the following function that computes the average of the
elements in an array:

def average(array):
 total = 0
 for value in array:
 total += value
 return total / n

When you call this function, some parts of the code are executed only once, such as
the initialization of total to 0 and the division operation in the return statement.
These computations take a certain amount of time, but that time is constant in the
sense that it doesn’t depend on the size of the array. Code whose execution time does
not depend on the problem size is said to run in constant time, which is expressed in
big-O notation as O(1).

The designation O(1) can seem confusing, because the expression inside the
parentheses does not depend on N. In fact, this lack of any dependency on N is the
whole point of the O(1) notation. As you increase the size of the problem, the time
required to execute code whose running time is O(1) increases in exactly the same
way that 1 increases; in other words, the running time does not increase at all.

310 Searching and Sorting

There are, however, other parts of the average function that are executed exactly
N times, once for each cycle of the for loop. These components include the internal
calculations in the for loop to produce the next element and the statement

total += value

that constitutes the loop body. Although any single execution of this part of the
computation takes a fixed amount of time, the fact that these statements are executed
N times means that their total execution time is directly proportional to the array size.
The computational complexity of this part of the average function is O(N), which is
commonly called linear time.

The total running time for average is therefore the sum of the times required for
the constant parts and the linear parts of the algorithm. As the size of the problem
increases, however, the constant term becomes less and less relevant. By exploiting
the simplification rule that allows you to ignore terms that become insignificant as N
gets large, you can assert that the average function runs in O(N) time.

You could also predict this result just by looking at the loop structure of the code.
For the most part, the individual expressions and statements—unless they involve
function calls that must be accounted separately—run in constant time. What matters
in terms of computational complexity is how often those statements are executed. For
many programs, you can determine the computational complexity simply by finding
the piece of the code that is executed most often and determining how many times it
runs as a function of N. In the case of the average function, the body of the loop is
executed n times. Because no part of the code is executed more often than this, you
can predict that the computational complexity will be O(N).

The selection sort function can be analyzed in a similar way. The most frequently
executed part of the code is the comparison in the statement

if array[i] < array[rh]:

That statement is nested inside two for loops whose limits depend on the value of N.
The inner loop runs N times as often as the outer loop, which implies that the inner
loop body is executed O(N2) times. Algorithms like selection sort that exhibit O(N2)
performance are said to run in quadratic time.

Worst-case versus average-case complexity
In some cases, the running time of an algorithm depends not only on the size of the
problem but also on the specific characteristics of the data. For example, consider
the function

 9.3 Computational complexity 311

def linear_search(key, array):
 for i in range(len(array)):
 if key == array[i]:
 return i
 return -1

which uses the linear-search algorithm to return the first index position in array at
which the value key appears or the sentinel value –1 if the value key does not appear
anywhere in the array. Because the for loop in the implementation executes N times,
you expect the performance of linear_search, as its name implies, to be O(N).

On the other hand, some calls to linear_search can be executed very quickly.
Suppose, for example, that the key element you are searching for happens to be in the
first position in the array. In that case, the body of the for loop will run only once.
If you’re lucky enough to search for a value that always occurs at the beginning of
the array, linear_search will run in constant time.

When you analyze the computational complexity of a program, you are rarely
interested in the minimum possible time. In general, computer scientists tend to be
concerned about analyzing the following two types of complexity:

• Worst-case complexity. The most common type of complexity analysis consists

of determining the performance of an algorithm in the worst possible case. Such
an analysis is useful because it allows you to set an upper bound on the
computational complexity. If you analyze for the worst case, you can guarantee
that the performance of the algorithm will be at least as good as your analysis
indicates. You might sometimes get lucky, but you can be confident that the
performance will not get any worse.

• Average-case complexity. From a practical point of view, it is often useful to
consider how well an algorithm performs if you average its behavior over all
possible sets of input data. Particularly if you have no reason to assume that the
specific input to your problem is in any way atypical, the average-case analysis
provides the best statistical estimate of actual performance. Unfortunately,
average-case analysis is usually more difficult to carry out and typically requires
considerable mathematical sophistication.

The worst case for the linear_search function occurs when the key is not in the

array at all. When the key is not there, the function must complete all n cycles of the
for loop, which means that its performance is O(N). If the key is known to be in the
array, the for loop will be executed about half as many times on average, which
implies that average-case performance is also O(N). As you will discover in the
section on “The Quicksort algorithm” later in this chapter, the average-case and
worst-case performances of an algorithm sometimes differ in qualitative ways, which

312 Searching and Sorting

means that in practice it is often important to take both performance characteristics
into consideration.

 9.4 Divide-and-conquer strategies
At this point, you know considerably more about complexity analysis than you did
when you started the chapter. However, you are no closer to solving the practical
problem of how to write a sorting algorithm that is more efficient for large arrays.
The selection sort algorithm is clearly not up to the task, because the running time
increases in proportion to the square of the input size. The same is true for most
sorting algorithms that process the elements of an array in a linear order. To develop
a better sorting algorithm, you need a qualitatively different approach.

Oddly enough, the key to finding a better sorting strategy lies in recognizing that
the quadratic behavior of algorithms like selection sort has a hidden virtue. The basic
characteristic of quadratic complexity is that, as the size of a problem doubles, the
running time increases by a factor of four. The reverse, however, is also true. If you
divide the size of a quadratic problem by two, you decrease the running time by that
same factor of four. This fact suggests that dividing an array in half and then applying
a recursive divide-and-conquer approach might reduce the required sorting time.

To make this idea more concrete, suppose you have a large array that you need to
sort. What happens if you divide the array into two halves and then use the selection
sort algorithm to sort each of those pieces? Because selection sort is quadratic, each
of the smaller arrays requires one quarter of the original time. You need to sort both
halves, of course, but the total time required to sort the two smaller arrays is still only
half the time that would have been required to sort the original array. If it turns out
that sorting two halves of an array simplifies the problem of sorting the complete
array, you will be able to reduce the total time substantially. More importantly, once
you discover how to improve performance at one level, you can use the same
algorithm recursively to sort each half.

To determine whether a divide-and-conquer strategy is applicable to the sorting
problem, you need to answer the question of whether dividing an array into two
smaller arrays and then sorting each one helps to solve the general problem. As a
way to gain some insight into this question, suppose that you start with an array
containing the following eight elements:

If you divide the array of eight elements into two arrays of length four and then sort
each of those smaller arrays—keep in mind that the recursive leap of faith means you

 9.4 Divide-and-conquer strategies 313

can assume that the recursive calls work correctly—you get the following situation
in which each of the smaller arrays is sorted:

How useful is this decomposition? Remember that your goal is to take the values out
of these smaller arrays and put them back into the original array in the correct order.
How does having these smaller sorted arrays help you accomplish that goal?

As it happens, reconstructing the complete array from the smaller sorted arrays is
a simpler problem than sorting itself. The required technique, called merging,
depends on the fact that the first element in the complete ordering must be either the
first element in a1 or the first element in a2, whichever is smaller. In this example,
the first element you want is the 19 in a2. If you add that element to an array of the
right length and cross it out of a2, you get the following configuration:

Once again, the next element can only be the first unused element in a1 or a2. This
time, you compare the 25 from a1 against the 30 in a2 and choose the former:

You can easily continue this process of choosing the smaller value from a1 or a2 until
you have reconstructed the entire array, which will look like this:

314 Searching and Sorting

The merge sort algorithm
The merge operation, combined with recursive decomposition, gives rise to a sorting
algorithm called merge sort, which requires the following steps:

1. Check to see if the length of the array is 0 or 1. If so, it must already be sorted.
2. Divide the array into two smaller arrays, each of which is half the size.
3. Sort each of the smaller arrays recursively.
4. Merge the two sorted arrays back into the original one.

The code for the merge sort algorithm, shown in Figure 9-4, divides neatly into
two functions: sort and merge. The code for sort follows directly from the outline

 9.4 Divide-and-conquer strategies 315

of the algorithm. After checking for the special case, the algorithm uses slicing to
divide the original array into two smaller ones, sorts these arrays recursively, and then
calls merge to reassemble the complete solution.

Most of the work is done by the merge function, which takes the original array
along with the smaller arrays a1 and a2. The heart of the merge function is the for
loop that fills each position in array. On each cycle of the loop, the function selects
the smaller element from a1 or a2 (after first checking whether any elements are left)
and copies that value to the next free slot in the original array.

The computational complexity of merge sort
You now have an implementation of the sort function based on the strategy of
divide-and-conquer. How efficient is it? You can measure its efficiency by sorting
arrays of numbers and timing the result, but it is helpful to start by thinking about the
algorithm in terms of its computational complexity.

When you call the merge sort implementation of sort on a list of N numbers, the
running time can be divided into two components:

1. The amount of time required to execute the operations at the current level of the

recursive decomposition

2. The time required to execute the recursive calls

At the top level of the recursive decomposition, the cost of performing the
nonrecursive operations is proportional to N. The loop to fill the subsidiary arrays
accounts for N cycles, and the call to merge has the effect of refilling the original N
positions in the array. If you add these operations and ignore the constant factor, you
discover that the complexity of any single call to sort—not counting the recursive
calls within it—requires O(N) operations.

But what is the cost of the recursive operations? To sort an array of size N, you
must recursively sort two arrays of size N / 2. Each of these operations requires some
amount of time. If you apply the same logic, you quickly determine that sorting each
of these smaller arrays requires time proportional to N / 2 at that level of the recursive
decomposition, plus whatever time is required by any further recursive calls. The
same process then continues until you reach the simple case in which the arrays
consist of a single element or no elements at all.

The total time required to solve the problem is the sum of the time required at each
level of the recursive decomposition. In general, the decomposition has the structure
shown in Figure 9-5. As you move down through the recursive hierarchy, the arrays
get smaller, but more numerous. The amount of work done at each level, however,

316 Searching and Sorting

is always directly proportional to N. Determining the total amount of work is thus a
question of finding out how many levels there will be.

At each level of the hierarchy, the value of N is divided by 2. The total number of
levels is therefore equal to the number of times you can divide N by 2 before you get
down to 1. Rephrasing this problem in mathematical terms, you need to find a value
of k such that

N = 2k

Solving the equation for k gives you

k = log2N

Because the number of levels is log2N and the amount of work done at each level is
proportional to N, the total amount of work is proportional to N log2N.

Unlike other scientific disciplines, in which logarithms are expressed in terms of
powers of 10 (common logarithms) or the mathematical constant e (natural
logarithms), computer science tends to use binary logarithms, which are based on
powers of 2. Logarithms computed using different bases differ only by a constant
factor, and it is therefore traditional to omit the logarithmic base when you talk about
computational complexity. Thus, the computational complexity of merge sort is
usually written as

O(N log N)

 9.5 Standard complexity classes 317

Comparing N2 and N log N performance
But how much better is an algorithm that runs in O(N log N) time than one that
requires O(N2)? One way to assess the level of improvement is to look at empirical
data to get a sense of how the running times of the selection and merge sort algorithms
compare. That timing information appears in Figure 9-6. For 10 items, this
implementation of selection sort is twice as fast as merge sort. By the time you get
up to 100,000 items, however merge sort is faster by nearly three orders of magnitude.
For large arrays, merge sort represents a significant improvement. The numbers in
both columns grow as N becomes larger, but the N2 column grows much faster than
the N log N column. Sorting algorithms based on an N log N algorithm will therefore
be useful over a much larger range of array sizes.

 9.5 Standard complexity classes
In programming, most algorithms fall into one of several common complexity classes.
The most important complexity classes are shown in Figure 9-7, which gives the
common name of the class along with the corresponding big-O expression and a
representative algorithm in that class.

318 Searching and Sorting

The classes in Figure 9-7 are presented in strictly increasing order of complexity.
If you have a choice between one algorithm that requires O(log N) time and another
that requires O(N) time, the first will always outperform the second as N grows large.
For small values of N, terms that are discounted in the big-O calculation may allow a
theoretically less efficient algorithm to outperform one that has a lower computational
complexity. On the other hand, as N grows larger, there will always be a point at
which the theoretical difference in efficiency becomes the deciding factor.

The differences in efficiency between these classes are in fact profound. You can
begin to get a sense of how the different complexity functions stand in relation to one
another by looking at the graph in Figure 9-8, which plots these complexity functions
on a traditional linear scale. Unfortunately, this graph tells an incomplete and
somewhat misleading part of the story, because the values of N are all very small.
Complexity analysis, after all, is primarily relevant as the values of N become large.
Figure 9-9 shows the same data plotted on a logarithmic scale, which gives you a
better sense of how these functions grow over a more extensive range of values.

 9.5 Standard complexity classes 319

Algorithms that fall into the constant, linear, quadratic, and cubic complexity
classes are all part of a more general family called polynomial algorithms, which
execute in time N k for some constant k. One of the useful properties of the logarithmic
plot shown in Figure 9-9 is that the graph of any function N k always comes out as a
straight line whose slope is proportional to k. If you look at the figure, it is clear that
N k—no matter how big k happens to be—invariably grows more slowly than the
exponential function represented by 2N, which continues to curve upward as the value
of N increases. This property has important implications in terms of finding practical
algorithms for real-world problems. Even though the selection sort example
demonstrates that quadratic algorithms have substantial performance problems for
large values of N, algorithms whose complexity is O(2N) are considerably less
efficient. As a general rule of thumb, computer scientists classify problems that can
be solved using algorithms that run in polynomial time as tractable, in the sense that
they are amenable to implementation on a computer. Problems for which no
polynomial-time algorithm exists are regarded as intractable.

Unfortunately, there are many commercially important problems for which all
known algorithms require exponential time. One of these is the subset-sum problem,
which consists of determining whether any subset of a set of N integers adds up to a

320 Searching and Sorting

given target value. Another is the traveling salesperson problem, which consists of
finding the shortest route by which one can visit a set of N cities connected by some
transportation system and then return to the starting point. As far as anyone knows,
it is not possible to solve either the subset-sum problem or the traveling salesman
problem in polynomial time. The best-known approaches all have exponential
performance in the worst case and are equivalent in efficiency to generating all
possible routings and comparing the cost. At least for the moment, the optimal
solution to each of these problems is to try every possibility, which requires
exponential time. On the other hand, no one has been able to prove conclusively that
no polynomial-time algorithm for these problems exist. There might be some clever
algorithm that would make these problems tractable. If so, many problems currently
believed to be difficult would move into the tractable range as well.

The question of whether problems like subset-sum or the traveling salesman
problem can be solved in polynomial time is one of the most important open questions
in computer science and indeed in mathematics. This question is known as the
P = NP problem and carries a million-dollar prize for its solution.

 9.6 The Quicksort algorithm
Even though the merge sort algorithm presented earlier in this chapter performs well
in theory and has a worst-case complexity of O(N log N), it is not used much in
practice. Instead, most sorting programs in use today are based on an algorithm called
Quicksort, developed by the British computer scientist C. A. R. (Tony) Hoare profiled
on the first page of this chapter.

Both Quicksort and merge sort employ a divide-and-conquer strategy. In the
merge sort algorithm, the original array is divided into two halves, each of which is
sorted independently. The resulting sorted arrays are then merged together to
complete the sort operation for the entire array. Suppose, however, that you took a
different approach to dividing up the array. What would happen if you started the
process by making an initial pass through the array, changing the positions of the
elements so that “small” values come at the beginning of the array and “large” values
come at the end, for some definition of the words large and small?

For example, suppose that the original array you wanted to sort was the following
one, presented earlier in the discussion of merge sort:

 9.6 The Quicksort algorithm 321

Since half of these elements are larger than 50 and half are smaller, it might make
sense to define small in this case as being less than 50 and large as being 50 or more.
If you could then find a way to rearrange the elements so that all the small elements
appear at the beginning and all the large ones at the end, you would wind up with an
array that looks something like the following diagram, which shows one of many
possible orderings in which the small and large elements appear on opposite sides of
the boundary:

When the elements are divided into parts in this fashion, all that remains to be done
is to sort each of the parts, using a recursive call to the function that does the sorting.
Since all the elements on the left side of the boundary line are smaller than all those
on the right, the final result will be a completely sorted array:

If you could always choose the optimal boundary between the small and large
elements on each cycle, this algorithm would divide the array in half each time and
end up demonstrating the same qualitative characteristics as merge sort. In practice,
the Quicksort algorithm selects some existing element in the array and uses that value
to represent the dividing line between the small and large elements. Although you
will have a chance to explore more effective strategies in the exercises, one strategy
is to pick the first element (56 in the original array) and use that to represent the
boundary value. When the array is reordered, the boundary will fall at a particular
index position rather than between two positions, as follows:

From this point, the recursive calls must sort the array between positions 0 and 3 and
the array between positions 5 and 7, leaving index position 4 right where it is.

As in merge sort, the simple case of the Quicksort algorithm is an array of size 0
or 1, which must already be sorted. The recursive part of the Quicksort algorithm
consists of the following steps:

322 Searching and Sorting

1. Choose an element to serve as the boundary between the small and large
elements. This element is called the pivot. For the moment, the simplest strategy
is to select the first element in the array.

2. Rearrange the elements in the array so that large elements are moved toward the
end of the array and small elements toward the beginning. More formally, the
goal of this step is to divide the elements around a boundary position so that all
elements to the left of the boundary are less than the pivot and all elements to the
right are greater than or possibly equal to the pivot. This processing is called
partitioning the array and is discussed in detail in the next section.

3. Sort the elements in each of the partial arrays. Because all elements to the left
of the pivot boundary are strictly less than all those to the right, sorting each of
the arrays must leave the entire array in sorted order. Moreover, since the
algorithm uses a divide-and-conquer strategy, these smaller arrays can be sorted
using a recursive application of Quicksort.

Partitioning the array
In the partition step of the Quicksort algorithm, the goal is to rearrange the elements
so that they are divided into three classes: those that are smaller than the pivot; the
pivot element itself, which is situated at the boundary position; and those elements
that are at least as large as the pivot. The tricky part about partitioning is to rearrange
the elements without using any extra storage, which is typically done by swapping
pairs of elements.

Tony Hoare’s original approach to partitioning is easy to explain in English. As
in the preceding section, the discussion that follows assumes that the pivot is stored
in the initial element position. Because the pivot value has already been selected
when you start the partitioning phase of the algorithm, you can tell immediately
whether a value is “small” or “large” by comparing it to the pivot. Hoare’s
partitioning algorithm then proceeds as follows:

1. For the moment, ignore the pivot element at index position 0 and concentrate on

the remaining elements. Use two index values, lh and rh, to record the index
positions of the first and last elements in the rest of the array, as shown:

2. Move the rh index to the left until it either coincides with lh or points to an
element containing a small value. In this example, the value 30 is already a small
value, so the rh index does not need to move.

 9.6 The Quicksort algorithm 323

3. Move the lh index to the right until it coincides with rh or points to an element
containing a value that is larger than or equal to the pivot. In this example, the
lh index must move to the right until it points to an element larger than 56, which
leads to the following configuration:

4. If the lh and rh index values have not yet reached the same position, exchange

the elements in the lh and rh positions, which leaves the array looking like this:

5. Repeat steps 2 through 4 until the lh and rh positions coincide. On the next
pass, for example, the exchange operation in step 4 swaps the 19 and the 95. As
soon as that happens, the next execution of step 2 moves the rh index to the left,
where it ends up matching the lh, as follows:

6. Unless the chosen pivot just happened to be the smallest element in the entire
array (and the code includes a special check for this case), the point at which the
lh and rh index positions coincide will be the small value that is furthest to the
right in the array. The only remaining step is to exchange that value with the
pivot element at the beginning of the array, like this:

Note that this configuration meets the requirements of the partitioning step. The
pivot value is at the marked boundary position, with every element to the left
being smaller and every element to the right being at least as large.

An implementation of sort using the Quicksort algorithm is shown in Figure 9-10.

324 Searching and Sorting

QuickSort.py

 9.6 The Quicksort algorithm 325

Analyzing the performance of Quicksort
A head-to-head comparison of the actual running times for the merge sort and
Quicksort algorithms appears in Figure 9-11. As you can see, this implementation of
Quicksort tends to run slightly faster than the implementation of merge sort given in
Figure 9-4, which is one of the reasons why programmers use it more frequently in
practice. Moreover, the running times for both algorithms appear to grow in roughly
the same way.

The empirical results presented in Figure 9-11, however, obscure an important
point. As long as the Quicksort algorithm chooses a pivot that is close to the median
value in the array, the partition step will divide the array into roughly equal parts. If
the pivot value does not actually fall near the middle of the range of values, one of
the two partial arrays may be much larger than the other, which defeats the purpose
of the divide-and-conquer strategy. In an array with randomly chosen elements,
Quicksort tends to perform well, with an average-case complexity of O(N log N). In
the worst case—which paradoxically consists of an array that is already sorted—the
performance degenerates to O(N2). Despite this inferior behavior in the worst case,
Quicksort is so much faster in practice than most other algorithms that it has become
the standard choice for general sorting procedures.

There are several strategies you can use to increase the likelihood that the pivot is
in fact close to the median value in the array. One simple approach is to have the
Quicksort implementation choose the pivot element at random. Although it is still
possible that the random process will choose a poor pivot value, it is unlikely that it
would make the same mistake repeatedly at each level of the recursive decomposition.
Moreover, there is no distribution of the original array that is always bad. Given any
input, choosing the pivot randomly ensures that the average-case performance for that
array will be O(N log N). Another possibility, which you can explore in more detail
in exercise 11, is to select a few values, typically three or five, from the array and
choose the median of those values as the pivot.

326 Searching and Sorting

You do have to be somewhat careful as you try to improve the algorithm in this
way. Picking a good pivot improves performance, but also costs some time. If the
algorithm spends more time choosing the pivot than it gets back from making a good
choice, you will end up slowing down the implementation rather than speeding it up.

 9.7 A formal definition of big-O
Because understanding big-O notation is critical to modern computer science, it is
important to offer a more formal definition to help you understand why the intuitive
model of big-O works and why the suggested simplifications of big-O formulas are
in fact justified. Doing so, however, inevitably requires some mathematics. If
mathematics scares you, try not to worry. It is more important to understand what
big-O means in practice than it is to follow all the steps presented in this section.

In computer science, big-O notation is used to express the relationship between
two functions, typically in an expression like this:

t(N) = O(ƒ(N))

The formal meaning of this expression is that ƒ(N) is an approximation of t(N) with
the following characteristic: it must be possible to find a constant N0 and a positive
constant C so that for every value of N ≥ N0 the following condition holds:

t(N) ≤ C ´ ƒ(N)

In other words, as long as N is sufficiently large, the function t(N) is always bounded
by a constant multiple of the function ƒ(N).

When it is used to express computational complexity, the function t(N) represents
the actual running time of the algorithm, which is usually difficult to compute. The
function ƒ(N) is a much simpler formula that nonetheless provides a reasonable
qualitative estimate of how the running time changes as a function of N, because the
condition expressed in the mathematical definition of big-O ensures that the actual
running time cannot grow faster than ƒ(N).

To see how the formal definition applies, it is useful to return to the selection sort
example. Analyzing the loop structure of selection sort showed that the operations in
the innermost loop were executed

times and that the running time was presumably roughly proportional to this formula.
When this complexity was expressed in terms of big-O notation, the constants and
low-order terms were eliminated, leaving only the assertion that the execution time
was O(N2), which is in fact an assertion that

 9.7 A formal definition of big-O 327

 = O(N2)

To show that this expression is indeed true under the formal definition of big-O,
all you need to do is come up with values for the constants C and N0 such that

 ≤ C ´ N2

for all values of N ≥ N0. This example is unusually simple, since the inequality always
holds if you set the constants C and N0 both to 1. After all, as long as N is no smaller
than 1, you know that N ≤ N2. It must therefore be the case that

 ≤

But the right side of this inequality is simply N2, which means that

 ≤ N2

for all values of N ≥ 1, as required by the definition.

You can use a similar argument to show that any polynomial of degree k, which
can be expressed in general terms as

ak N k + ak–1 N k–1 + ak–2 N k–2 + . . . + a2 N2 + a1 N + a0

is O(N k). Once again, your goal is to find constants C and N0 such that

ak N k + ak–1 N k–1 + ak–2 N k–2 + . . . + a2 N2 + a1 N + a0 ≤ C ´ N k

for all values of N ≥ N0. As in the preceding example, you can start by choosing 1
for the value of the constant N0. For all values of N ≥ 1, each successive power of N
is at least as large as its predecessor, so

N k ≥ N k–1 ≥ N k–2 ≥ . . . ≥ N ≥ 1

This property in turn implies that

ak N k + ak–1 N k–1 + ak–2 N k–2 + . . . + a1 N + a0

≤ | ak | N k + | ak-1 | N k + | ak-2 | N k + . . . + | a1 | N k + | a0 | N k

where the vertical bars surrounding the coefficients on the right side of the equation
indicate absolute value. By factoring out N k, you can simplify the right side of this
inequality to

(| ak | + | ak-1 | + | ak-2 | + . . . + | a1 | + | a0 |) N k

328 Searching and Sorting

Thus, if you define the constant C to be

| ak | + | ak-1 | + | ak-2 | + . . . + | a1 | + | a0 |

you have established that

ak N k + ak–1 N k–1 + ak–2 N k–2 + . . . + a2 N2 + a1 N + a0 ≤ C ´ N k

This result proves that the entire polynomial is O(N k).

Although big-O notation is commonly used because it provides an upper bound
on computational complexity, computer scientists also define two other measures that
make it possible to express tighter bounds on computational complexity:

• Big-omega notation uses the Greek letter W to define a lower bound on the

complexity of a computation. For example, the notation W(ƒ(N)) indicates that
the running time is always at least C ´ ƒ(N) for all N ≥ N0.

• Big-theta notation uses the Greek letter Q to express a tight bound in which both
the lower and upper bounds apply.

 Summary
The most valuable concept to take with you from this chapter is that algorithms for
solving a problem can vary widely in their performance characteristics. Choosing an
algorithm that has better computational properties can often reduce the time required
to solve a problem by many orders of magnitude. This chapter illustrates those
differences by implementing several algorithms for searching and sorting.

Other important points in this chapter include:

• The problem of searching consists of finding a particular element in an array.

• The linear-search algorithm looks at each element in the array and therefore runs
in time proportional to the size of the array.

• Binary search offers much better performance than linear search but requires that
the elements of the array are sorted.

• Most algorithmic problems can be characterized by an integer N that represents
the size of the problem. For algorithms that operate on arrays, it is conventional
to define the problem size as the number of elements.

• The most useful qualitative measure of efficiency is computational complexity,
which is defined as the relationship between problem size and algorithmic
performance as the problem size becomes large.

 Review questions 329

• Big-O notation provides an intuitive way of expressing computational complexity
because it allows you to highlight the most important aspects of the complexity
relationship in the simplest possible form.

• When you use big-O notation, you can simplify the formula by eliminating any
term in the formula that becomes insignificant as N becomes large, along with any
constant factors.

• You can often predict the computational complexity of a program by looking at
the nesting structure of the loops it contains.

• Two useful measures of complexity are worst-case and average-case analysis.
Average-case analysis is usually more difficult to conduct.

• Divide-and-conquer strategies make it possible to reduce the complexity of sorting
algorithms from O(N2) to O(N log N), which is a significant reduction.

• Many common algorithms fall into one of several complexity classes that include
the constant, logarithmic, linear, N log N, quadratic, cubic, and exponential
classes. Algorithms whose complexity class appears earlier in this list are more
efficient than those that come later, at least when the problems being considered
are sufficiently large.

• Problems that can be solved in polynomial time, which is defined to be O(N k) for
some constant value k, are considered to be tractable. Problems for which no
polynomial-time algorithm exists are considered intractable because solving such
problems requires prohibitive amounts of time, even for problems of relatively
modest size.

• Because it tends to perform extremely well in practice, most sorting programs are
based on the Quicksort algorithm, developed by Tony Hoare, even though its
worst-case complexity is O(N2).

 Review questions
1. Describe the algorithmic problems of searching and sorting in your own words.

2. Estimate the number of comparisons that the binary-search algorithm would need

to perform in order to find an element in an array of 1000 elements.

3. The implementation of sort shown in Figure 9-2 exchanges the values at

positions lh and rh even if these values happen to be the same. If you change
the program so that it checks to make sure lh and rh are different before making
the exchange, it is likely to run more slowly than the original algorithm. Why
might this be so?

4. Suppose that you are using the selection sort algorithm to sort an array of 500

values and you find that it takes 60 milliseconds to complete the operation. What

330 Searching and Sorting

would you expect the running time to be if you used the same algorithm to sort
an array of 1000 values on the same machine?

5. What is the closed-form expression that computes the sum of the series

N + N–1 + N–2 + . . . + 3 + 2 + 1

6. In your own words, define the concept of computational complexity.

7. What are the two rules given in this chapter for simplifying big-O notation?

8. Is it technically correct to say that selection sort runs in

O ()

time? What, if anything, is wrong with expressing computational complexity in
this form?

9. Is it technically correct to say that selection sort runs in O(N3) time? Again,

what, if anything, is wrong with characterizing selection sort in this way?

10. What is the computational complexity of the following function:

def mystery1(n):
 sum = 0
 for i in range(n):
 for j in range(i):
 sum += i * j
 return sum

11. What is the computational complexity of this function:

def mystery2(n):
 sum = 0
 for i in range(10):
 for j in range(i):
 sum += j * n
 return sum

12. Why is it customary to omit the base of the logarithm in big-O expressions such

as O(N log N)?

13. What is the difference between worst-case and average-case complexity? In

general, which of these measures is harder to compute?

14. Explain the roles of the constants C and N0 in the formal definition of big-O.

15. Why does the merge function run in linear time?

 Exercises 331

16. Explain each of the lines in the following loop from the merge function:

for i in range(len(array)):
 if p2 == n2 or (p1 < n1 and a1[p1] < a2[p2]):
 array[i] = a1[p1]
 p1 += 1
 else:
 array[i] = a2[p2]
 p2 += 1

17. What are the seven complexity classes identified in this chapter as the most
common classes encountered in practice?

18. What does the term polynomial algorithm mean?

19. What is the difference between a tractable and an intractable problem?

20. In Quicksort, what conditions must be true at the end of the partitioning step?

21. What are the worst- and average-case complexities for Quicksort?

 Exercises
1. It is easy to write a recursive function

def raise_to_power(x, n)

that calculates xn for a nonnegative integer n by relying on the recursive insight
that

xn = x ´ xn–1

Such a strategy leads to an implementation that runs in linear time. You can,
however, adopt a recursive divide-and-conquer strategy that takes advantage of
the fact that

x2n = xn ´ xn

Use this fact to write a recursive version of raise_to_power that runs in
O(log N) time.

2. Write a program to produce a trace of the binary-search algorithm of the sort

shown on page 302.

3. When you convert English to Pig Latin, most words turn into something that

sounds vaguely Latinate but different from conventional English. There are,
however, a few words whose Pig Latin equivalents just happen to be English
words. For example, the Pig Latin translation of trash is ashtray, and the

332 Searching and Sorting

translation for express is expressway. Use the PigLatin.py program from
Chapter 7 together with the english library to write a program that displays a
list of all such words.

4. There are several other sorting algorithms that exhibit the O(N2) behavior of

selection sort. Of these, one of the most important is insertion sort, which
operates as follows. You go through each element in the array in turn, as with
the selection sort algorithm. At each step in the process, however, the goal is not
to find the smallest remaining value and switch it into its correct position, but
rather to ensure that the values considered so far are correctly ordered with
respect to each other. Although these values may shift as more elements are
processed, they form an ordered sequence in and of themselves.

For example, if you consider again the data used in the sorting examples from
this chapter, the first cycle of the insertion sort algorithm requires no work,
because an array of one element is always sorted:

On the next cycle, you need to put 25 in the correct position with respect to the
elements you have already seen, which means that you need to exchange the 56
and 25 to reach the following configuration:

On the third cycle, you need to find where the value 37 should go. To do so, you
must move backward through the earlier elements—which you know are in order
with respect to each other—looking for the position where 37 belongs. As you
go, you need to shift each of the larger elements one position to the right, which
eventually makes room for the value you’re trying to insert. In this case, the 56
gets shifted by one position, and the 37 winds up in position 1. Thus, the
configuration after the third cycle looks like this:

After each cycle, the initial portion of the array is always sorted, which implies
that cycling through all the positions in this way will sort the entire array.

 Exercises 333

The insertion sort algorithm is important in practice because it runs in linear
time if the array is already more or less in the correct order. It therefore makes
sense to use insertion sort to restore order to a large array in which only a few
elements are out of sequence.

Write an implementation of sort that uses the insertion sort algorithm.
Construct an informal argument to show that the worst-case behavior of insertion
sort is O(N2).

5. Write a function that keeps track of the elapsed time as it executes the sort

procedure on a randomly chosen array. Use that function to write a program that
produces a table of the observed running times for a predefined set of sizes, as
shown in the following sample run:

The best way to measure elapsed system time for programs of this sort is to
call the standard function time.perf_counter, which returns the most accurate
time value available on the computer expressed in seconds. The time base for
the perf_counter function is not defined, but you can nonetheless measure
elapsed time using the following code pattern:

start = time.perf_counter()
. . . Perform some calculation . . .
elapsed = time.perf_counter() - start

Unfortunately, calculating the time requirements for a program that runs

quickly requires some subtlety because there is no guarantee that the system
clock unit is precise enough to measure elapsed time accurately. For example, if
you used this strategy to time the process of sorting 10 integers, it might well
turn out that the value of elapsed at the end of the code fragment is 0. The
reason is that the processing unit on most machines can execute many
instructions in the space of a single clock tick—almost certainly enough to get
the entire sorting process done for an array of 10 elements. Because the system’s
internal clock may not tick in the interim, the two values returned by
time.perf_counter are likely to be the same.

The best way to get around this problem is to repeat the calculation many
times between the two calls to time.perf_counter. For example, if you want
to determine how long it takes to sort 10 numbers, you can perform the

334 Searching and Sorting

sort-10-numbers experiment 1000 times in a row and then divide the total elapsed
time by 1000. This strategy gives you a timing measurement that is much more
accurate.

6. Write a function elapsed_time that generalizes the computation from the

preceding exercise by returning how many seconds are required to call a
client-supplied function. The elapsed_time function takes two parameters.
The first is a callback function that implements the operation whose running time
you want to measure. The second argument, which is optional and defaults to 1,
indicates how many repetitions of the function call should occur between the
time measurements.

7. Suppose you know that all the values in an integer array fall into the range 0 to

9999. Show that it is possible to write a O(N) algorithm to sort arrays with this
restriction. Implement your algorithm and evaluate its performance by taking
empirical measurements using the strategy outlined in exercise 8. Explain why
the algorithm is less efficient than selection sort for small values of N.

8. Change the implementation of the Quicksort algorithm so that, instead of picking

the first element in the array as the pivot, the partition function chooses the
median of the first, middle, and last elements.

9. Although O(N log N) algorithms are more efficient than O(N2) algorithms if you

are sorting a large array, the simplicity of quadratic algorithms like selection sort
often means that they perform better for small values of N. This fact raises the
possibility of developing a strategy that combines the two algorithms, using
Quicksort for large arrays but selection sort whenever the size of the arrays
becomes less than some threshold called the crossover point. Approaches that
combine two different algorithms to exploit the best features of each are called
hybrid strategies.

Reimplement sort using a hybrid of the Quicksort and selection sort
strategies. Experiment with different values of the crossover point and determine
what value gives the best performance. The optimal value of the crossover point
depends on the specific timing characteristics of your computer and will change
from system to system.

10. Another interesting hybrid strategy for the sorting problem is to start with a

recursive implementation of Quicksort that simply returns when the size of the
array falls below a certain threshold. When this function returns, the array is not
sorted, but all the elements are relatively close to their final positions. At this
point, you can use the insertion sort algorithm presented in exercise 7 on the
entire array to fix any remaining problems. Because insertion sort runs in linear
time on arrays that are mostly sorted, this two-step process may run more quickly

 Exercises 335

than either algorithm alone. Write an implementation of the sort function that
uses this hybrid approach.

11. Suppose you have two functions, ƒ and g, for which ƒ(N) is less than g(N) for

all values of N. Use the formal definition of big-O to prove that

15ƒ(N) + 6g(N)

is O(g(N)).

12. Use the formal definition of big-O to prove that N2 is O(2N).

13. Exercise 1 shows that it is possible to compute xn in O(log N) time. This fact in

turn makes it possible to write an implementation of the function fib(n) that
also runs in O(log N) time, which is much faster than the traditional iterative
version.

To do so, you need to rely on the somewhat surprising fact that the Fibonacci
function is closely related to a value called the golden ratio, which has been
known since the days of Greek mathematics. The golden ratio, which is usually
designated by the Greek letter phi (j), is defined to be the value that satisfies the
equation

j2 – j – 1 = 0

Because this is a quadratic equation, it actually has two roots. If you apply the
quadratic formula, you will discover that these roots are

j =

 =

In 1718, the French mathematician Abraham de Moivre discovered that the
n th Fibonacci number can be represented in closed form as

Moreover, because n is always very small, the formula can be simplified to

rounded to the nearest integer.

Use this formula and the raise_to_power function from exercise 1 to write
an entirely recursive implementation of fib(n) that runs in O(log N) time.

336 Searching and Sorting

14. If you’re ready for a real algorithmic challenge, write the function

def find_majority_element(array)

that takes an array of nonnegative integers and returns the majority element,
which is defined to be a value that occurs in a majority (at least 50 percent plus
one) of the element positions. If no majority element exists, the function should
return –1. Your function must also meet the following conditions:

• It must run in O(N) time.
• It must use O(1) additional space. In other words, it may use individual

temporary variables but may not allocate any additional array storage. This
condition also rules out recursive solutions, because the space required for
stack frames grows with the depth of the recursion.

• It must not change any of the values in the array.

15. If you enjoyed the previous problem, here’s an even more challenging one that

was at one time an interview question at Microsoft. Suppose that you have an
array of N elements, in which each element has a value in the range 1 to N–1,
inclusive. Since there are N elements in the array and only N–1 possible values
to store in each slot, there must be at least one value that is duplicated in the
array. There may, of course, be many duplicated values, but you know that there
must be at least one by virtue of what mathematicians call the pigeonhole
principle: if you have more items to put into a set of pigeonholes than the number
of pigeonholes, there must be some pigeonhole that ends up with more than one
item.

Your task in this problem is to write a function

def find_duplicate(array)

that takes an array whose elements are constrained to be in the 1 to N–1 range
and returns one of the duplicated elements. As in the previous exercise, your
solution must meet the following conditions:

• It must run in O(N) time.
• It must use O(1) additional space.
• It must not change any of the values in the array.

C H A P T E R 1 0
Classes and Objects

I have always tried to identify and focus in on what is essential
and yields unquestionable benefits. For example, the inclusion
of a coherent and consistent scheme of data type declarations in
a programming language I consider essential.

—Niklaus Wirth, Turing Award Lecture, 1984

Niklaus Wirth (1934–)

Swiss computer scientist Niklaus Wirth designed and engineered several early programming languages
including Euler, PL360, Algol-W, and Pascal, which became the standard language for introductory
computer science throughout the 1970s and 1980s. Although Grace Hopper’s COBOL language described
on page 35 included support for data records, Pascal was the first programming language to integrate the
record concept into the type system in a consistent way. In 1975, Wirth published an influential book entitled
Algorithms + Data Structures = Programs, which offers an eloquent defense of the idea that data structures
are as fundamental to programming as algorithms. Niklaus Wirth received the ACM Turing Award in 1984.

338 Classes and Objects

When you learned about lists in Chapter 8, you took your first steps toward
understanding an extremely important idea in computer programming: the use of
compound data structures to represent collections of information. When you use a
list in the context of a program, you are able to combine an arbitrarily large number
of data values into a single structure that has conceptual integrity as a whole. If you
need to do so, you can select particular elements of the list and manipulate them
individually. But you can also treat the list as a unit and manipulate it all at once.

The ability to take individual values and organize them into coherent units is an
essential feature of modern programming. Functions allow you to unify many
independent operations under a single name. Compound data structures—of which
lists are only one example—offer the same facility in the data domain. In each case,
being able to aggregate the tiny pieces of a program into a single, higher-level
structure provides both conceptual simplification and a significant increase in your
power to express ideas. The power of unification is hardly a recent discovery; it has
given rise to social movements and to nations, as reflected in the labor anthem that
proclaims “the union makes us strong” and the motto “E Pluribus Unum”—“out of
many, one”—on the Great Seal of the United States.

Although lists are a powerful tool when you need to model real-world data that
can be represented as a sequence of ordered elements, it is also important to be able
to combine unordered data values into a single unit. This chapter describes how
classes and objects enable Python programmers to use the object-oriented paradigm,
which is defined by two main principles. The first is encapsulation, which is the
technique of combining data values and methods into a single structure. The second
is inheritance, which allows programmers to define hierarchies in which classes
automatically acquire behavior from their ancestors in the hierarchy. Encapsulation
is discussed in this chapter, and inheritance is covered in Chapter 13 after you have
had more of a chance to work with objects.

 10.1 Records and tuples
As you learned in Chapter 8, Python’s lists are an extension of an earlier, more
primitive concept called arrays. In much the same way, Python’s implementation of
classes and objects grows out of an older programming concept called a record, which
is any data structure that combines several distinct values into an integrated whole.
In this section, you will learn how to create Python objects that model traditional
records so that you have a foundation from which to build a more comprehensive
understanding of how objects in Python work.

The term record has its origin in the world before computing, where it refers to a
collection of data values pertaining to a single entity. For example, census records—
which were kept on paper until Hermann Hollerith invented punch cards for the 1880

 10.1 Records and tuples 339

census—collects the information pertaining to a single individual. Each census
record presumably includes for the person’s name, age, address, occupation, and any
other data collected by the census bureau. Loan records for a bank would presumably
include information such as the date of the loan, the name of the borrower, the amount
of the loan, and the interest rate. Employee records for a firm presumably include
information like the employee’s name, job title, and salary. The individual
components of a record are generically called fields.

A simple example of records
The concepts of records and fields are best illustrated by example. At the rather small
firm of Scrooge and Marley that appears in A Christmas Carol by Charles Dickens,
the employee ledger might look something like this:

The preprinted top line in the ledger provides names for the three data fields: one for
the employee’s name, one for the job title, and one for the weekly salary in shillings.
Each subsequent line represents a record for a single employee, giving the value of
these three fields. The entries in the paper copy of the ledger book show that Scrooge
and Marley has two employees: a founder named Ebenezer Scrooge who earns 1000
shillings per week and a clerk named Bob Cratchit struggling to make ends meet on
the pitiful salary of 15 shillings a week.

Representing records as tuples
The simplest way to represent a record in Python is to use a built-in data structure
called a tuple, which is used in both computer science and mathematics to refer to an
ordered, immutable collection of elements. In Python, you create a tuple by enclosing
its elements in parentheses. For example, the assignment statement

employee = ("Bob Cratchit", "clerk", 15)

creates a tuple with three elements and assigns that tuple to the variable employee.

In its internal structure, a tuple is similar to a list. If, for example, you use square
brackets instead of parentheses to define this variable, the box diagram for the
variable has exactly the same form:

340 Classes and Objects

You can also apply many of the same operators to these two types. Both tuples and
lists are sequences and therefore implement the operations for sequences described in
Chapter 8. Tuples, however, differ from lists in two critical ways:

1. Tuples are immutable. Although you can change the elements of a list through

direct assignment or by calling any of the methods that manipulate their
elements, tuples are immutable. You cannot, for example, assign new values to
the elements of a tuple or add values to the end using the += operator. Once you
have created a tuple, its elements remain unchanged.

2. Tuples are used primarily to represent records rather than sequences of values.
In Python, lists are used primarily to represent ordered sequences of objects, all
of which have the same type. Tuples, by contrast, represent collections of values
in which order is often not important and in which the types of the individual
elements can vary.

The easiest way to understand the functional similarity of tuples and records is to

think about the etymology of tuple, which comes from the suffix of more specific
words like quintuple, sextuple, septuple, octuple, and so on. If you need to represent
a data structure that contains a particular number of elements—which might well be
a smaller number for which the English word does not end with the suffix tuple, such
as pair, triple, or quadruple—using a tuple probably makes sense. By contrast,
programmers use lists when they don’t know how many elements a list contains or
when instances of that list can differ in their number of elements.

The primary advantage of representing a record as a Python tuple is that doing so
eliminates the overhead of defining a new class. At the same time, representing
records as tuples has several disadvantages that often make the class-based strategy
worth the additional cost. If you need to change the fields of a record, the fact that
tuples are immutable makes it necessary to choose a different strategy. In addition,
the fact that elements of a tuple are identified using an index number rather than a
name can make programs that use a tuple-based strategy more difficult to understand.

As it happens, Python programmers rarely refer to the elements of a tuple by their
index number because the language offers a convenient syntactic form called
destructuring assignment for splitting a tuple into its component elements. If, for
example, the variable employee contains the tuple defined on page 339, destructuring
assignment allows you to extract the individual fields like this:

name, title, salary = employee

 10.1 Records and tuples 341

When Python notices that the left side of the assignment consists of three variables
and the right side is a tuple of length 3, it automatically unpacks the component
values, assigning the first element of the tuple to the variable name, the second
element to the variable title, and the third element to the variable salary. The fact
that these elements have numeric indices is no longer explicit in the program but is
simply an implementation detail.

Because tuples are typically used to model structures that appear in the real world
as pairs, triples, quadruples, and so on, there are not many applications in which it
makes sense to have a tuple with just one element or no elements at all. On those rare
occasions when you want to create a tuple containing a single value, Python requires
a comma after that value to differentiate a tuple with one element from a
parenthesized expression. For example, to create a tuple containing the number 42
as its only element, Python requires you to write

(42,)

If you leave out the comma, Python interprets (42) as a parenthesized expression.

Representing records as objects
A more sophisticated strategy for representing the employee records for Scrooge and
Marley is to encode the information for each record as an object containing the
necessary fields, which are more often called attributes in the context of a Python
object. The name and title attributes are presumably strings, and the salary attribute
is a number. If you draw each of the records as a box containing interior boxes for
each attribute, the information for Scrooge and Marley looks like this:

As you know from the discussion of classes and objects in Chapter 4, objects in
Python are instances of a class, which provides a template for all objects that belong
to that class. The GRect class in the Portable Graphics Library, for example, acts as
a template for all GRect objects. Thus, while you can display many distinct GRect
objects on the graphics window, there is only one GRect class. In much the same
way, each of the objects representing an employee of Scrooge and Marley is an
instance of an Employee class that defines the general structure shared by all

342 Classes and Objects

employees. The Employee class therefore acts as a fill-in-the-blanks template that
looks like this:

Defining an empty class template
Python’s model for defining classes is sufficiently complex that it makes sense to
present it in two stages. To make the general process of creating new objects clear,
the next few paragraphs show how you can define a class without specifying any of
its attributes. And although the rest of this chapter will show you how to add more
sophisticated behavior to a class, defining an empty class with no internal structure is
not without its uses. The GState class introduced in Chapter 6 works in exactly this
way.

In this simplified model, the class definition for Employee looks like this:

class Employee:
 """Fill in the details later"""

Python’s syntactic rules require that the body of a class contain at least one line, but
the docstring comment is sufficient for this purpose, although you can also use the
keyword pass for this purpose.

Defining a new class automatically creates a function that acts as a constructor for
that class. For example, the statement

clerk = Employee()

creates a new instance of the Employee class. Given the current empty definition of
Employee, that instance contains no data but instead serves as a blank slate:

 10.1 Records and tuples 343

As the diagram makes clear, the value stored in clerk is not the object itself but
is instead a reference to the blank-slate object. In Python, having a reference to an
object makes it possible to create new attributes within it. That fact makes it possible
for the client to fill in the values of the missing attributes.

Properties within an object are indicated by name using the syntax

object.name

in which the object reference and the name of the attribute are separated by a period,
which in programming contexts is more often called a dot. Because attributes are
assignable, you can fill in the details for Bob Cratchit like this:

clerk.name = "Bob Cratchit"
clerk.title = "clerk"
clerk.salary = 15

Those statements create the necessary attributes and assign values to them so that the
diagram looks like this:

Defining a constructor
The point of the example in the preceding section is to introduce the notions of object
references and dot selection so that you are in a better position to understand how to
initialize the attributes of an Employee object from the implementation side rather
than as a client operation. As noted in Chapter 4, functions that create new instances
of a class are called constructors. The division of responsibility between client and
implementation becomes much clearer if the Employee class defines a constructor
that takes the values of name, title, and salary and uses those to create a fully
initialized object in which those values are stored in the appropriate internal attributes.

To create a constructor in Python, you need to define a special method called
__init__ inside the body of the class. The header for the __init__ method has the
following form:

def __init__(self, parameters):

344 Classes and Objects

where parameters is a list of the parameter names passed to the constructor. The first
parameter to __init__ is conventionally named self and contains a reference to the
same blank-slate object described in the preceding section. The body of the
constructor typically assigns the parameter values to the corresponding attributes in
the object, using self as a reference to the object state.

For example, the following code defines an enhanced version of the Employee
class that includes the constructor:

class Employee:
 """This class represents a simple employee object"""

 def __init__(self, name, title, salary):
 self.name = name
 self.title = title
 self.salary = salary

With this definition, the client of the Employee class can create the entry for Bob
Cratchit like this:

clerk = Employee("Bob Cratchit", "clerk", 15)

If you look only at the increased complexity of the Employee class, this change
may not seem like much of an improvement. Arguably, the code in the preceding
section is easier to understand, if for no other reason than it does not require knowing
anything about the __init__ method or the self parameter. Those details, however,
exist only on the implementation side and are not exposed to clients. On the client
side, creating and initializing a new Employee object now takes a single line instead
of four. The savings is even more evident if, for example, you want to create a list
containing the employee records for everyone at Scrooge and Marley, which requires
only the following code:

SCROOGE_AND_MARLEY = [
 Employee("Ebenezer Scrooge", "founder", 1000),
 Employee("Bob Cratchit", "clerk", 15)
]

Getters and setters
Although it is possible for clients to use dot selection to refer directly to attributes
within an object, the conventions of modern object-oriented programming favor a
different approach that seeks to maintain the integrity of the object. If a client needs
access to a particular attribute, the class defines a method that returns that value. Such
methods are called getters. In the Portable Graphics Library, for example, you don’t

 10.1 Records and tuples 345

get the x coordinate of a GRect stored in the variable box by using a selection
expression like box.x but instead by calling box.get_x().

It is easy to imagine that clients of the Employee class would need access to each
of the attributes, which means that the Employee class should define the getter
methods get_name, get_title, and get_salary. Like the constructor, these
methods take a parameter named self, which Python supplies automatically
whenever you make a method call using the receiver syntax. The definition of the
get_name method, for example, looks like this:

def get_name(self):
 """Returns the name of the employee"""
 return self.name

In addition to getters, classes that define mutable types typically include methods

called setters that set individual attributes. Setters are less common than getters, and
it is important to think carefully about whether you need a setter for an individual
attribute. In the case of the Employee class, for example, it is more likely that clients
would want to be able to change an employee’s salary or job title than the employee’s
name, which is easier to think about as a permanent part of the employee’s record.
The employee management application can implement name changes, on the
infrequent occasions when they occur, by removing the record for the old name and
replacing it with a new one. This argument suggests that the Employee class should
export the methods set_title and set_salary, but not set_name. The set_salary
method has the following form:

def set_salary(self, salary):
 """Resets the salary of this employee"""
 self.salary = salary

Converting objects to strings
In addition to the constructor and any methods necessary to define the behavior of a
class, most Python classes will also define a special method called __str__, which
specifies how to convert the object to a string. Defining this method makes it possible
to see the value of an object and is invaluable for debugging. Figure 10-1 shows an
implementation of the Employee class that includes a __str__ method, along with
the constructors, getters, and setters defined earlier.

346 Classes and Objects

employee-py.png

 10.2 Representing points 347

The employee module in Figure 10-1 also includes a test program that uses the
roster of employees at Scrooge and Marley to test the __init__ constructor and the
__str__ method. Running employee as a program produces the following output:

A more complete test program would also test the implementation of the getters and
setters, but that program listing would no longer fit on a single page.

 10.2 Representing points
One of the advantages of using records—no matter whether they are implemented as
tuples or as objects—is that doing so makes it possible to combine several related
pieces of information into a composite value that can be manipulated as a unit. An
important practical application of this principle arises when you need to represent a
point in two-dimensional space, such as the drawing surface of the graphics window.
So far, the graphical programs in this text have kept track of independent x and y
coordinates, which is sufficient for many applications. As you move on to more
complex graphical programs, however, it is useful to store the x and y values in an
integrated unit called a point.

Combining the x and y coordinates into a single data structure makes it possible to
work with points as composite values. You can assign a point to a variable, create an
array of points, pass a point as an argument to a function, and return a point as a result.
This last example—returning a point as the result of a function call—adds a new
capability that would otherwise be difficult to achieve. A Python function is allowed
to return only a single value, so there is no way for a function to return the x and y
coordinates independently. A function can, however, return a point, from which the
caller can extract the x and y coordinates, if necessary.

Representing points as tuples
Although the Python implementation of the pgl module defines points using a class
called GPoint to maintain consistency with other implementations of the graphics
library other Python packages (including the one used to implement the pgl module)
implement a point in two-dimensional space as a tuple with two elements representing
the x and y coordinates. Thus, the tuple (0,0) represents the origin of the graphics
window and the tuple (1,4) represents the point whose x coordinate is 1 and whose
y coordinate is 4.

From the client’s point of view, it is convenient to represent points as tuples
because the Python syntax precisely matches the conventional mathematical form.

348 Classes and Objects

And although it might initially seem odd to select the individual coordinates of a point
using the index numbers 0 and 1 instead of the names x and y, it is not at all hard to
get used to that convention, particularly if you use destructuring assignment to
separate the component values.

Defining points as a class
The Portable Graphics Library defines a class called GPoint that encapsulates an x-y
coordinate pair. The definition of this class appears in Figure 10-2. Like the
definition of the Employee class in Figure 10-1, the implementation of the GPoint
class defines a constructor, getter methods for the x and y coordinates, and a method
to convert a GPoint to a string. The code also illustrates a technique that is useful in
maintaining an effective separation between the implementation and its clients. The

 10.2 Representing points 349

names of the attributes that hold the x and y coordinates are not called x and y but
instead have the names _x and _y, which begin with an underscore. Python uses the
leading-underscore convention to mark variables and methods that belong to the
implementation and are considered off-limits to clients. Although Python cannot
prevent clients from referring directly to these variables using the attribute names _x
and _y, the underscore warns clients that any such access comes at their own risk.
The implementer is free to remove or change the names of these variables, even
though doing so would likely break client programs that ignored the warning signs
these underscores represent.

The GPoint class is often useful in graphical programs because it allows a
program to treat a coordinate pair as a single object. The YarnPattern.py program
in Figure 10-3, for example, creates beautiful patterns using only GLine objects.
Each of the GLine objects connects two points stored in a list using a process that you
can easily carry out in the real world. Conceptually, the process begins by arranging
pegs around the perimeter of the window so that they are evenly spaced along all four
edges.

To get a sense of how this program operates, imagine that you start with a small
graphics window in which the pegs are numbered clockwise from the upper left:

From here, you create a figure by winding a single piece of yarn through the pegs,
starting at peg 0 and then moving ahead DELTA spaces on each cycle. For example,
if DELTA is 11, the yarn goes from peg 0 to peg 11, then from peg 11 to peg 22, and
then (counting past the beginning) from peg 22 to peg 5, as follows:

350 Classes and Objects

YarnPattern-py.png

 10.2 Representing points 351

The process continues until the yarn returns to peg 0, creating the following pattern:

The program in Figure 10-3 begins by calling create_pegs to create the array of
points around the perimeter. The code creates pegs from left to right across the top,
from top to bottom along the right side, from right to left across the bottom, and finally
from bottom to top along the left side. When create_pegs returns, the
YarnPattern.py program starts at peg 0 and then advances DELTA steps on each
cycle until the index loops back to 0. On each cycle, the implementation creates a
GLine object to connect the current point in the array with the previous one.

Figure 10-4 shows a larger example of the output produced by YarnPattern.py
that uses the values of N_ACROSS and N_DOWN shown in the program listing.

352 Classes and Objects

 10.3 Rational numbers
Although the GPoint class from section 10.2 illustrates the basic mechanics used to
define a new class, developing a solid understanding of the topic requires you to
consider more sophisticated examples. This section walks you through the design of
a class to represent rational numbers, which are those numbers that can be
represented as the quotient of two integers.

In some respects, rational numbers are similar in concept to the float class in
Python. Both rational numbers and floating-point numbers can represent fractional
values, such as 1.5, which is the rational number 3/2. The difference is that rational
numbers are exact, while the built-in implementation of floating-point numbers relies
on approximations limited by the hardware precision.

To get a sense of why this distinction might be important, consider the arithmetic
problem of adding together the following fractions:

Basic arithmetic makes it clear that the answer is 1, but Python’s floating-point
arithmetic gives a different result, as the following IDLE session shows:

The problem is that the memory cells used to store numbers have a limited storage
capacity, which in turn restricts the precision they can offer. Within the limits of
Python’s standard arithmetic, the sum of one-half plus one-third plus one-sixth is
closer to 0.9999999999999999 than it is to 1.0. By contrast, rational numbers are not
subject to this type of rounding error because no approximations are involved.
What’s more, rational numbers obey well-defined arithmetic rules, which are
summarized in Figure 10-5. Since Python does not include rational numbers among
its predefined types, you have to implement Rational as a new class.

 10.3 Rational numbers 353

A general strategy for defining new classes
When you work in object-oriented languages, designing new classes is the most
important skill you need to master. As with much of programming, designing a new
class is as much an art as it is a science. Designing a class requires a strong sense of
aesthetics and sensitivity to the needs of any clients who will use that class as a tool.
Experience and practice are the best teachers, but following a general design
framework can help get you started along this path.

From my own experience, I’ve often found the following approach helpful:

1. Think generally about how clients are likely to use the class. From the very

beginning of the process, it is essential to remember that library classes are
designed to meet the needs of clients and not for the convenience of the
implementer. In a professional context, the most effective way to ensure that a
new class meets those needs is to involve clients in the design process. At a
minimum, however, you need to put yourself in the client role as you sketch the
outlines of the class design.

2. Determine what information belongs in the private state of each object.
Although the private data maintained in the attributes of the object is
conceptually part of the implementation, it simplifies the later design phases if
you have an intuitive sense of what information objects of this class contain.

3. Determine the parameters needed for the constructor. Whenever a client creates
a new instance of your class, the first step in the process is making a call to the
constructor. As part of the design phase, you need to decide what information
the client will want to supply at the time the object is created, which in turn
determines what parameters the constructor will need. In the case of the GPoint
class, the client must supply the x and y coordinates.

4. Enumerate the operations that will become the public methods of the class. In
this phase, the goal is to define the names and parameters for the methods
exported by the class, thereby adding specificity to the general outline you
developed at the beginning of the process.

5. Code and test the implementation. Once you have completed the overall design,
you need to implement it. Writing the actual code is not only essential to having
a working program but also offers validation for the design. As you write the
implementation, it is sometimes necessary to revisit the interface design if, for
example, you discover that a particular feature is difficult to implement at an
acceptable level of efficiency. As the implementer, you also have a responsibility
to test your implementation to ensure that the class delivers the functionality it
claims.

The sections that follow carry out these steps for the Rational class.

354 Classes and Objects

Adopting the client perspective
As a first step toward the design of the Rational class, you need to think about what
features your clients are likely to need. In a large company, you might have various
implementation teams that need to use rational numbers and could give you a good
sense of what operations should be part of that class. In that setting, it would be useful
to work together with those clients to agree on a set of design goals.

Since this example is a textbook scenario, however, it isn’t possible for you to
schedule meetings with prospective clients. The primary purpose of the example is
to illustrate the structure of class definitions in Python. Given these limitations and
the need to manage the complexity of the example, it makes sense to implement only
the arithmetic operations defined in Figure 10-5.

Specifying the private state of the Rational class
For the Rational class, the private state is easy to specify. A rational number is
defined as the quotient of two integers. Each rational object must therefore keep track
of these two values. In the implementation, these variables are called _num and _den.
The names are abbreviations of the mathematical terms numerator and denominator
used to refer to the upper and lower parts of a fraction. The underscore at the
beginning of these names indicates that these variables are the attribute of the
implementation and should not be examined or changed by clients.

Defining the Rational constructor
Given that a rational number represents the quotient of two integers, the constructor
will presumably take two numbers representing the components of the fraction.
Defining the constructor in this way makes it possible, for example, to define the
rational number one-third by calling Rational(1, 3). To make it easier to work
with integers—which are just rational numbers whose denominator is 1—it is useful
to allow clients to call the constructor with a single integer argument, letting Python
supply the default value of 1 for the denominator. Given this design, the header line
for the constructor will look like this:

def __init__(self, num, den=1):

To help clients discover errors in the use of the Rational class, the constructor
should check that the supplied parameters correspond to a legal rational number. For
example, the constructor should check that that den is not 0, because division by zero
is not a legal operation. The code can check that this condition holds by making the
following test:

if den == 0:
 raise ValueError("Illegal denominator value")

 10.3 Rational numbers 355

If the client calls the constructor with den equal to 0, the constructor responds by
raising the built-in ValueError exception with an explanatory string.

Beyond checking for zero in the denominator, there are other restrictions that you
might want to impose on the values of the parameters num and den to ensure that the
implementation operates correctly. The code becomes much simpler if the
constructor can guarantee that every rational number has a consistent, unique
representation, which is not true if the client can supply any values for num and den.
The rational number one-third, for example, can be written as a fraction in any of the
following ways:

Because these fractions all represent the same rational number, it is appropriate for
them to have the same internal representation. Mathematicians achieve this goal by
insisting on the following rules:

• The denominator is always positive, which means that the sign of the value is

stored with the numerator.

• The rational number 0 is always represented as the fraction 0/1.

• The fraction is always expressed in lowest terms, which means that both the
numerator and the denominator are divided by their greatest common divisor.

Enumerating the methods for the Rational class
Along with the constructor, the Rational class must define additional methods that
implement the behavior of the class. As with the Employee and GPoint classes
defined earlier in the chapter, it is good practice to define a __str__ method that
converts a Rational object to a string. More importantly, the Rational class must
define methods for the four arithmetic operators. For the moment, the simplest
strategy is to define methods called add, sub, mul, and div that perform the necessary
computations. Each of these methods takes two parameters. The self parameter that
appears first in the parameter list of every method holds a reference to the Rational
number that is implementing the operator. The second parameter, which is called r
in the implementation, contains a reference to the other Rational value involved in
the computation.

Implementing the Rational class
Figure 10-6 shows the code for a rational module that implements a simple version
of the Rational class. As suggested in the preceding section, the class includes a
constructor, an implementation of the __str__ method that converts a Rational
object to a string, and the code for the methods that implement the operations.

356 Classes and Objects

rational-py.pn

 10.4 Operator overloading 357

The code for the arithmetic operators follows directly from the mathematical
definition. The implementation of the add method, for example, looks like this:

def add(self, r):
 return Rational(self._num * r._den + self._den * r._num,
 self._den * r._den)

The definition of the add method creates a new Rational object by calling the
constructor with the values required by the addition formula:

In this method, the values a and b refer to the numerator and denominator of the
current Rational object, which are available in the attributes _num and _den inside
the self object. The values c and d refer to the corresponding components of the
Rational object passed as the variable r.

The return statement in the add method calls the Rational constructor with the
computed values of the numerator and denominator for the result. Calling the
constructor ensures that the result is properly reduced to lowest terms and meets the
other requirements maintained inside each Rational object.

 10.4 Operator overloading
In the implementation of the Rational class shown in Figure 10-6, the arithmetic
operators are implemented as the methods add, sub, mul, and div. This design
decision means that you must invoke these methods using the receiver syntax. Thus,
if you want to set the variable sum to the sum of the rational values stored in the
variables a, b, and c, you would need to use the following statement:

sum = a.add(b).add(c)

Although this syntax makes sense to anyone familiar with Python’s implementation
of objects, it is certainly less expressive than the statement you would use to add three
numbers, which looks like this:

sum = a + b + c

Unlike most object-oriented languages, Python makes it possible to define the
Rational class so that this more natural syntax has the desired effect. To do so, you
need to define a method for each operator that Python can then use to determine what
that operator means in the context of the Rational class. This technique is called
operator overloading.

358 Classes and Objects

Each of the standard operators in Python is associated with a method whose name,
like the name of the __str__ method you have already seen, begins and ends with
two underscores. The association between method names and operators appears in
Figure 10-7. As an example, the first entry in the table shows that the method name
__add__ implements Python’s + operator. Although addition is initially undefined
for new classes, the implementation of that class can specify the meaning of addition
by defining an __add__ method. Moreover, since the Rational class already defines

 10.4 Operator overloading 359

an add method that uses the traditional receiver syntax, you can enable addition for
Rational objects by including the following method definition:

def __add__(self, rhs):
 return self.add(rhs)

When Python encounters an expression like a + b in which a and b are instances of
the Rational class, it automatically translates that expression into the method call
a.__add__(b). The implementation of the __add__ method corresponding to the
operator then calls the regular add method in the Rational class to compute the
answer.

You can, however, include additional code in the __add__ method so that it is
possible to use the + operator to add a Rational value and an integer without forcing
the client to convert the integer to a Rational explicitly. To do so, the easiest way
is to have the definition of __add__ use the built-in type function to determine the
type of the value that appears as the operand on the right side of the + operator. If
this value is an integer, the code can first convert it to a Rational and then complete
the addition. If this value is another Rational object, the code can apply the add
method to the two rational numbers it has in hand. If this value is anything else,
Python’s conventions for operator overloading require the __add__ method to return
the built-in Python value NotImplemented. This strategy leads to the following
definition of the __add__ method:

def __add__(self, rhs):
 if type(rhs) is int:
 return self.add(Rational(rhs))
 elif type(rhs) is Rational:
 return self.add(rhs)
 else:
 return NotImplemented

This definition makes it possible, for example, to evaluate the expression

Rational(1, 2) + 1

which adds one to the Rational value 1/2, which produces the Rational value 3/2.

But what happens if the operands to + appear in the opposite order? If you ask
Python to evaluate the expression

1 + Rational(1, 2)

it should get the same answer. Python, however, decides what to do based on the
methods associated with the left operand, which in this case is the int value 1. The

360 Classes and Objects

__add__ method associated with the built-in type int has no knowledge of the
Rational class and therefore is unable to perform the addition. Recognizing that it
can’t produce an answer, the __add__ method for int returns NotImplemented,
which Python takes as a signal to try a different strategy.

It is at this point that the methods in Figure 10-7 labeled “Arithmetic operators
applied in reverse” come into play. For each of the arithmetic operators, Python
defines a method that is used only if the left operand fails to implement the operation.
These methods determine the result if the defining class appears on the right side of
the operator. The __radd__ method for Rational looks like this:

def __radd__(self, lhs):
 if type(lhs) is int:
 return Rational(lhs).add(self)
 elif type(lhs) is Rational:
 return lhs.add(self)
 else:
 return NotImplemented

Once this method is in place, the expression

1 + Rational(1, 2)

correctly produces the Rational value 3/2.

The definitions for the other arithmetic operators and the comparison operators
look very much like the definitions for __add__ and __radd__. The only differences
are the method names. The code for the expanded Rational class is available on the
web site for this book, but is too long to be useful as an example.

Before turning away from the topic of rational numbers, it is worth going back to
the example at the beginning of the chapter to show that rational arithmetic is exact.
Running the function

def rational_sum():
 a = Rational(1, 2)
 b = Rational(1, 3)
 c = Rational(1, 6)
 print("1/2 + 1/3 + 1/6 = " + str(a + b + c))

produces the following output:

 10.5 Implementing a token scanner 361

 10.5 Implementing a token scanner
The Point and Rational classes defined earlier in this chapter are both examples of
immutable classes in which the internal attributes of the class never change after an
object is created. While immutable classes are ideal for many data types—such as
the built-in str class Python uses to represent strings—other types derive much of
their utility from allowing clients to manipulate the internal data. For example, a list
is more flexible than its immutable tuple counterpart precisely because it offers
operations like insertion, deletion, and setting individual elements. The graphical
programs you have built using the Portable Graphics Library depend on the fact that
the objects in the GObject are mutable and that you can change their color, position,
and size by invoking methods on those objects.

The rest of this chapter goes through the design of a class that allows clients to
divide a string into substrings that form a logically connected unit that can be larger
than a single character, such as a word or a number. In computer science, such units
are called tokens, and a class that delivers tokens sequentially from a string is called
a token scanner. A token scanner has to be implemented as a mutable class because
its state changes as you use. When you call a method to read the next token, the token
scanner has to update its internal state so the next call will return the following token.

In terms of its operation, a token scanner accomplishes much the same task as the
to_pig_latin function in the PigLatin.py shown in Figure 7-3, which was
responsible for dividing the input into words and then calling word_to_pig_latin to
convert each word to its Pig Latin form. The goal in the next several sections is to
reimplement word_to_pig_latin using a more general TokenScanner class that is
flexible enough to use in a variety of applications.

What clients want from a token scanner
The best way to begin the design of the TokenScanner class is to look at the problem
from the client perspective. Every client that wants to use a scanner starts with a
source of tokens, which might be a string but might also be an input stream for
applications that read data from files. In either case, what the client needs is some
way to retrieve individual tokens from that source.

Although there are other strategies that offer the necessary functionality, the
conventional design for a token scanner uses the following pseudocode form:

Initialize a token scanner object and set its input source.
while more tokens are available:
 Read and process the next token.

362 Classes and Objects

This pseudocode pattern immediately suggests what methods the TokenScanner
class will have to support. From this example, you would expect TokenScanner to
export the following methods:

• A TokenScanner constructor that creates a token scanner object from a source.

• A has_more_tokens method that tests if there are more tokens left to read.

• A next_token method that scans and returns the next token.

These methods define the operational structure of a token scanner and are largely
independent of the specifics of the applications. Different applications, however,
define tokens in all sorts of different ways, which means that the TokenScanner class
must give the client some control over what types of tokens are recognized.

The need to recognize different types of tokens is easiest to illustrate by offering
a few examples. As a starting point, it is instructive to revisit the problem of
translating English into Pig Latin. If you rewrite the PigLatin.py program to use
the token scanner, you can’t ignore the spaces and punctuation marks, because those
characters need to be part of the output. In the context of the Pig Latin problem,
tokens fall into one of two categories:

1. A string of consecutive alphanumeric characters representing a word

2. A single-character string consisting of a space or punctuation mark

If you gave the token scanner the input

this is pig latin.

calling next_token repeatedly would return the following sequence of eight tokens:

Other applications, however, are likely to define tokens in different ways. The
Python interpreter, for example, uses a token scanner to break programs into tokens
that make sense in the programming context, including identifiers, constants,
operators, and other symbols that define the syntactic structure of the language. For
example, if you typed the line

print("The sum is " + str(sum))

into the Python interpreter, you would like its token scanner to deliver the following
sequence of tokens:

 10.5 Implementing a token scanner 363

There are several differences between these two application domains in the
definition of a token. In the Pig Latin translator, anything that’s not a sequence of
alphanumeric characters is returned as a single-character token. In the example of
the Python interpreter, the situation is more complicated. For one thing, the string
constant "The sum is " has the correct meaning only if the token scanner treats it as
a single entity. Perhaps less obviously, the compiler’s token scanner ignores spaces
in the input entirely, unless they appear inside string constants.

As you will learn if you go on to take a course on programming languages, it is
possible to build a token scanner that allows the client to specify what constitutes a
legal token, typically by supplying a precise set of rules. That design offers the
greatest possible generality. Generality, however, sometimes comes at the expense
of simplicity. If you force clients to specify the rules for token formation, they need
to learn how to write those rules, which is similar in many respects to learning a new
language. Worse still, the rules for token formation—particularly if you are trying to
specify, for example, the rules that a compiler uses to recognize numbers—are
complicated and difficult for clients to get right.

If your goal in the interface is to maximize simplicity, it is probably better to
design the TokenScanner class so that clients can enable options that allow it to
recognize the type of tokens used in specific application contexts. If all you want is
a token scanner that collects consecutive alphanumeric characters into words, you use
the TokenScanner class in its simplest possible configuration. If you instead want
the TokenScanner to identify the units in a Python program, you enable options that
tell the scanner, for example, to ignore whitespace characters, to treat quoted strings
as single units, and to recognize particular combinations of punctuation marks as
multicharacter operators.

The tokenscanner module
Because token scanners are so useful, the library files provided with this book include
a tokenscanner.py module that offers considerable flexibility without sacrificing
simplicity. The tokenscanner.py module exports a TokenScanner class that
implements the methods shown in appear in Figure 10-8 on the next page. Many of
the methods in the interface are used to enable options that change the default
behavior of the scanner so that it serves the needs of a wider range of clients.

The tokenscanner module makes it easier to write a variety of applications,
including several you have already seen in this book. You can, for example, use it to
simplify the PigLatin.py program from Figure 7-3 by rewriting the function
to_pig_latin as follows:

364 Classes and Objects

TokenScanner.png

 10.5 Implementing a token scanner 365

def to_pig_latin(line):
 scanner = TokenScanner(ine)
 result = ""
 while scanner.has_more_tokens():
 token = scanner.next_token()
 if token.isalpha():
 token = word_to_pig_latin(token)
 result += token
 return result

While the new implementation of to_pig_latin is shorter than the original, the real
simplification is conceptual. The original code had to operate at the level of
individual characters; the new version gets to work with complete words, because the
TokenScanner class takes care of the low-level details.

Implementing the TokenScanner class
Particularly given the number of options it supports, the complete implementation of
the TokenScanner class is too complicated to serve as an effective example.
Figure 10-9, which extends over the next three pages, therefore presents a simplified
version of the token scanner package that defines only the following methods:

• A constructor that accepts an optional string argument as the initial source
• The set_input method, which sets the scanner input to a string
• The next_token method, which returns the next token from the string
• The has_more_tokens method, which lets clients see if tokens are available
• The ignore_whitespace method, which tells the scanner to ignore spaces

As the largest example of a class definition you have seen so far, the code for
TokenScanner in Figure 10-9 is worth studying in some detail. As you do so, it is
important that you don’t skip over the first page of the figure, which is composed
almost entirely of comments. While it is true that the Python interpreter ignores these
comments, you should keep in mind that comments are intended for human readers
of the program—readers like you. Particularly when you are designing a class that
you hope other programmers will use, you have a responsibility to give those
programmers the information they need to use that class effectively. If potential
clients are unable to figure out how to use a class, they will refrain from doing so.
The comments on the first page of Figure 10-9 give the reader a tour of the facilities
provided by the TokenScanner class along with examples of its use.

Another feature of the code that is worth your notice is that all private identifiers
begin with an underscore. These private identifiers include not only the properties of
the TokenScanner object defined in the constructor but also the private method
_skip_whitespace, which is called internally by the implementation.

366 Classes and Objects

TokenScanner-py-p1.png

 10.5 Implementing a token scanner 367

TokenScanner-py-p2.png

368 Classes and Objects

Perhaps the most important feature to notice about the TokenScanner class is the
way in which it encapsulates data values and methods into a single object. Like other
data values, a TokenScanner object maintains information about its state. This
information is stored in the values of the property variables _source, _nch, _cp, and
_ignore_whitespace_flag. The client, however, need not be aware of those
variables and indeed is warned by their names against making any direct reference to
their values. What the client sees in a TokenScanner object are its methods, which
define its behavior without revealing the implementation details.

 Summary
This chapter introduces the concept of an object, which is a data structure that
encapsulates state and behavior. Like arrays, objects combine multiple values into a
single unit. In an array, individual elements are selected using a numeric index; in an
object, individual attributes are selected by name.

The important points introduced in this chapter include:

• All Python objects are instances of a class, which provides a template for all
objects of that conceptual type.

 Review questions 369

• Class definitions begin with a header line containing the class keyword and the
name of class. The body of the class consists primarily of method definitions that
define the behavior of the class.

• Like arrays, objects are treated as references, which means that their internal
structure is not copied when the object is assigned or passed as a parameter.

• Given a Python object, you can select individual attributes using the dot operator,
which is followed by the name of the attribute.

• Most classes define a method called __init__, which acts as the constructor for
the class. Like all class methods, the first parameter to __init__ is a reference
to the object being created. That parameter should always be called self. The
constructor can take additional parameters, which allows the client to pass other
information to the constructor.

• Modern programming style discourages clients from manipulating the values of
individual attributes directly. Classes instead provide mediated access in the form
of methods. Methods that retrieve the value of an attribute are called getters;
methods that set the value of an attribute are called setters.

• Classes typically define a method called __str__, which converts an instance of
the class into a string that humans can recognize.

• To warn clients against looking too closely at parts of the implementation that
were not intended to be seen by clients, Python uses the convention of adding an
underscore at the beginning of names of any private attributes or methods.

• Designing new classes is as much an art as a science. This chapter outlines a
general strategy to guide you in this process on page 353, but experience and
practice are the best teachers.

• Python allows classes to define new implementations for the standard operators.
This technique is called operator overloading. Figure 10-7 on page 358 provides
a list of the methods that correspond to the built-in operators.

• A sequence of characters that has integrity as a unit is called a token. This chapter
presents a simple implementation of a TokenScanner class that divides a string
into its component tokens. The libraries included with this text include a
TokenScanner class that offers clients more flexibility. The methods exported by
the expanded TokenScanner class appear in Figure 8-1.

 Review questions
1. What word does Python use for the individual components of an object?

2. True or false: If you pass a Python object as a parameter to a function, the

function receives a copy of the object and therefore cannot change the
components of the original.

370 Classes and Objects

3. What is the dot operator and how is it used?

4. What is the name of the special function used to implement a constructor?

5. True or false: Modern programming practice discourages direct access to the data
attributes in an object.

6. What are getters and setters?

7. What is the purpose of the __str__ method in a Python class?

8. What convention does Python adopt to discourage clients from referring directly
to private attributes and methods?

9. What happens if you change the value of DELTA in the YarnPattern.py program

from 113 to 104? Does the picture look as striking? Why or why not?

10. What is a rational number?

11. What restrictions does the constructor for the Rational class place on the values
of the num and den variables?

12. What steps does the chapter propose as a useful approach to designing a class?

13. What is operator overloading?

14. What method would you define to change the definition of the % operator?

15. What is the difference between the __add__ and __radd__ methods?

16. In your own words, describe the function of a token scanner.

17. Given the TokenScanner class presented in this chapter, what statements would

you use to list every token from a string stored in the variable line?

 Exercises
1. Write a function print_payroll that takes an array of employees, each of which

is defined as a simple Python object, and prints on the console a list for each
employee showing the name, title, and salary. For example, if
SCROOGE_AND_MARLEY has been initialized as a two-element list containing the
entries for Ebenezer Scrooge and Bob Cratchit shown in the chapter, your
function should be able to reproduce the following IDLE session:

 Exercises 371

2. Rewrite the YarnPattern.py program from Figure 10-3 so that it uses tuples to

represent the points instead of GPoint objects.

3. You can make more interesting yarn patterns by changing the color of each

segment as you cycle through the pegs, like this:

Here, the yarn starts off red and then moves around the spectrum to orange,
yellow, green, and so on. Cycling through the colors of the rainbow is tricky
using the standard RGB color model but relatively easy if you instead use the
HSV model, which defines colors in terms of their hue, saturation, and value.
The hue value ranges from 0 and 1 that indicates a position on the color wheel
that begins with red and then cycles through the spectrum colors.

This problem is made much easier by the fact that Python supports a
colorsys library that exports a function hsv2rgb that converts between these
color models. Look up the definition of hsv2rgb on the web and figure out what
you need to do to produce this colored yarn pattern.

4. You can also produce interesting yarn patterns by arranging the pegs in a circle

instead of a rectangle. Here, for example, is the result of arranging 60 pegs around
the circumference of a circle and then using a DELTA value of 23 to string yarn
around the pegs:

372 Classes and Objects

Modify the YarnPattern.py program to produce this figure. To save
yourself the trouble of working out the trigonometric calculations, you can use
the following function to return a tuple containing the coordinates of a point
which is r units away from the point (x, y), moving in the direction specified by
angle, which is measured in degrees, just as in the GArc class:

def polar_point(x, y, r, angle):
 dx = r * math.cos(math.radians(angle))
 dy = -r * math.sin(math.radians(angle))
 return (x + dx, y + dy)

5. The game of dominos is played using pieces that are usually black rectangles

with some number of white dots on each side. For example, the domino

is called the 4-1 domino, with four dots on its left side and one on its right.

Define a simple Domino class that exports the following entries:

• A constructor that takes the number of dots on each side

• A __str__ method that creates a string representation of the domino

• Two getter methods named get_left_dots and get_right_dots

Test your implementation of the Domino class by writing a program that
creates a full set of dominos from 0-0 to 6-6 and then displays those dominos on
the console. A full set of dominos contains one copy of each possible domino in
that range, disallowing duplicates that result from flipping a domino over. Thus,
a domino set has a 4-1 domino but not a separate 1-4 domino.

 Exercises 373

6. Define a Card class suitable for representing a standard playing card, which is
identified by two components: a rank and a suit. The rank is stored as an integer
between 1 and 13 in which an ace is a 1, a jack is an 11, a queen is a 12, and a
king is a 13. For the convenience of clients, the Card class exports constants
named Card.ACE, Card.JACK, Card.QUEEN, and Card.KING. The suit is also
represented as an integer between 0 and 3, which are exported as the constants
Card.CLUBS, Card.DIAMONDS, Card.HEARTS, and Card.SPADES, respectively.

Along with the constants, the Card class should export the following methods:

• A constructor that takes either of two forms. If Card is called with two
arguments, as in Card(10, Card.DIAMONDS), it should create a card from
those components. If Card is called with one argument, it should interpret
the argument as a string composed of a rank (either a number or the first
letter of a symbolic name) and the first letter of the suit, as in "10D" or "QS".

• A __str__ method that converts the card to a string as described in the
outline of the constructor. The card Card(Card.QUEEN, Card.SPADES),
for example, should have the string representation "QS".

• The getter methods get_rank and get_suit.

• A main program that displays the string representation of every card, with
each suit appearing on a separate line. The output of this program should
look like this:

7. Write a function midpoint that takes two values of type GPoint and returns a

new GPoint object whose coordinates define the midpoint of the line segment
specified by the two parameters. For example, if the variables upper_left and
lower_right are defined as

upper_left = GPoint(0, 0)
lower_right = GPoint(GWINDOW_WIDTH, GWINDOW_HEIGHT)

calling midpoint(upper_left, lower_right) should return a point whose
coordinates mark the center of the window.

8. Design and implement a Date class that exports the following resources:

• Constants for the names of the months, so that clients can use the constant
Date.DECEMBER instead of writing the number 12.

374 Classes and Objects

• A constructor that takes parameters named year, month, and day, and then
uses those values to initialize the internal attributes of the Date object. For
example, the statement

moon_landing = Date(1969, Date.JULY, 20)

should initialize moon_landing so that it represents July 20, 1969. The
constructor should also check that the date is valid and raise a ValueError
exception if any value is out of range. Note that making this check means
that the module needs to know how many days are in each month.

• The getter methods get_day, get_month, and get_year.

• A __str__ method that returns the date in the form dd-mmm-yyyy, where
dd is a one- or two-digit date, mmm is the three-letter English abbreviation
for the month, and yyyy is the four-digit year. Thus, the string version of
moon_landing is "20-Jul-1969".

9. Extend the Rational class by implementing overloaded versions of the

relational operators ==, !=, <, <=, >, and >=. The names of these overloaded
methods are listed in Figure 10-7 on page 358.

10. Write a program that uses the TokenScanner class to display the longest word
that appears in a file chosen by the user. A word should be defined as any
consecutive string of letters and digits, as in the TokenScanner class.

11. For certain applications, it is useful to be able to generate a series of names that
form a sequential pattern. For example, if you wanted to number figures in a
paper, having some mechanism to return the sequence of strings "Figure 1",
"Figure 2", "Figure 3", and so on, would be very handy. You might also need
to label points in a geometric diagram, in which case you would want a similar
but independent set of labels for points such as "P0", "P1", "P2", and so forth.

If you think about this problem more generally, what clients would like is a
LabelGenerator class that allows them to specify a prefix string ("Figure " or
"P" for the examples in the preceding paragraph) coupled with an integer used
as a sequence number. To initialize a new generator, the client provides the
prefix string and the initial index as arguments to the LabelGenerator
constructor. Once the generator has been created, the client can return new labels
in the sequence by calling next_label on the LabelGenerator object.

Design and implement the LabelGenerator class along with a suitable
program to test your implementation.

C H A P T E R 1 1
Dictionaries and Sets

Computer programming is an art, because it applies accumulated
knowledge to the world, because it requires skill and ingenuity, and
especially because it produces objects of beauty.

—Donald Knuth, Turing Award lecture, 1974

Donald E. Knuth

Donald Knuth got his introduction to computing during his undergraduate years at the Case Institute of
Technology (now part of Case Western Reserve University) when he worked with the IBM 650 mainframe.
He received his Ph.D. in mathematics from the California Institute of Technology in 1963 and in 1968 joined
the computer science faculty at Stanford University. Knuth is best known for writing an extraordinarily
comprehensive series of books entitled The Art of Computer Programming, which focuses considerable
attention on the topics in this chapter. Throughout his career, Knuth has sought to weave the notions of
aesthetics and elegance into the practice of computing. When he became convinced that conventional
typesetting was unable to produce books that would be beautiful as well as comprehensive, Knuth
implemented the typesetting language TEX, which remains in widespread use today. Professor Knuth
received the ACM Turing Award in 1974 for his many contributions to computer science.

376 Dictionaries and Sets

Python defines several built-in types beyond those you have already seen. Of these,
the types covered in this chapter—dictionaries and sets—turn out to be especially
valuable as tools for writing programs. The primary goal of this chapter is to give
you a sense of when and how to use these structures as a client. In addition, the
chapter explores a strategy called hashing makes it possible to look up dictionary
entries in constant time.

 11.1 Dictionaries
Chapter 8 introduced the concept of a lexicon, which was a list of words without
associated definitions. While a lexicon is exactly what you need to write a spelling
checker or for playing games like Scrabble, some applications will require you to
associate each word with a definition. Providing those definitions turns a lexicon into
a dictionary, which is a data structure in which relatively small identifying tags—the
words in a physical dictionary, for example—are linked to additional information,
often larger or more complex, such as a dictionary definition. In computer science,
the identifying tag is called a key and the associated data structure is called the value
for that key. Although computer scientists often use the term map to describe the
general concept of a data structure that implements the key-to-value association,
Python uses the term dictionary. This terminology is also reflected in the name of
the Python type used to implement a dictionary, which is the built-in type dict.

Symbol tables
Dictionaries have many applications in programming. As an example, the Python
interpreter needs to assign values to variables, which can then be identified by name.
Python uses dictionaries—which are usually called symbol tables in the context of a
programming language—to maintain the association between the name of a variable
and its corresponding value. Python keeps track of several symbol tables
simultaneously and looks through them in a specified order, looking first in the
symbol table associated with the current function, then in the symbol tables associated
with each of the calling functions, then in the symbol table for the global variables
for the current module, and finally in the symbol table of built-in functions shared
across all modules.

Because you already have a mental model of how variables work in the context of
a programming language, symbol tables provide a good model for illustrating the
operation of a dictionary. In Python, you create an empty dictionary by writing a
matched set of curly braces with nothing inside them. Thus, you can initialize the
variable symtab to an empty dictionary like this:

symtab = { }
 ̀

 11.1 Dictionaries 377

This line sets up an empty dictionary that can be diagrammed as follows:

Once you have created a dictionary, you can add a new definition by writing an
assignment statement with the following general form:

dictionary[key] = value

For example, making the assignment

symtab["pi"] = 3.14159

adds a new association between the key "pi" and the value 3.14159, as follows:

Similarly, executing the statement

symtab["e"] = 2.71828

adds a new association between the key "e" and the value 2.71828, like this:

Once you have assigned a value to a key in a dictionary, you can retrieve that value
by using the key as if it were an array index. The expression symtab["e"] has the
value 2.71828, and the expression symtab["pi"] has the value 3.14159.

Although it hardly makes sense in the case of mathematical constants, you can
change the values associated with keys in the dictionary using a new assignment
statement. You could, for example, reset the value associated with "pi" (as an 1897
bill before the Indiana State General Assembly sought to do) by calling

symtab["pi"] = 3.0

which would lead to the following state:

378 Dictionaries and Sets

As these examples illustrate, dictionaries act in much the same way that arrays do.
The only difference is that the index value is no longer restricted to being an integer.
Any Python type can serve as keys in a dictionary as long as two conditions are met:
(1) the type must be immutable and (2) the type must implement the hash function
described in the section on “Hashing” later in this chapter.

The program in Figure 11-1 simulates a tiny bit of the IDLE interpreter by reading
assignment statements in the form

var = value

and requests to display the value of a variable in the form

var

 11.1 Dictionaries 379

The program treats value simply as a string and performs no calculations at all. It
does, however, illustrate the general process of assignment to a global variable in
which setting a new value overwrites any previous definition.

A sample run of the SymbolTableDemo.py program might look like this:

Creating lookup tables
As it does for lists and tuples, Python includes a special syntactic form that creates a
dictionary by listing its keys and values explicitly as part of the program. All you
need to do is enclose a list of the desired definitions inside curly braces, where each
definition is a key-value pair in the following form:

key: value

For example, the following statement defines a dictionary that defines an association
between the name of a month and its conventional numeric value:

MONTH_TABLE = {
 "January": 1, "February": 2, "March": 3,
 "April": 4, "May": 5, "June": 6,
 "July": 7, "August": 8, "September": 9,
 "October": 10, "November": 11, "December": 12
}

Dictionaries of this sort that implement a mapping between a predetermined list of
keys and their associated values is often called a lookup table.

You can use the definition of MONTH_TABLE to convert the name of a month into
its numeric form by using the month name as an index. Thus, the expression
MONTH_TABLE["June"] has the value 6. More importantly, you can use this
dictionary to convert the name of a month entered by the user to its numeric value
using the following statements:

name = input("Enter month name: ")
print(f"{name} = {MONTH_TABLE[name]}")

380 Dictionaries and Sets

Running this code snippet might generate the following console session:

If you try to select a definition from a dictionary using a key that doesn’t exist,
Python raises a KeyError exception. For example, if you ran the same lines of code
and entered one of the new month names invented (and soon abandoned) during the
French Revolution, you might see the following session:

Although you can use a try statement to catch this error, it is generally easier to use
Python’s in operator to check whether a key is defined, as in the following code:

name = input("Enter month name: ")
if name in MONTH_TABLE:
 print(f"{name} = {MONTH_TABLE[name]}")
else:
 print(f"{name} is not a valid month name")

Reading a dictionary from a data file
If you fly at all frequently, you quickly learn that every airport in the world has a
three-letter code assigned by the International Air Transport Association (IATA). For
example, the John F. Kennedy airport in New York City is assigned the three-letter
code JFK. Other codes, however, are considerably harder to recognize. Most
web-based travel systems offer some means of looking up these codes as a service to
their customers.

A simple way to implement this facility is to create a dictionary whose keys are
the airport codes and whose values are the city names. If you can create such a
dictionary, all you need to do to find the city corresponding to the three-letter airport
code is use the three-letter code as an index. There are, however, more than 2000
assigned airport codes, and the list of codes changes over time as new airports open
and old airports close. For these reasons, it doesn’t make sense to define a lookup
table like the MONTH_NAMES constant from the preceding section. A much better

 11.1 Dictionaries 381

strategy is to initialize the dictionary using a list of airport codes stored in a data file
that can be easily updated whenever changes occur.

Suppose, for example, that the IATA organization maintains a downloadable file
called AirportCodes.txt containing one line of data for each airport. Those lines
all start with a three-letter code, which is followed immediately by a colon and the
name of the city and country in which that airport is located. If the entries are sorted
in descending order by passenger traffic as compiled by Airports Council
International in 2017, the file would begin with the lines in Figure 11-2.

The first step in writing a program that allows users to look up the location of an
airport from its three-letter code is to read the data from AirportCodes.txt into a
dictionary. The problem of reading key-value pairs from a data file, however, is more
general than the airport application and is worth making into a module of its own, as
shown in Figure 11-3 at the top of the next page. Clients can use the dictfile
module to read in a file in which keys and values appear on the same line. For the
airport application, the client might call

airports = read_dictionary("AirportCodes.txt")

For a different application, the client would call read_dictionary on a different data
file. The optional separator parameter makes it possible to use a character other
than a colon to mark the division between the key and the value.

382 Dictionaries and Sets

The FindAirportCodes.py program in Figure 11-4 at the top of the next page
reads three-letter codes from the user and displays the corresponding city name, as
shown in the following sample run:

Iterating through keys in a dictionary
In some applications, it is useful to be able to iterate through all the keys in a
dictionary. For example, you can list the airports serving a particular country or city
by going through the keys in the dictionary and listing every entry for which the value
contains the desired country or city name. To make such applications possible,
Python dictionaries support iteration using the following for loop pattern:

for variable in dictionary:
 . . . body of the loop . . .

 11.1 Dictionaries 383

This version of the pattern iterates through all the keys in dictionary so that, in each
cycle, variable is assigned to the next key.

In versions of Python since 3.6, the for loop processes the keys in the same order
in which they were entered into the dictionary. In earlier versions of Python—and in
the similar constructs used in other programming languages—the order in which the
elements are processed is unpredictable. If you want your program to run in as many
versions of Python as possible or you think that it might be at some point translated
into a different programming language, it is wise not to depend on the order in which
the for loop processes the keys.

In many cases, you need both the key and the corresponding value in each cycle
of the loop. One approach to iterating through the keys and values together is to look
up the value on each cycle of the loop as shown in the following example:

for key in dict:
 value = dict[key]
 . . . rest of the loop body, which has access to both the key and the value . . .

384 Dictionaries and Sets

While this pattern has the desired effect, it requires an extra step to look up the
value associated with the key even though that value was presumably accessible as
Python cycled through the keys. You can eliminate this step by using the for loop
to iterate instead over all the key-value pairs like this:

for key, value in dict.items():
 . . . the loop body, which has access to both the key and the value . . .

The items method returns an iterable value that is conceptually a list of pairs, each
of which is a tuple containing a key and its corresponding value. The for loop then
uses destructuring assignment to split the tuple into its two components, assigning the
key to the variable key and the value to the variable value.

The FindAirportsByLocation.py program in Figure 11-5 uses this iteration
pattern to implement a console-based application to find the airports serving a
particular location. On each cycle, the program checks to see whether the
user-supplied search string appears in the location stored as the value corresponding
to each key. If so, the application prints that entry on the console. A sample run of
this application might look like this:

 11.2 Designing an efficient dictionary 385

Dictionary methods
Dictionaries implement several additional methods that will prove useful in certain
applications. The most important of these methods appear in Figure 11-6. The only
one of these methods that may need additional explanation is the get method, which
makes it possible to supply a default value for keys that are not found in the
dictionary. The selection operation dict[key] raises a KeyError exception if the
key is not found. In many applications, it is more useful to call dict.get(key),
which returns the constant None if the key is not found. The get method takes an
optional second argument, which allows clients to specify some default value other
than None.

 11.2 Using dictionaries as records
The preceding section presents Python’s dict class in order to emphasize the use of
dictionaries as maps that associate a key with a value. That interpretation remains
important in Python. Increasingly, however, Python programmers use dictionaries to

386 Dictionaries and Sets

implement the idea of a record. After all, a record associates the name of a field with
its value, which is pretty much just what a dictionary does.

For example, instead of using either a tuple or a class to represent a point, you
could use a dictionary for that purpose. Under this interpretation, you could initialize
the variable pt to the point (3, 4) by writing

pt = { "x": 3, "y": 4 }

After making this assignment, you could select the x and y components of the point
by writing pt["x"] and pt["y"], respectively.

Although this model seems somewhat more verbose than the earlier approaches,
it has the advantage of reducing the number of structures you need to consider when
defining a new data structure. This advantage will become much more evident in
Chapter 12, particularly in the context of using JavaScript Object Notation (JSON) to
represent nested data structures.

 11.3 Designing an efficient dictionary
The dictionary abstraction is used widely in programming applications, which gives
the programmers responsible for implementing that abstraction an incentive to make
dictionaries as efficient as possible. After all, if programmers can use clever
algorithmic techniques to improve the performance of Python’s dictionaries, every
client that uses those dictionaries will benefit from the change.

Implementing dictionaries using lists
Before moving on to consider more efficient strategies, it is useful to start with a
simple list-based implementation just to make sure that you understand what each of
the required operations does. Since the goal is to implement the operations required
for a dictionary, it is hardly appropriate to use Python’s dict class in the solution.
This section instead implements a Dictionary class that exports the necessary
operations under the method names put and get. Calling put(key, value) adds a
new value for the specified key, overwriting any previous value. Calling get(key)
returns the value associated with the key if it exists. Like its counterpart in the built-in
dict class, the get method takes an optional default value to use if the key is
undefined.

Figure 11-7 on the next page shows an implementation of the Dictionary class
in which the key-value pairs are stored in a list of tuples. That list of tuples is stored
in an attribute of the Dictionary object called _bindings. The constructor sets the

 11.2 Designing an efficient dictionary 387

ListDictionary-py.png

388 Dictionaries and Sets

private attribute _bindings to be an empty list. The put method searches through
the elements of the list looking for a tuple that contains the requested key. If it finds
one, the put method replaces that tuple with one that reflects the new binding. If not,
the put method adds a new key-value pair to the end of the list. The get method
operates similarly. If it finds the requested key while searching the list, it returns the
value from that key-value pair. If it doesn’t, get returns the default value.

The last three methods in Figure 11-7 illustrate new features that allow the
Dictionary implementation to function more like Python’s built-in dict class. The
__getitem__ method tells Python how to implement square-bracket selection. The
__setitem__ method has a symmetric interpretation that overrides Python’s
treatment of assignment to a selected object. Defining new implementations of these
methods mean that you can retrieve items from a dictionary by writing

dict[key]

and set a new value by writing

dict[key] = value

The third method is in many ways more interesting. If you define an __iter__
method in a class, Python considers instances of that class to be iterable objects, which
means you can use them in a for statement. Thus, if you have stored an instance of
the Dictionary class in a variable called bindings, you can iterate over its keys by
writing

for key in bindings:

The __iter__ method returns an object called an iterator, which is the data type
Python uses to track the progress of stepping through an iteration. The details of
iterators—and their more counterparts called generators—are beyond the scope of an
introductory computer science course. Even so, it is easy to create an iterator from
any iterable object by calling the __iter__ method for that object. The
implementation of the __iter__ method in the list-based Dictionary class creates
a list of the keys and then result of calling the __iter__ method on that list.

Improving the running time
In the implementation shown in Figure 11-7, both put and get run in O(N) time. If
you can keep the keys in the list in some kind of sorted order, you can reduce the
running time of the get method to O(log N) by using binary search to find a matching
key. Unfortunately, there is no obvious way to apply that same optimization to the
put method. Although it is possible to check whether a key already exists in the
dictionary—and even to determine exactly where a new key needs to be added—in

 11.2 Designing an efficient dictionary 389

O(log N) time, inserting the new key-value pair at that position requires shifting every
subsequent entry forward. Thus, put requires O(N) time, even in a sorted list.

To get some insight into how you might improve the performance of looking up
words in a Python dictionary, it may help to think more concretely about how you
might look up a word in a physical dictionary that is printed on paper instead of being
stored in electronic form. The strategies that humans use to look up a dictionary entry
don’t look anything like the implementation in the preceding section. The algorithmic
strategy embodied in that implementation is to check each successive word in the
dictionary to see if it matches the one you’re looking for. You start with the first
entry, go on to the second, and then the third, until you find the word or determine
that it is not in the dictionary at all.

No one, of course, would use this strategy for a dictionary of any significant size.
But it is also unlikely that you would apply the O(log N) binary search algorithm,
which corresponds to opening the dictionary exactly at the middle, deciding whether
the word you’re searching for appears in the first or second half, and then repeatedly
applying this algorithm to smaller and smaller parts of the dictionary. You would
instead try to anticipate more accurately where in the dictionary you should start
looking for a word. If, for example, the word you’re looking for starts with the letter
A, you will start looking near the beginning of the alphabet. By contrast, if the word
you’re looking for begins with the letter Z, you would start looking closer to the end.

Printed dictionaries often try to help you with this process by including cutaway
tabs along the side, each of which is labeled with the starting letter of words in that
section. If you are lucky enough to have this kind of dictionary, you would look for
words starting with A in the section marked with the A tab and for words starting with
Z in the section marked with the Z tab. These tabs ensure that your search begins in
the right section, which reduces the number of words you need to check.

To get a sense of how the metaphor of dictionary tabs might help in the design of
a Python-based implementation, it is useful to work with a smaller example than the
one using airport codes presented earlier in the chapter. In 1963, the United States
Postal Service introduced a set of two-letter codes for the individual states, districts,
and territories of the United States. The codes for the 50 states appear in Figure 11-8
at the top of the next page.

If you enter the key-value pairs from Figure 11-8 into the list-based dictionary
presented in Figure 11-7, the list will have 50 elements, one for each state. Because
the process of searching for a specific key requires looking at every element, the
implementation will, in the worst case, have to look at every one of those 50 keys.

The most direct way to apply the idea of dictionary tabs to the search process is to
divide the list of all the states into 26 shorter lists, one for each possible starting letter.

390 Dictionaries and Sets

As in the physical dictionary, the states whose two-letter codes begin with A will
show up in the A list, and so forth. At least in theory, this strategy should reduce the
length of the individual lists—and therefore the running time—by a factor of 26.

Unfortunately, keys in a dictionary, like the first letters of English words, are not
uniformly distributed. For example, many more English words begin with C than
with X. The same is true for the state codes. Fully 64 percent of the state codes start
with A, I, M, N, or W, while no state names begin with B, E, J, Q, X, Y, or Z. The fact
that the first letters in the state name are poorly distributed across the alphabet means
that some of the search lists will be relatively long and others will be empty. The
divide-up-the-list-by-first-letter strategy offers some increase in efficiency, but
nothing like the hoped-for factor of 26.

On the other hand, there is no reason that you have to use the first character of the
key to divide up the keys in a dictionary. The first-character strategy is simply the
closest analogue to what you do if you have a physical dictionary sitting in front of
you. What you need is a strategy that divides the keys into groups in a way that does
a better job of ensuring that the keys are distributed more evenly. That idea can be
implemented in an elegant way using a technique called hashing, which is described
in the following section.

Hashing
The best way to improve the efficiency of the dictionary implementation is to come
up with a way of using the key to determine, at least fairly closely, where to look for
the corresponding value. Choosing any obvious property of the key, such as its first
character, runs into the problem that keys are not equally distributed with respect to
that property.

Given that you are using a computer, however, there is no reason that the property
you use to locate the key has to be something easy for a human to figure out. To

 11.3 Hashing 391

maintain the efficiency of the implementation, the only thing that matters is whether
the property is easy for a computer to determine. Since computers are better at
computation than humans are, allowing for algorithmic computation opens a much
wider range of possibilities.

The computational strategy called hashing operates as follows:

1. Select a function ƒ that transforms a key into an integer value, which is called the

hash code of that key. The function that computes the hash code is called,
naturally enough, a hash function. An implementation of the dictionary
abstraction that uses this strategy is conventionally called a hash table.

2. Use the hash code for a key to determine the starting point as you search for a
matching key in the table.

Python includes a built-in function called hash that returns the hash code for any

immutable value. The following IDLE session shows the result of calling hash on the
integer 42, the constant value math.pi, and the string "hello, world", all of which
are immutable:

Although the hash code for 42 seems simple enough, the other hash codes listed in
this example seem completely random. As it happens, the fact that these values seem
random is not at all surprising. The implementation of the hash function in Python
uses much the same techniques as the random library to ensure that the chance that
two keys collide is as small as possible. To achieve that goal, the hash function tries
to scatter the results over as wide a range of integers as possible.

If you are running a recent version of Python on modern 64-bit computer, the
result of the hash function is a 64-bit integer, which means that its value lies
somewhere between –9,223,372,036,854,775,808 and 9,223,372,036,854,775,807,
which is an enormous range of values. The probability that two strings chosen at
random produce the same hash code is 1 in 264, which means that one would never
expect such an event to happen in a lifetime.

Unfortunately, the number of possible values of the hash function is so gigantic
that there is no way to use the hash code itself as an index into a smaller list of values.
No computer that exists now or in the foreseeable future could hold an array of that

392 Dictionaries and Sets

size. What you need to do is compress the hash codes into a narrower range in which
each of these smaller values can serve as index into an array containing some fraction
of the key-value pairs.

Although other representations are possible, a common strategy is to use the hash
code to compute an index into an array of lists, where each list holds all the key-value
pairs corresponding to that hash code. When you use this strategy to implement a
hash table, the elements of the array containing the lists are traditionally called
buckets. To find the key you’re looking for, all you need to do is search through the
list of key-value pairs in the bucket whose index is specified by the hash code.

As a general rule, the number of possible hash codes is considerably larger than
the number of buckets. You can, however, convert an arbitrarily large hash code into
a bucket number by computing the remainder of the absolute value of the hash code
divided by the number of buckets. Thus, if the array of buckets is stored in the
attribute _buckets of the dictionary object, you can compute the bucket number for
a particular key like this:

bucket = abs(hash(key)) % len(self._buckets)

A bucket number represents an index into the _buckets array, each of whose
elements is a list of key-value pairs. Colloquially, computer scientists say that a key
hashes to a bucket if the hash function applied to the key returns that bucket number
after applying the remainder operation. Thus, the common property that links all the
keys in a single linked list is that they all hash to the same bucket. Having two or
more different keys hash to the same bucket is called collision.

The reason that hashing works is that the hash function always returns the same
value for any particular key. If a key hashes to bucket #13 when you call put to enter
it into the dictionary, that key will still hash to bucket #13 when you call get to find
its value. Figure 11-9 shows the code for the HashDictionary module, which
implements the Dictionary class using a hash table.

Tracing the hash table implementation
The easiest way to understand the implementation of the hash table in Figure 11-9
shows is to go through a simple example.

 11.3 Hashing 393

HashDictionary-py.png

394 Dictionaries and Sets

Suppose that you have written a program that needs to initialize a dictionary that maps
the two-letter codes for each state into the corresponding state name. Your program
would begin by calling the Dictionary constructor like this:

state_dictionary = Dictionary()

The constructor creates a list called _buckets with 16 elements, each of which is an
empty list.

To add the first state in the list to the dictionary, your program would then execute
the call

state_dictionary.put("AK", "Alaska")

If you look at the code for put, you will see that the first statement is

bucket = abs(hash(key)) % len(self._buckets)

which computes the bucket number. Calling hash("AK") in this example produces
the 64-bit integer –5,249,979,066,121,302,514. While that number is difficult for
people to comprehend, the computer has no more difficulty performing arithmetic on
that number than on any other integer that fits inside a single memory location. The
statement then divides the absolute value of the hash code by the number of buckets
and then assigns the remainder to the local variable bucket. Trusting in the computer
to carry out that division, it turns out that "AK" hashes to bucket #2. The remaining
code in the put method goes through the key-value pairs in the list from bucket #2
looking for a matching key. The list is currently empty, so the code simply adds the
tuple ("AK", "Alaska") to the end of the list.

Since there are only 16 buckets in the array and 50 states whose codes need to be
stored in the dictionary, it must be the case that the codes for some of the states
collide. This fact is an application of what mathematicians call the pigeonhole
principle, which simply says that if you have more pigeons than pigeonholes, you
can’t house all the pigeons without having at least two pigeons in some pigeonhole.

As it happens, the first collision in this example comes when you try to insert the
entry for the state code "AZ", which also hashes to bucket #2. The put method looks
through the list of values that have already been added to bucket #2 to see if "AZ" is
already there. Since it isn’t, the put method adds a new entry to the list. If you carry
out this process for all 50 states, you end up with the diagram shown in Figure 11-10.

 11.3 Hashing 395

StateHashTable.png

396 Dictionaries and Sets

The implementation of the hash table works because get and put use the same
code to determine the bucket number. When you are looking up a key using get, you
can rely on the fact that it must be in the bucket you calculate from the hash code if
it is going to be anywhere in the table at all. After all, the only way that key could
have found its way into the table is if a previous call to put added it to the list stored
in that bucket. If the keys are the same, then get and put will calculate the same
bucket number.

Adjusting the number of buckets
If you look at the distribution of keys in the hash table pictured in Figure 11-10, you
will see that distribution is reasonably uniform. None of the buckets contain more
than five elements and none of them happen to be empty. As you would expect, the
lists in each buckets are of slightly different lengths because of the way random
processes work. Even so, the effect of the hashing strategy is to reduce the time
needed to find a key in the table by a factor roughly equal to the number of buckets.

In terms of computational complexity, however, it is not yet clear that the
reduction in time will matter much as the size of the dictionary grows. Big-O notation
allows you to throw away constant factors. If the number of buckets is always 16, all
this most recent implementation has done is divide the average running time by 16,
which means that the computational complexity of the put and get methods is still
O(N).

Although the details of the hash function are also important, the efficiency of a
hash table depends on the number of buckets. If the number of buckets is small,
collisions occur more frequently. In particular, if there are more entries in the hash
table than buckets, collisions are inevitable. Collisions affect the efficiency of the
hash table because put and get have to search through longer lists. As the hash table
fills up, the number of collisions rises, which in turn reduces performance.

It is important to remember that the goal of using a hash table is to optimize the
put and get methods so that they run in constant time, at least in the average case.
Achieving this goal requires that the lists stored in each bucket remain short, which
in turn implies that the number of buckets must always be large in comparison to the
number of entries. Assuming that the hash function does a good job of distributing
the keys evenly among the buckets, the average length of each bucket chain is given
by the formula

l =

For example, if the total number of entries in the table is three times the number of
buckets, the average chain will contain three entries, which in turn means that three

 11.3 Hashing 397

string comparisons will be required, on average, to find a key. This ratio, usually
indicated by the Greek letter lambda (l), is called the load factor of the hash table.

For good performance, you want to make sure that the value of l remains small.
Although the mathematical details are beyond the scope of this text, maintaining a
load factor of 0.7 or less means that the average cost of looking up a key in a
dictionary is O(1). Smaller load factors imply that there will be lots of empty buckets
in the hash table array, which wastes a certain amount of space. You can usually
reduce the running time of a dictionary implemented as a hash table by being willing
to consume more memory. Conversely, you can often save memory by being willing
to accept slightly slower performance. Considerations of this sort come in many
applications and are called a time-space tradeoff.

Unless the hashing algorithm is engineered for a particular application in which
the number of keys is known in advance, it is impossible to choose a fixed value for
the number of buckets that works well for all clients. If a client keeps entering more
and more entries into a hash table, the performance will eventually degrade. If you
want to ensure good performance, the best approach is to allow the implementation
to increase the number of buckets dynamically. For example, you can design the
implementation so that it allocates a larger hash table if the load factor in the table
ever reaches a certain threshold. Unfortunately, if you increase the number of
buckets, the bucket numbers all change, which means that the code to expand the
table must reenter every key from the old table into the new one. This process is
called rehashing. Although rehashing can be time-consuming, it is performed
infrequently and therefore has minimal impact on the overall running time of the
application. You will have a chance to implement rehashing in exercise 9.

Hashing and computer security
The techniques involved in hashing play an important role in several applications
involving computer security. The most common strategies used to prevent a
malicious third party from making unauthorized changes to the content of a message
is to include a digital signature as part of the message, which is essentially a hash
code of its original contents. When digital signatures are combined with secure
encryption technology, forging a message become extremely difficult.

Interestingly, hash tables have also been a source of vulnerability that allow
hackers to overwhelm the capacity of a system by sending it time-consuming requests
that prevent the system from responding to legitimate traffic. This type of intrusion
is called a denial-of-service attack. Because hash tables are used in most
implementations of web-based protocols, knowing how to slow those hash tables
down becomes a useful tool in the hacker’s arsenal. For example, if a hacker knows
exactly how a hash function works, it is not difficult to send requests in which all the
keys collide.

398 Dictionaries and Sets

Python eliminates this problem by randomizing the hash function it uses for strings
so that calling hash gives different values each time the interpreter is run. This
strategy prevents a hacker from exploiting collisions to reduce server performance.
Within any single run of the interpreter, however, the hash function will give
consistent results, which means that the hashing strategy continues to function
correctly.

 11.4 Sets
The last built-in type covered in this chapter is the set class, which is an interesting
object of study for a variety of reasons. From the perspective of the Python
programmer, sets often provide just the right tool for applications in which you need
to keep track of a collection of distinct objects. Beyond their practical value,
however, sets provide a powerful mental model for thinking about programs, mostly
because the properties of sets have been studied for so many years in the context of
mathematics. If mathematicians have known for centuries that some theorem is true
in the context of mathematical sets, adopting that theoretical model can often make it
easier to design, implement, and debug a program. Finally, many intellectually
exciting algorithms in computer science today use sets in their implementation. If
you code those algorithms in a language that includes—as Python does—a powerful
set abstraction, the translation from an abstract algorithmic description to a working
program is a much more straightforward process.

Sets as a mathematical abstraction
In all likelihood, you have already encountered sets at some point in your study of
mathematics. In general terms, it is easiest to think of a set as an unordered collection
of distinct elements. For example, the set whose elements are the names of the
primary colors of light looks like this:

{ "Red", "Green", "Blue" }

The individual elements appear in this order only because it is conventional. If the
names were in a different order, it would still be the same set. A set never contains
multiple copies of the same element.

The set of primary colors is a finite set because it contains a finite number of
elements. In mathematics, there are also infinite sets, such as the set of all integers.
In a computer system, sets are usually finite, even if they correspond to infinite sets
in mathematics.

To understand the fundamental operations on sets, it is useful to have a few sets
to use as a foundation. In keeping with mathematical convention, this text uses the
following symbols to refer to the indicated sets:

 11.4 Sets 399

Æ The empty set, which contains no elements
N The set of natural numbers (0, 1, 2, 3, . . .)
Z The set of all integers
R The set of all real numbers

In mathematics, sets are most often written using a single uppercase letter. Sets whose
membership is defined—like N, Z, and R—are denoted using boldface letters.
Names that refer to some unspecified set are written using italic letters, such as S and
T.

The fundamental property that defines a set is that of membership, which has the
same intuitive meaning in mathematics that it does in English. Mathematicians
express membership symbolically using the notation x Î S, which indicates that the
value x is an element of the set S. For example, 17 Î N, –4 Î Z, and π Î R.
Conversely, the notation x Ï S indicates that x is not an element of S. For example, –
4 Ï N because the set of natural numbers does not include the negative integers.

Mathematical set theory defines several operations on sets, of which the following
are the most common:

• Union. The union of two sets is written as A È B and consists of all elements

belonging to the set A, the set B, or both.

{1, 3, 5, 7, 9} È {2, 4, 6, 8} = {1, 2, 3, 4, 5, 6, 7, 8, 9}
{1, 2, 4, 8} È {2, 3, 5, 7} = {1, 2, 3, 4, 5, 7, 8}
{2, 3} È {1, 2, 3, 4} = {1, 2, 3, 4}

• Intersection. The intersection of two sets is written as A Ç B and consists of the

elements belonging to both A and B.

{1, 3, 5, 7, 9} Ç {2, 4, 6, 8} = Æ
{1, 2, 4, 8} Ç {2, 3, 5, 7} = {2}
{2, 3} Ç {1, 2, 3, 4} = {2, 3}

• Set difference. The difference of two sets is written as A – B and consists of the

elements belonging to A except for those that are also contained in B.

{1, 3, 5, 7, 9} – {2, 4, 6, 8} = {1, 3, 5, 7, 9}
{1, 2, 4, 8} – {2, 3, 5, 7} = {1, 4, 8}
{2, 3} – {1, 2, 3, 4} = Æ

• Symmetric set difference. The symmetric difference of two sets is written as

A △ B and consists of the elements belonging to either A or B but not both.

{1, 3, 5, 7, 9} △ {2, 4, 6, 8} = {1, 2, 3, 4, 5, 6, 7, 8, 9}
{1, 2, 4, 8} △ {2, 3, 5, 7} = {1, 3, 4, 5, 7, 8}
{2, 3} △ {1, 2, 3, 4} = {1, 4}

400 Dictionaries and Sets

Set operations are often illustrated by drawing Venn diagrams, which are named
for the British logician John Venn. In a Venn diagram, the individual sets are
represented as geometric figures that overlap to indicate regions in which they share
elements. For example, the results of the set operations union, intersection, set
difference, and symmetric set difference are indicated by the shaded regions in the
following Venn diagrams:

A È B A Ç B

A – B A △ B

In addition to set-producing operations like union, intersection, set difference, and
symmetric set difference, the mathematical theory of sets also defines several
operations that determine whether a property holds between two sets. Operations that
test a particular property are the mathematical equivalent of predicate methods and
are usually called relations. The most important relations on sets are the following:

• Equality. The sets A and B are equal if they have the same elements. The equality

relation for sets is indicated by the standard equal sign used to denote equality in
other mathematical contexts. Thus, the notation A = B indicates that the sets A
and B contain the same elements.

• Subset. The subset relation is written as A Í B and is true if all the elements of A
are also elements of B. For example, the set {2, 3, 5, 7} is a subset of the set
{1, 2, 3, 4, 5, 6, 7, 8, 9}. Similarly, the set N of natural numbers is a subset of the
set Z of integers. From the definition, it is clear that every set is a subset of itself.
Mathematicians use the notation A Ì B to indicate that A is a proper subset of B,
which means that the subset relation holds but that the sets are not equal.

One of the useful bits of knowledge you can derive from mathematical set theory

is that the set operations are related to each other in various ways. These relationships
are usually expressed as identities, which are rules indicating that two expressions are
invariably equal. In this text, identities are written in the form

 11.4 Sets 401

lhs º rhs

which means that the set expressions lhs and rhs are equal by definition. The most
common set identities are shown in Figure 11-11.

You can get a sense of how these identities work by drawing Venn diagrams to
represent individual stages in the computation. Figure 11-12, for example, verifies
the first of De Morgan’s laws listed in Figure 11-11, which are named after the British
mathematician Augustus De Morgan, who first formalized these identities. The
shaded areas represent the value of each subexpression in the identity. The fact that
the Venn diagrams along the right edge of Figure 11-12 have the same shaded region
demonstrates that the set A – (B È C) is the same as the set (A – B) Ç (A – C).

Mathematical techniques are important to computer science for several reasons.
For one thing, theoretical knowledge is useful in its own right because it deepens your
understanding of the foundations of computing. Moreover, this type of theoretical
knowledge often has direct application to programming practice. By relying on data
structures whose mathematical properties are well established, you can use the
theoretical underpinnings of those structures to your advantage. For example, if you
write a program that uses sets, you may be able to simplify your code by applying
one of the standard set identities from Figure 11-11. Choosing to use sets as a
programming abstraction, as opposed to designing some less formal structure of your
own, makes it easier for you to apply theory to practice.

402 Dictionaries and Sets

Sets in Python
The beginning of the preceding section used the following notation to define a set
consisting of the three primary colors of light:

{ "Red", "Green", "Blue" }

That expression is written in its conventional mathematical form, in which the
elements of the set are enclosed in curly braces and separated by commas. Python
uses precisely that syntax. You can, for example, assign that set to the variable
primaries by writing

primaries = { "Red", "Green", "Blue" }

You can also create sets using set comprehensions, which are analogous to the list
comprehensions introduced in Chapter 8. For example, the expression

{ i for i in range(10) }

creates a set containing the integers from 0 to 9.

Python’s set class includes built-in operators for all the mathematical operators on
sets described in the preceding section. These operators are listed, along with several

 11.4 Sets 403

methods that apply to the set class in Figure 11-13. Several of the most common set
operators are illustrated in the following IDLE session:

404 Dictionaries and Sets

 Summary
This chapter explored two built-in types—dictionaries and sets—that are useful in a
variety of applications. The important points introduced in this chapter include:

• A dictionary associates keys with values in a way that enables clients to retrieve
those associations efficiently. Python’s syntax for working with a dictionary is
similar to the one it uses for lists. You can retrieve the value for a particular key
by enclosing the key in square brackets after the dictionary. You can set a new
value for a key by assigning to that same selection expression.

• Python allows you to create a dictionary by enclosing a list of key-value pairs in
curly braces. The individual entries in that list consist of a key and a value
separated by a colon.

• The for statement makes it easy to iterate through the keys in a dictionary. Since
Python 3.6, the for statement returns the keys in the order in which they were
inserted, but relying on that behavior makes your programs less portable. You can
also cycle through the key-value pairs in a dictionary by using the items method,
which returns an iterable object that delivers each key-value pair as a tuple.

• Python programmers often use dictionaries to implement data structures that are
more traditionally thought of as records. Several examples in Chapter 12 illustrate
this model in more detail.

• It is possible to implement the fundamental dictionary operations by storing
key-value pairs in a list. Keeping the list in sorted order by key makes it possible
to find a key in O(log N) time, but this representation still requires O(N) time to
insert a new key.

• Dictionaries can be implemented very efficiently using a strategy called hashing,
in which keys are converted to an integer that tells the implementation precisely
where it should look for the matching key.

• A common implementation of the hashing algorithm is to allocate an array of
buckets, each of which contains a list of the keys that hash to that bucket. As long
as the ratio of the number of entries to the number of buckets does not exceed
about 0.7, the operations of adding a new key or finding an existing one both run
in O(1) time on average. Maintaining this performance as the number of entries
grows requires periodic rehashing to increase the number of buckets.

• A set is an unordered collection of distinct elements. You can create a set in
Python by listing its elements inside curly braces. The empty set must be written
as set() because Python interprets the expression { } as an empty dictionary.

• Sets provide a powerful mental model for thinking about programs because sets
have a solid mathematical foundation. The fundamental operations on sets are
summarized in Figure 11-14 at the top of the next page.

 Review questions 405

 Review questions
1. In your own words, define the concept of a dictionary as Python uses the term.

2. List at least three application contexts in which the dictionary data structure is

likely to prove useful?

3. What happens if you select a key that doesn’t exist in a dictionary?

4. How do you iterate over the keys in a dictionary?

5. How does Python allow you to iterate over the keys and their associated values

at the same time?

6. What guarantees do the most recent versions of Python make about the order in

which the for loop iterates through the keys in a dictionary? Why might it be
unwise to rely on this behavior?

7. For the list-based implementation of a dictionary, what algorithmic strategy does

the chapter suggest for reducing the cost of finding a key to O(log N) time?

8. If you implement the strategy suggested in the preceding question, why does it

still require O(N) time to insert a new key?

9. What is meant by the term bucket in the implementation of a hash table?

406 Dictionaries and Sets

10. What is a collision?

11. In your own words, define the pigeonhole principle.

12. In tracing through the code that enters state abbreviations into a hash table, the

text notes that the entries for "AZ" and "AK" collide in bucket #2. By looking at
the diagram in Figure 11-10, determine what state abbreviations are involved in
the next collision that occurs.

13. What is a time-space tradeoff? How does that concept apply to hash tables?

14. What is meant by the term load factor?

15. How does a hash table keep the load factor small as the number of keys grows.

16. What is the approximate threshold for the load factor that ensures that the average

performance of a hash table is O(1)?

17. How does a set differ from a list?

18. What sets are denoted by each of the following symbols: Æ, Z, N, and R?

19. What do the symbols Î and Ï mean?

20. What are the mathematical symbols for the operations union, intersection, set

difference, and symmetric set difference?

21. What is the difference between a subset and a proper subset?

22. Give an example of an infinite set that is a proper subset of another infinite set.

23. Evaluate the following set expressions expressed in mathematical notation:

a. {1, 2, 3} È {1, 3, 4}
b. {1, 2, 3} Ç {1, 3, 4}
c. {1, 2, 3} – {1, 3, 4}
d. ({1, 2, 3} – {1, 3, 4}) È ({1, 2, 3} – {1, 3, 4})

24. For each of the following set operations, draw Venn diagrams whose shaded

regions illustrate the contents of the specified set expression:

a. A È (B Ç C) c. (A – B) È (B – A)
b. (A – C) Ç (B – C) d. (A È B) – (A Ç B)

 Exercises 407

25. Write set expressions that describe the shaded region in each of the following
Venn diagrams:

a.

b.

26. How would you create a Python set containing 6, 28, 496, and 8128?

27. True or false: You can use the syntax { } to designate the empty set in Python.

28. What are the Python operators that correspond to the mathematical operators

Î, È, Ç, △, Ì, and Í?

29. What is the value of the Python expression len(set("hello"))?

 Exercises
1. In many word games, letters are scored according to their point values, which are

inversely proportional to their frequency in English words. In Scrabble™, the
points are allocated as follows:

Points Letters
1 A, E, I, L, N, O, R, S, T, U
2 D, G
3 B, C, M, P
4 F, H, V, W, Y
5 K
8 J, X

10 Q, Z

For example, the word "FARM" is worth 9 points in Scrabble: 4 for the F, 1
each for the A and the R, and 3 for the M. Write a function scrabble_score that
takes a word and returns its score in Scrabble, not counting any of the other
bonuses that occur in the game. You should ignore any characters other than
uppercase letters in computing the score.

2. In Roman numerals, characters of the alphabet are used to represent integers as

shown in this table:

408 Dictionaries and Sets

symbol value
I 1
V 5
X 10
L 50
C 100
D 500
M 1000

Each character in a Roman numeral stands for the corresponding value.
Ordinarily, the value of the Roman numeral as a whole is the sum of the
individual character values in the table. Thus, the string "LXXVI" denotes
50 + 10 + 10 + 5 + 1, or 76. The only exception occurs when a character
corresponding to a smaller value precedes a character representing a larger one,
in which case the value of the first letter is subtracted from the total, so that the
string "IX" corresponds to 10 - 1, or 9.

Write a function roman_to_decimal that takes a string representing a Roman
numeral and returns the corresponding decimal number. To find the values of
each Roman numeral character, your function should find that character in a
dictionary that implements a lookup table. If the string contains characters that
are not in the table, roman_to_decimal should return -1.

3. Even though the CountLetterFrequencies.py program in Chapter 8 was

designed to show how lists can be used for tabulation, its operation is
conceptually more closely related to the idea of a dictionary in which each
individual letter serves as a key whose corresponding value is the letter count.
Rewrite the CountLetterFrequencies.py program so that it uses a dictionary
rather than a list in its implementation. As before, the table of letter frequencies
should appear in alphabetical order.

4. In May of 1844, Samuel F. B. Morse sent the message “What hath God wrought!”

by telegraph from Washington to Baltimore, heralding the beginning of the age
of electronic communication. In his 1998 book, The Victorian Internet, British
journalist Tom Standage goes so far as to argue quite plausibly that the impact
of the telegraph on the 19th-century world was in many ways more profound
than the impact of the Internet on the 20th.

To make it possible to communicate information using only the presence or
absence of a single tone, Morse designed a coding system in which letters and
other symbols are represented as coded sequences of short and long tones,
traditionally called dots and dashes. In Morse code, the 26 letters are represented
by the codes in Figure 11-15.

Samuel F. B. Morse

 Exercises 409

Write a program that reads in lines from the user and translates each line
either to or from Morse code, depending on the first character of the line:

• If the line starts with a letter, you need to translate it to Morse code. Any
characters other than the 26 letters should simply be ignored.

• If the line starts with a period (dot) or a hyphen (dash), it should be read as
a series of Morse code characters that you need to translate back to letters.
You may assume that each sequence of dots and dashes in the input string
will be separated by spaces, and you are free to ignore any other characters
that appear. Because there is no encoding for the space between words, the
characters of the translated message will be run together.

The program should end when the user enters a blank line. A sample run of this
program (taken from the messages between the Titanic and the Carpathia in
1912) might look like this:

5. Telephone numbers in the United States and Canada are organized into various

three-digit area codes. A single state or province often has many area codes, but
a single area code never crosses a state or provincial boundary. This rule makes
it possible to list the geographical locations of each area code in a data file. For
this problem, assume that you have a file AreaCodes.txt, which lists all the
area codes paired with their locations, as illustrated by the first few lines of that
file:

410 Dictionaries and Sets

Using the FindAirportCodes.py program from Figure 11-4 as a model,
write the code necessary to read this file into a dictionary where the key is the
area code and the value is the location. Once you’ve read in the data, write a
program that repeatedly asks the user for an area code and then looks up the
corresponding location, as illustrated in the following sample run:

As the prompt suggests, however, your program should also allow users to
enter the name of a state or province and have the program list all the area codes
that serve that area, as illustrated by the following sample run:

6. Poets who write rhymed verse sometimes make use of a rhyming dictionary,
which lists all words with a particular ending. Although rhyming dictionaries
find words based on their sound, it is still helpful to match words by spelling.

Write a function create_suffix_dictionary that uses the english library
to create a dictionary in which the keys are every string that appears at the end
of some word in the dictionary and whose length is between two and five letters.
The corresponding value in the dictionary should be a list of all the words in the
dictionary that end with that suffix. For example, the value associated with the
key "lege" should be the list

["allege", "college", "privilege", "sacrilege"]

because those are the only English words ending in "lege".

 Exercises 411

7. Write a program that displays a table showing the number of words that appear
in the english module introduced in Chapter 3, sorted by the length of the word.
The output of the program should look like this:

8. The two implementations of Dictionary class in this chapter—the list-based

dictionary in Figure 11-7 and the hash-based dictionary in Figure 11-9—do not
implement the full set of methods from Figure 11-6. Add the necessary code to
implement the pop and clear methods as well as the len function, which
happens automatically if you define a __len__ method for the class.

9. Modify the code for the Dictionary class in Figure 11-9 so that it implements

rehashing. Your implementation should keep track of the load factor for the hash
table and perform a rehashing operation that doubles the number of buckets
whenever the load factor exceeds the limit indicated by a constant defined as
follows:

REHASH_THRESHOLD = 0.7

10. Write a program to evaluate the performance of the hashing algorithm by adding
a display_statistics method to the Dictionary class in the
HashDictionary module. This method should report the number of items, the
number of buckets, and the load factor, along with the mean and standard
deviation of the lengths of the bucket chains. The mean is equivalent to the
traditional average. The standard deviation is a measure of how much the

412 Dictionaries and Sets

individual values tend to differ from the mean. The formula for calculating the
standard deviation of the lengths of the chains is

where N is the number of buckets, leni is the length of the list stored in bucket i,
and lenave is the average list length. If the hash function is working well, the
standard deviation should be relatively small in comparison to the mean,
particularly as the number of symbols increases.

11. Although the bucket-chaining approach described in the text works well in

practice, other strategies exist for resolving collisions in hash tables. In the early
days of computing—when memories were small enough that the cost of
introducing extra reference was taken seriously—hash tables often used a more
memory-efficient strategy called open addressing, in which the key-value pairs
are stored directly in a list, like this:

For example, if a key hashes to bucket #2, the open-addressing strategy tries to
put that key and its value directly into the entry at hashtable[2].

The problem with this approach is that hashtable[3] may already be

assigned to another key that hashes to the same bucket. The simplest approach
to dealing with collisions of this sort is to store each new key in the first free cell
at or after its expected hash position. Thus, if a key hashes to bucket #2, the put
and get functions first try to find or insert that key in hashtable[2]. If that
entry is filled with a different key, however, these functions move on to try
hashtable[3], continuing the process until they find an empty entry or an entry
with a matching key. If the index advances past the end of the list, it should wrap

 Exercises 413

around back to the beginning. This strategy for resolving collisions is called
linear probing.

12. Sets are straightforward to implement because most of the operations can be

layered on top of Python’s dictionary abstraction. The basic idea is that the
elements of the sets are the keys in the dictionary. An element is in the set if its
corresponding value is True; an element is not in the set if that element does not
appear as a key in the dictionary or if it has the value False.

Define a Set class that implements the operators and methods shown in
Figure 11-16. The implementation requires overloading several special methods
for the various operators. The names of those methods are included in the
descriptions.

In writing your own implementation of the Set class, you should keep the
following points in mind:

• You should use Python’s dict class to store the internal dictionary.
• Your Set class should support iteration.
• Note that sets raise ValueError when a dictionary would raise KeyError.

414 Dictionaries and Sets

13. Write a Python program that reads in two sets from the user and then displays
the result of applying the union, intersection, set difference, and symmetric set
difference operators on those sets. A sample run of the program might look like
this:

The easiest way to let the user enter the sets is to use the input function to
read in a line and then call the built-in eval method to evaluate the result as a
Python expression.

14. The power set of a set is defined as the set of all its subsets. For example, the

power set of {a, b, c} is

{ Æ, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c} }

Write a Python function power_set that takes a set s and returns a list of the
subsets of s. For example, calling power_set({1, 2}) should return the
following Python list:

[set(), {1}, {2}, {1, 2}]

The return value must be a list because Python does not support sets of sets, given
the implementation restriction that set elements must be immutable.

The hard part of this problem is coming up with a recursive strategy for
generating the subsets. As you try to solve this problem, you need to think about
how being able to generate all the subsets of a set containing N - 1 elements might
help you generate all the subsets of a set with N elements.

15. Write a program that lets the user choose an input file and then checks the

spelling of all words in the file, where a word is any token that consists entirely
of alphabetic characters. When your program finishes scanning the file, it should
print out an alphabetical list of the words in the file that don’t appear in the
English dictionary. This program is surprisingly short as long as you make use
of the library modules you have seen.

C H A P T E R 1 2
Designing Data Structures

Modularity based on abstraction is the way things are done.
—Barbara Liskov, Turing Award Lecture, 2009

Barbara Liskov (1939–)

Barbara Liskov earned her bachelor’s degree in mathematics from the University of California at Berkeley
in 1961. After being introduced to computers and programming through jobs at the MITRE Corporation and
Harvard University, Liskov returned to California, where she received her Ph.D. in Computer Science from
Stanford University in 1968. For most of her career, Liskov was Professor of Electrical Engineering and
Computer Science at the Massachusetts Institute of Technology, where she conducted pioneering work on
data abstraction in programming languages. The ideas that she championed about the importance of
encapsulation have since become commonplace. For her many contributions, Liskov received the ACM
Turing Award in 2009. On that occasion, MIT Provost L. Rafael Rife observed “every time you exchange
e-mail with a friend, check your bank statement online or run a Google search, you are riding the momentum
of her research.”

416 Designing Data Structures

Chapters 8, 10, and 11 introduced you to several compound types—lists, tuples,
dictionaries, sets, and programmer-defined classes—which make it possible to
represent collections of data values in your Python programs. Those chapters,
however, concentrate on how those types are used in isolation. This chapter focuses
instead on how you can combine these individual data models into data structures that
are useful in applications, which requires thinking about data representation in a more
holistic way.

 12.1 Abstract data types
In Chapter 10, you learned about encapsulation and how to use it to define classes in
which the variables that maintain the internal data are stored in attributes of the class
that are marked as off-limits to clients. Those classes are examples of a more general
concept in computer science called an abstract data type or ADT, which corresponds
in Python to a class that uses encapsulation to separate its behavior from the details
of its representation. As a client of an ADT, you know what the methods of that class
do but not how those methods are implemented.

As a programming model, ADTs offer the following advantages:

• Simplicity. Hiding the internal representation from the client means that there are

fewer details for the client to understand.

• Flexibility. Because a class is defined in terms of its public behavior, the
programmer who implements a class is free to change the internal representation.
As with any abstraction, it is appropriate to change the implementation as long as
the interface remains the same.

• Security. The interface boundary acts as a wall that separates the client and the
implementation. If a client program has access to the representation, it can change
values in the underlying data structure in unexpected ways. Keeping the
representation private prevents the client from making such changes.

The first two examples of ADTs from Chapter 10—the GPoint class from

section 9.2 and the Rational class from section 10.3—are relatively simple. Those
classes are also immutable, which means that, once you have created an object of that
class, the internal state never changes. Immutable classes have many advantages,
particularly in applications that use more than one processor.

In practice, many classes—including the TokenScanner class from section 10.5,
which is the other ADT you’ve seen—need to maintain internal state information that
changes over time. The variables that keep track of that state information must be
included in the object state accessible through the self parameter.

 12.2 Representing real-world data 417

 12.2 Representing real-world data
One of the most important skills that software developers need to learn is how to
represent real-world information in a form that computers can easily manipulate. As
a concrete example, let’s suppose that you have been hired by a political party to store
voting data from past presidential elections on the theory that understanding the
historical data may yield important insights that affect elections in the future. As a
starting point, it is a useful exercise to design a data structure to represent the
information shown in Figure 12-1 on the next page, which lists the popular vote for
the four largest parties in the 2020 presidential election in the United States.

Given the data in Figure 12-1, the important question to ask is how to represent
the electoral information in a way that preserves the relationships among the
individual data values. In doing so, it is important to avoid jumping to conclusions
based on the way in which the information is presented to human readers. For
example, the two-dimensional structure of a printed table does not necessarily imply
that the best representation is a two-dimensional array, but may simply indicate that
this representation is easiest to display on the printed page.

As you design a data structure for the state-by-state electoral tallies—or any data
structure, for that matter—it is important to keep in mind that Python’s data structures
are tools. Designing effective data structures requires you to think in a holistic way
that takes a more abstract view. Thinking holistically makes it easier to recognize the
relationships that define the overall structure.

You have already seen examples of the following abstract structures:

• Sequences. A sequence is an abstract data structure in which the individual
elements form a logical sequence in which you can identify each element by its
position. In Python, sequences are implemented using the built-in list type.

• Records. A record is an abstract data structure in which the elements are part of
a logical whole but not in an ordered relationship. Python supports several
strategies for implementing records. If the records are small, tuples are often an
appropriate choice. If the record has more complex structure or if you want to
associate methods with the data, the usual approach is to define a class to represent
each record of a particular type. A third alternative is to use a dictionary in which
the keys are the attribute names and the values are the corresponding attribute
values.

• Map. A map is an abstract data structure in which a set of keys is associated with
a corresponding set of values. Python implements maps using the built-in dict
class.

418 Designing Data Structures

PresidentialElection2020Figure.png

 12.2 Representing real-world data 419

Choosing which of these structures to use depends on the characteristics of the
data you are trying to model. If the data collection has a first element, a second
element, and so on, a sequence is usually the most appropriate choice. If instead the
data collection consists of independent pieces, you presumably want to use a record.
Finally, if the data collection contains a set of values each of which is marked with a
unique key, you are likely to choose a map.

There are at least two reasons why a two-dimensional array is probably not the
best option for storing the voting data. First, elements of an array are usually of the
same type, even though Python does not enforce that restriction. In the table of
election results, the rows have the same structure, but the columns do not. The first
column in each row is the number of electoral votes assigned to that state, while the
other columns list vote totals by party. This distinction suggests that each row is best
represented as a record with three properties:

1. The name of the state, which appears in Figure 12-1 as the row heading

2. The number of electoral votes

3. A dictionary that links party names and the vote totals for that party

One approach, which you will have a chance to explore in the exercises, is to
define a class that encapsulates these three attributes into a single structure. That
strategy has several important advantages, particularly if the classes you design
include methods that associate behavior with the underlying data. In Python,
however, it is often more convenient to represent data structures using only Python’s
built-in types. This strategy avoids the overhead of defining new classes by finding
a way to represent your real-world data by assembling the complete structure from its
individual pieces.

If you adopt this strategy, the data for the election would at the top level be a list
in which each element corresponds to one of the fifty states plus the District of
Columbia. These elements therefore represent the rows in Figure 12-1. Each of those
elements is then a record containing the three items listed at the bottom of the previous
page: the state name, the number of electoral votes, and the dictionary linking party
names and vote totals.

Given that one of the goals of this example is to show how to create abstract data
types without defining new classes, the remaining options for representing this record
are to use a tuple or to create a dictionary with keys for each attribute, which might
be "name", "electoral_votes", and "party_totals". Although the first option
is simpler, the second makes it possible to encode the election information in an easily
readable form, as described in the following section.

420 Designing Data Structures

Representing structured data in text form
Historically, applications that needed to read and write data to and from files did so
using a representation specific to each application. The various applications that are
part of Microsoft Office, for example, used to store files in binary format. Word files
ending with .doc used one format, Excel files ending with .xls used a different
format, and PowerPoint files ending with .ppt used yet another format. Following a
general push toward more open standards in the industry, Microsoft changed its entire
suite of applications in 2007 to use a text-based form called XML, which stands for
Extensible Markup Language. This change is reflected in the new file types .docx,
.xlsx, and .pptx. Applications that use XML to represent data files are significantly
easier to write and maintain. As a result, XML has become increasingly common as
a model for representing data.

XML, however, is not the only text-based model to become popular in recent
years. The growing popularity of JavaScript as a language for writing web-based
applications has generated increasing interest in JavaScript’s data model. The
growing interest has led in turn to the creation of a new standard for representing
compound objects that simplifies the process of sharing data between applications,
even if those applications are coded in different languages. This model is called
JavaScript Object Notation, which is typically shortened to JSON.

Although JSON was derived from JavaScript’s standard notation for objects, it
turns out to be remarkably similar to the notation that Python uses for the same
purpose. Strings, numbers, lists, and dictionaries are represented identically in
Python and JavaScript. As a result, JSON notation is instantly recognizable to Python
programmers. Figure 12-2, for example, shows the election data from Figure 12-1 as
it appears in JSON form. The code displayed in Figure 12-2 is legal JSON and legal
Python at the same time.

Although there are minor differences between the syntactic rules used by JSON
and Python, it is straightforward to translate one to the other. Modern versions of
Python include a built-in library called json that translates back and forth between
files written in JSON and Python’s data structures. The function

json.load(file)

reads the next JSON data structure from the specified file object into its equivalent
representation in Python. To translate in the other direction, you can call

 12.2 Representing real-world data 421

json.dump(object, file)

which writes a text representation of the object to the specified data file.

If the file PresidentialElection2020.json contains the data shown in
Figure 12-3, you can read that data structure into Python using the following code,
assuming that you have imported the json library at the beginning of the module:

with open("PresidentialElection2020.json") as f:
 election_data = json.load(f)

The variable election_data now contains a list with 51 elements, one for each state
and the District of Columbia. Each of those elements is a dictionary whose three keys
define a record with the fields name, electoral_votes, and party_totals. The
party_totals fields are dictionaries that map the name of a party to the number of
votes it received in the election for that state.

The CountVotes module in Figure 12-3 on the next two pages defines several
functions that work with election data along with a program to generate a report.

422 Designing Data Structures

CountVotes-py-p1.png

 12.2 Representing real-world data 423

The effect of running CountVotes.py as a program is illustrated in the following
sample run:

424 Designing Data Structures

The structure of the CountVotes.py application is surprisingly flexible. It is easy
to substitute election data for any other year just by entering the name of a different
data file. For example, if you were to create a new JSON file for the 2016 presidential
election, you would see the following result:

In much the same way, you can use this code with minimal modification to prepare

reports for other elections. For example, if you prepare a JSON data file in which
every electoral_votes field has the value 1, you can use the same program with
minimal modifications to display the results of a parliamentary election in which the
states are replaced by parliamentary constituencies. The following sample run, for
example, shows the results of the June 2017 election in the United Kingdom:

There are more parties, but the structure of the program is the same.

 12.3 Data-driven programs 425

The code in Figure 12-5 includes another feature that is worth noting. The
functions print_totals and determine_winner each use the built-in sorted
function to ensure that the for loop iterates through the sequence of party-vote pairs
in descending order by the vote component of the tuple. The key and the reverse
parameters have exactly the same effect for sorted as they do for the built-in sort
function, which was described in Chapter 9.

 12.3 Data-driven programs
Computers got their start as machines designed to process data. Today, programs
often use data not as passive information to be processed but instead to control the
program’s operation. Programs that allow data to control their execution are said to
be data-driven. In a typical data-driven program, the source of the data is external to
the program, in the sense that it is not actually part of the code. The data may be
stored in a text file or in some more highly structured form. The program then
operates in two phases. In the first phase, the program reads the data from the external
source into an internal data structure that represents the same information. In the
second, the program uses the internal structure to control its operation.

Programmed instruction courses
As with most programming concepts, the idea of a data-driven program is easiest to
illustrate by example. The goal of this section is to create a “teaching machine” that
uses a strategy called programmed instruction in which a computerized teaching tool
asks a series of questions so that previous answers determine the order of subsequent
questions. As long as a student is getting the right answers, the programmed
instruction process skips the easy questions and moves on to more challenging topics.
For the student who is having trouble, the process moves more slowly, leaving time
for repetition and review. Although the idea of programmed instruction was quite the
rage some 40 years ago, it didn’t live up to the potential its proponents claimed. Even
so, building a simple teaching machine based on the programmed-instruction model
offers a useful illustration of data-driven programs.

To make the idea of a teaching-machine application more concrete, it helps to
imagine how the student might use it. When the program starts, it begins by asking
the student a question. For example, a programmed-instruction course on Python
might begin like this:

426 Designing Data Structures

The program then waits for the student to enter an answer. Depending on the
response, the program will choose the next question either to provide more review or
to let the student move ahead more quickly. For example, if the student enters an
incorrect answer, the program will provide feedback and continue with another
question about the / operator, which might look like this:

If the student instead supplies the correct response, the program moves on to a
different topic, as shown in the following console session:

Students who continue to supply the correct answers can proceed through the
course very quickly. Those who are having more trouble with the material have to
make their way through a larger set of questions.

Designing for flexibility
It is possible to design a programmed instruction application by writing a set of
Python functions. Each function asks a question, reads in an answer, and then calls
another function appropriate to the answer the student supplies. Such a program,
however, would be difficult to change. Someone who wanted to add questions or
design an entirely new course would need to write new functions. Writing functions
is simple enough for someone who understands programming, but not everyone does.
The designers of programmed instruction courses are typically teachers in a specific
discipline with little programming expertise. Forcing them to work in the
programming domain—or even to use the JSON format introduced earlier in the
chapter—limits the number of people who can use your application.

As the software developer for the teaching machine project, your goal is to write
an application that presents a programmed instruction course to the student but allows
teachers without programming skills to supply the questions, expected answers, and
sequencing information that allows the application to ask the questions in the
appropriate order. To do so, the best approach is to design your application as a
general tool that takes all data pertaining to the programmed instruction course from

 12.3 Data-driven programs 427

a data file. If you adopt this approach, the same program can present many different
courses by using different files.

Framing the problem
At one level, it is easy to outline the operation of the teaching machine application.
When the program runs, it repeatedly executes the following steps:

1. Ask the student the current question. A question consists of one or more lines of

text, which you can represent as strings.

2. Request an answer from the student, which can also be represented as a string.

3. Look up the answer in a list of possibilities provided for that question. If the
answer appears in the list, consult the data structure to choose what question
should become the new current question. If the student’s answer does not match
any of the possibilities provided by the course data file, the student should be
informed of that fact and given another chance at the same question.

Many details are missing from this outline, but it is a start. Even at this level, the
outline provides some insight into the eventual implementation. For example, you
know that you need to keep track of what the “current question” is, which means that
you need to have some way of identifying individual questions.

Coding the actual program turns out to be one of the easier pieces of the task; the
harder problems arise in designing an appropriate data structure. For the program to
be general and flexible, all the information that pertains to an actual course cannot be
built into the program but must instead be stored in a data file. The program’s job is
to read that data file, store the information in an internal data structure, and then
process that structure as outlined earlier in this section. Thus, your next major task is
to design the data structures required for the problem so that you have a context for
building the program as a whole.

The process of designing the data structure has two distinct components. First,
you have to design an internal data structure for use by the program. The internal
data structure consists of type definitions that use Python’s data structures so that the
resulting types mirror the organization of the real-world information you seek to
represent. Second, you must design an external data structure that indicates how the
information is stored in the data file. These two processes are closely related, mostly
because they each represent the same information. Even so, the two structures are
tailored to meet different purposes. The internal structure must provide all the
information necessary to write the program. The external structure must allow
someone without much programming knowledge to write a course.

428 Designing Data Structures

Designing the internal representation
The first step in the process is to design a data structure that incorporates the necessary
information. If you spend a little time thinking about what data must be stored for
the teaching machine application, it quickly becomes clear that there are two levels
at which creating an abstract data type makes sense. The first is at the level of the
course as a whole. The second is at the level of an individual question. Each of these
abstract types can be implemented as a Python class. The TMCourse class models the
complete course and therefore conceptually contains a list of questions. The
TMQuestion class models a single question and contains the text of the question,
along with a list of possible answers and their associated transitions.

The process of identifying what classes you need and giving those classes names
helps enormously in refining the data structure design. Even so, there are still many
details that you need to fill in before you can write the implementation. The preceding
paragraph observes that a course contains what is conceptually a list of questions, but
it is not yet clear whether the underlying implementation should use Python’s list
class or some other structure. To make that decision, you need to think more carefully
about how to identify each individual question.

One of the dangers in making a premature commitment to a particular data
structure is that doing so may lead you to make other decisions that are not the best
for the application. For example, if you somehow get it into your head that the
questions in a TMCourse object need to be stored in a Python list, the natural
assumption is that the questions will be numbered. That idea certainly seems
reasonable at first. The questions, of course, do get written down in some order, and
it is not immediately clear why a list is not precisely the structure you need.

Using sequential numbers to identify each question makes it much more difficult
to edit the course. Each question must be able to refer to other questions so that the
teaching machine program can move through the questions in a sequence controlled
by the student’s answers. Given a particular question, a correct response might take
the student to question 6, and an incorrect answer might direct the student to question
17. But what happens if a course designer decides to add a new question? In that
case, any question numbers that follow the inserted question would increase by one.
The designer would have to go back through the course and fix any references to
questions whose sequence numbers had changed.

 This problem can be avoided entirely by giving the questions names instead of
numbers. The course designer gives each question a name, which is then used to
identify that question in the sequencing information. Given that design, adding a new
question doesn’t require changing any existing ones, except for those that refer to the
new question. If questions are named rather than numbered, the underlying structure

 12.3 Data-driven programs 429

inside TMCourse is presumably not a list but instead a dictionary that maps question
names to the corresponding TMQuestion objects.

 The TMQuestion class encapsulates several different attributes: the question
name, the text of the question, and a structure that associates each possible answer
with the name of the question that follows this one if the student gives that answer.
The name attribute is a string, the text attribute is presumably a list of strings to
accommodate multiline questions, and the structure containing the answers is almost
certainly a dictionary since it associates answers with question names.

Designing the external structure
Before you turn to the details that will allow you to write the definitions of TMCourse
and TMQuestion, it helps to think about how that information is stored in the data
file. Files are simply text, and the organization provided by the Python data structures
must be expressed in the design of the file format. The file format must also make it
easy for someone to write and edit, even if that person is not a programmer. Thus,
you should choose a representation that is as simple as possible. In this case, it seems
easiest to write out each question, one after another, along with its likely answers. So
that the computer can tell where the one question stops and the next question begins,
you must define some convention for separating the individual questions. A blank
line works well in this context, as it does in most file structures. Thus, in individual
units separated by blank lines, you have the data for each question and its answers.

But what goes into the text representation for the information pertaining to a single
question? First of all, you need the text of the question, which consists of individual
lines from the file. You also need some way to indicate the end of the question text,
and the easiest way, both for you and for the course designer, is to define a sentinel.
The program defined later in this chapter uses a line of five dashes for this purpose.
Furthermore, you must allow the course designer to specify pairs that link an answer
with the name of the next question. A simple approach is to specify both these values
on a single line consisting of the answer text, a colon, and the name of the next
question. Other formats are certainly possible, but this design seems as if it would be
easy for a course designer to learn. Thus, the data for an individual question entry in
the file looks like this:

The name of the question is "DivQ1", which presumably indicates that this is the first
question about Python’s division operator. The text of the question consists of a

430 Designing Data Structures

single line, after which there are two acceptable answers. If the student types in the
incorrect answer 1, the program should go to the question named "DivQ2". If the
student types in the correct answer of 1.5, the program should move on to the question
named "DivQ4".

But what if the student types in some other answer like 17 or 3/2? In the original
informal design, the proposal was to have the application tell the student that it didn’t
recognize the answer and then repeat the same question. As is often the case, working
through a problem reveals weaknesses in the initial design. It would be better if the
data structure allowed the course designer to specify a default next question if the
student offers any other answer. Computer scientists often use an asterisk to match
an arbitrary string of characters, so this notation seems as if it would be a reasonably
intuitive choice. Adding in an any-other-answer transition leads to the following file
format for the first question:

The data file entries for DivQ2 and DivQ3 might then look like this:

Each of these questions tells the student that the answer is incorrect, but DivQ2 can
be more specific about the reasons.

Figure 12-6 on the next page shows a complete data file for a short course on
Python. Figure 12-7 on page 432 shows the internal form of the same information.

 12.3 Data-driven programs 431

ExternalFormFigure.png

432 Designing Data Structures

InternalFormFigure.png

 12.3 Data-driven programs 433

Coding the program
Once you have defined the internal data structure and the external file format, the
process of writing the code for the teaching machine program is reasonably
straightforward. The main program for the teaching machine application appears in
Figure 12-6, at the bottom of this page. Like most data-driven programs, the teaching
machine applications runs in two phases. The first phase reads in the data from the
data file and translates it into its internal form. The second phase uses the internal
structure to step through the program operation as specified by the data. The
TeachingMachine.py module delegates responsibility for reading the data files and
translating them into the internal representation to two other classes—TMCourse and
TMQuestion—each of which is defined in its own module.

The code for the TMCourse.py module appears in Figure 12-7, which begins at
the top of the next page. The module includes both the definition of the TMCourse
class and a top-level function called read_course that reads an open data file and
returns a TMCourse object. As the comments indicate, the read_course function is
logically associated with the TMCourse class but is not applied to an object.

434 Designing Data Structures

TMCourse-py-p1.png

 12.3 Data-driven programs 435

The TMCourse class exports two methods. The first is get_question, which
returns the TMQuestion that corresponds to a question name. The second is the run
method, which guides the user through the questions, adapting the order of questions
to the user’s responses.

Figure 12-8 shows the code for the TMQuestion class, which stores the data for a
single question. The TMQuestion constructor takes the internal data values, which
are the question name, the list of lines containing the question text, and the dictionary
mapping answers to the name of the next question. The class exports getter methods
for the name and text, along with a lookup_answer method, which checks the user’s
response against the expected answer and returns the name of the next question. The
lookup_answer method also checks to see if the answer dictionary contains the
special key "*", which matches any response. If there is no "*" option and no answer
matches the response, lookup_answer returns None.

436 Designing Data Structures

TMQuestion-py-p2.png

 12.3 Data-driven programs 437

Changing the application domain
The fact that the TeachingMachine.py application takes its data from a data file
makes it possible to use the program in entirely different contexts. As an example, if
you ask the program to use the data file shown in Figure 12-9, the same teaching
machine program plays a game reminiscent of the Adventure program created by
Willie Crowther in the early 1970s.

As a player in Crowther’s Adventure game, you assume the role of an adventurer
wandering through a cave. The individual locations in the cave are generically called
rooms, even though they might be outside. You move through the cave by typing
simple commands, which the program uses to move you from room to room. The
original game also includes objects that you can pick up along the way, some of which
give you access to otherwise inaccessible rooms. The teaching machine doesn’t
support that feature, but you will have the chance to implement it in exercise 6.

438 Designing Data Structures

If you run the TeachingMachine.py program with the Adventure.txt data file,
you might see a console session that looks like this:

As the sample run shows, someone who uses the program with the Adventure.txt
file will perceive the program’s purpose very differently than someone who runs it
with the Python.txt file. Even though the TeachingMachine program has not
changed at all, the programmed instruction course has become an adventure game.
The only difference is the data file.

 Summary
This chapter explores how to create more sophisticated data structures using the tools
that Python provides. Important points in this chapter include the following:

• Classes that implement a set of operations without revealing the internal data

structures are called abstract data types. Abstract data types offer several
advantages including simplicity, flexibility, and security.

• Separating behavior and representation in an abstract data type allows the
implementer to change that representation without adversely affecting clients.

• In designing the data structure for an application, it is usually better to think in
terms of abstract conceptual models—sequences, records, and maps—rather than
the concrete structures—lists, classes, and dictionaries—used to represent them.

• It is important to think carefully about structural relationships and avoid jumping
to premature conclusions arising from how information is presented.

• Modern applications tend to use text-based representations to store complex data
structures in files. Two common text-based strategies are XML (Extended Markup
Language) and JSON (JavaScript Object Notation). The JSON model is
particularly useful in Python because the syntax for strings, numbers, lists, and
dictionaries in Python matches the syntax used in JSON.

 Exercises 439

• Programs in which the control flow is determined by the data structure are said to
be data driven. Data-driven programs are usually shorter, more flexible, and
easier to maintain than programs that incorporate the same information directly
into the program design.

• Data-driven programs typically have two formats for the data: an external format
stored in a data file and an internal format stored as a hierarchical combination of
objects and built-in types.

 Review questions
1. What is an abstract data type?

2. True or false: One of advantages of separating the behavior of an abstract data

type from its underlying representation is that doing so makes it possible to
change that representation without forcing clients to change their programs.

3. What do the abbreviations XML and JSON stand for?

4. True or false: The syntax for strings, numbers, lists, and dictionaries is the same

in both Python and JSON.

5. What is a data-driven program?

6. In your own words, describe the differences between the internal and external

data representations used by data-driven programs.

 Exercises
1. Use the data from the PresidentialElection2020.json file to find all states

in which the winning candidate got less than 50 percent of the vote. In 2020,
three of these states were won by Democrats and one by Republicans.

2. Following the suggestion on page 419, rewrite the CountVotes.py program so

that it uses a class to store the information for each state. Your revised program
must then read data from a text file instead of a JSON file.

3. Suppose that a bank has hired you as a programmer and given you the task of

automating the process of converting between different foreign currencies at the
prevailing rate of exchange. Every day, the bank receives a file called
ExchangeRates.json containing the current exchange rates stored in JSON
format as shown in Figure 12-10 at the top of the next page. Each value in the
currencies dictionary is itself a dictionary that specifies the name of the

440 Designing Data Structures

currency and its current exchange rate relative to the dollar. For example, the
entry

"GBP": { "name": "Pound sterling", "rate": 1.23586 }

indicates that the three-letter code "GBP" has the name "Pound sterling" and
is currently trading at 1.23586 dollars to the pound.

Your task in this problem is to write a program that reads conversion requests
from the user in the form

amount XXX -> YYY

where amount is the monetary value you want to convert, and XXX and YYY are
the three-letter codes for the old and new currency. Alternatively, the input line
may consist of a three-letter currency code, in which case the program should
report the full name of that currency. A sample run that illustrates both input
forms might look like this:

4. In J. K. Rowling’s Harry Potter series, the students at Hogwarts School of

Witchcraft and Wizardry study many forms of magic. One of the most difficult
fields of study is potions, which is taught by Harry’s least favorite teacher,
Professor Snape. Mastery of potions requires students to learn complex lists of

 Exercises 441

ingredients for creating the desired magical concoctions. Presumably to protect
those of us in the Muggle world, Rowling does not give us a complete ingredient
list for most of the potions used in the series, but we do learn about a few,
including those shown in Figure 12-11.

Design a data structure that encodes the information shown in Figure 12-11
and then create a Python file that stores that information in JSON form. Test
your data structure by writing a console-based program that requests a potion
name from the user and then displays a list of its ingredients.

5. In recent years, the globalization of the world economy has put increasing

pressure on software developers to make their programs operate in a wide variety
of languages. That process used to be called internationalization, but is now
more often referred to (perhaps somewhat paradoxically) as localization. In
particular, the menus and buttons that you use in a program should appear in a
language that the user knows.

Your task in this problem is to write a definition for a class called Localizer
designed to help with the localization process. The constructor for the class has
the form

def __init__(self, filename):

The constructor creates a new Localizer object and initializes it by reading the
contents of the data file. The data file consists of an English word, followed by
any number of lines of the form

xx=translation

where xx is a standardized two-letter language code, such as de for German, es
for Spanish, and fr for French. Part of such a data file, therefore, might look
like this:

Localizations.txt
Cancel
de=Abbrechen
es=Cancelar
fr=Annuler
Close
de=Schließen
es=Cerrar
fr=Fermer
OK
fr=Approuver
Open
de=Öffnen
es=Abrir
fr=Ouvrir

442 Designing Data Structures

This file tells us, for example, that the English word Cancel should be rendered
in German as Abbrechen, in Spanish as Ayudar, and in French as Annuler.

Beyond the implementation of the constructor, the only public method you

need to define for Localizer is

def localize(self, word, language)

which returns the translation of the English word as specified by the two-letter
language parameter. For example, if you have initialized a variable localizer
by calling

localizer = Localizer("Localizations.txt")

you could then call

localizer.localize("Open", "de")

and expect it to return the string "Öffnen". If no entry appears in the table for a
particular word, localize should return the English word unchanged. Thus, OK
becomes Approuver in French, but would remain as OK in Spanish or German.

6. In its current implementation, the TeachingMachine.py program provides no

feedback when the user gives an incorrect answer. Design a strategy to allow the
course designer to specify an optional message along with each possible
response. If this message exists in the data file, the program should display that
message before asking the next question.

7. Modify and extend the TeachingMachine.py program so that it plays a more

interesting Adventure game. Implementing the following changes should allow
you to reproduce the transcript from Willie Crowther’s original Adventure game
shown in Figure 12-12 on the next page:

• Change the names of the modules and data structures so that they are
appropriate for the Adventure game. Your code, for example, should define
classes like AdventureGame and AdventureRoom instead of TMCourse and
TMQuestion, which don’t make sense in the context of Adventure.

• Add a short description to the data file for the rooms so that the player sees
the long description of a room only on the first visit. You should also add a
LOOK command that prints the long description.

• Add objects to the game. The code that works with objects should be
data-driven, which means that you need to design an external data structure
that keeps track of at least the following information: the word used to refer
to the object, a description of the object, and the name of the room in which
the object is initially located.

 Exercises 443

AdventureFigure.png

444 Designing Data Structures

• Implement the user commands TAKE, DROP, and INVENTORY that allow the
player to work with objects. For example, the command TAKE KEYS should
take the keys from the current room and add them to the player’s collection,
DROP KEYS should leave the keys in the current room, and INVENTORY should
display the descriptions of the objects the player is carrying.

• Make it possible to create interesting puzzles by allowing the player to move
through a passage only if the player is carrying some object. In the original
Adventure game, for example, it is possible to go down from the room named
OutsideGrate only if you are carrying the object whose name is KEYS. The
required object must be included in the data file as part of the passage
description. One approach is to allow the pairs of directions and destination
names to include an optional third component, as in

DOWN: BeneathGrate/KEYS

• Design and implement a mechanism for defining synonyms so that, for
example, the player can use the single-letter compass points N, E, S, and W
instead of having to enter the entire word.

• Add any other features that you think would make for an exciting game.

C H A P T E R 1 3
Inheritance

[I remember the exact moment] when the concept of
“inheritance” (or classes and subclasses) had been created. I
realized immediately that this was the solution to a very
important problem Ole-Johan Dahl and I had been struggling
with for months and weeks. And sure enough, inheritance has
become a key concept in object-oriented programming, and
thus in programming in general.

—Kristen Nygaard, address at the IRIS 19 conference, 1996

 Kristen Nygaard (1926–2002) Ole-Johan Dahl (1931–2002)

Norwegian computer scientists Kristen Nygaard and Ole-Johan Dahl developed the central ideas of
object-oriented programming more than 50 years ago as part of their work on the programming language
SIMULA. Early versions of SIMULA appeared in the early 1960s, but the stable version of the language
that brought these concepts to the attention of the world appeared in 1967. The initial work on SIMULA was
carried out at the Norwegian Computing Center, a state-funded research laboratory in Norway focusing on
developing better software-engineering techniques. Both later joined the faculty at the University of Oslo.
Although their work took several decades to become established in the industry, interest in object-oriented
techniques has grown considerably in the last three decades, particularly after the release of modern object-
oriented languages like C++ and Java. For their contributions, Nygaard and Dahl received both the 2001
Turing Award from the Association for Computing Machinery and the 2001 John von Neumann Medal from
the Institute of Electrical and Electronic Engineers.

446 Inheritance

Object-oriented languages like Python are characterized by two properties:
encapsulation and inheritance. Chapter 10 covers encapsulation in detail, but you
have not as yet had the opportunity to learn about Python’s model of inheritance in
which a class acquires characteristics from other classes at higher levels in the
programming analogue of a family tree. This chapter begins by introducing the
concept of inheritance in the biological world and then moves on to show how the
biological metaphor applies in the programming domain.

 13.1 Class hierarchies
One of the defining properties of object-oriented languages is that they allow you to
specify hierarchical relationships among classes. Those hierarchies are reminiscent
of the biological classification system developed by the eighteenth-century Swedish
botanist Carl Linnaeus as a means of representing the structure of the biological
world. In Linnaeus’s conception, living things are first subdivided into kingdoms.
Each kingdom is further broken down into the hierarchical categories of phylum,
class, order, family, genus, and species. Every species belongs not only to its own
category at the bottom of the hierarchy but also to a category at each higher level.

This biological classification system is illustrated in Figure 13-1 at the top of the
next page, which shows the classification of the common black garden ant, whose
scientific name, Lasius niger, corresponds to its genus and species. This species of
ant, however, is also part of the family Formicidae, which is the classification that
identifies it as an ant. If you move upward in the hierarchy from there, you discover
that Lasius niger is also of the order Hymenoptera (which includes bees and wasps),
the class Insecta (which consists of the insects), and the phylum Arthropoda (which
also includes, for example, shellfish and spiders).

One of the properties that makes this system of biological classification useful is
that all living things belong to a category at every level in the hierarchy. Each
individual life form therefore belongs to several categories simultaneously and
inherits the properties that are characteristic of each one. The species Lasius niger,
for example, is an ant, an insect, an arthropod, and an animal—all at the same time.
Moreover, each individual ant shares the properties that it inherits from each of those
categories. One of the defining characteristics of the class Insecta is that insects have
six legs. All ants must therefore have six legs because ants are members of that class.

The biological metaphor also helps to illustrate the distinction between classes and
objects. Although every common black garden ant has the same biological
classification, there are many individuals of the common-black-garden-ant variety.
In the language of object-oriented programming, Lasius niger is a class and each
individual ant is an object.

Carl Linnaeus

 13.1 Class hierarchies 447

Class structures in Python follow much the same hierarchical pattern, as illustrated
in Figure 13-2 at the top of the next page, which shows the relationships among the
classes in the graphics library. The GWindow class is in a category by itself. The other
class at the top of the diagram is a class called GObject, which you have not yet seen
but in some sense have been using all along. The GObject class forms the top of a
hierarchy that encompasses every graphical object that can be displayed in a
GWindow. The classes that represent graphical objects are descendants of GObject,
some directly and some through an intermediate GFillableObject class that
encompasses the classes that have a fillable interior.

The diagram in Figure 13-2 illustrates several aspects of a standard methodology
for illustrating class hierarchies called the Universal Modeling Language or UML.
In a UML diagram, each class appears as a rectangular box whose upper portion

448 Inheritance

GObjectHierarchyUML.png

 13.2 Defining an employee hierarchy 449

contains the name of the class. The methods implemented by that class appear in the
lower portion of the box. The hierarchical relationships among the classes are
indicated using arrows with open arrowheads that point from one class to another
class at a higher level of the hierarchy. The class that appears lower in the hierarchy
is a subclass of the class to which it points, which is called its superclass.

In an object-oriented language, each subclass inherits the methods that apply to
its superclasses all the way up through the top of the hierarchy. The GRect class, for
example, inherits all the methods in GFillableObject, which in turn inherits all the
methods from GObject. Given an instance of the GRect class, you can call
set_fill_color because that method appears in GFillableObject. Similarly, you
can call set_color, which is defined one level further up in GObject.

In the UML diagram in Figure 13-2, the names of the classes GObject and
GFillableObject appear in italics. This notation is used to define an abstract class,
which is a class that is never used to create an object but instead acts as a common
superclass for concrete classes that appear beneath it in the hierarchy. Because
GObject is abstract, you never create a GObject but instead create one of its concrete
subclasses.

In addition to the methods it inherits from its superclass, each class in a hierarchy
can implement additional methods that are specific to that class. For example, the
idea of a font applies only to the GLabel class, which means that the set_font
method is defined for that class and not at some higher level of the inheritance
hierarchy. By contrast, the set_filled method applies only to the classes that
descend from GFillableObject and not to the other GObject subclasses. It
therefore makes sense to define set_filled in GFillableObject so that the
definition is inherited by the GRect, GOval, GArc, and GPolygon classes.

 13.2 Defining an employee hierarchy
Although the simple model for keeping track of employee data used in Chapter 10
might work for a two-person firm like Scrooge and Marley, large companies have
different classes of employees that are similar in some ways but different in others.
For example, a company might have hourly, commissioned, and salaried employees.
Since those employee categories will share some information, it makes sense to define
methods like get_name and get_title that work for all employees. By contrast,
calculating the pay for each class of employee differs according to the employee type.
A get_pay method must therefore be implemented separately for each subclass of
Employee. This model suggests that the class hierarchy used to represent employees
might look something like the UML diagram in Figure 13-3 at the top of the next
page.

450 Inheritance

The root of this hierarchy is Employee, which defines the methods common to all
employees. The Employee class exports get_name and get_title, which the
subclasses then inherit. Each subclass, however, must define its own get_pay
method, because the computation is different. Hourly employees are paid based on
the number of hours and an hourly rate, commissioned employees receive a base
salary plus a commission on sales, and salaried employees receive a fixed salary.

Even though get_pay is defined in each subclass, it is useful to record the fact that
every employee has a get_pay method, even though its implementation differs. The
UML diagram therefore includes a get_pay method in the Employee class, even
though that method is implemented at a lower level. The names of the Employee
class and the get_pay method are set in italic type to indicate that these are abstract
entities that act as placeholders for the concrete definitions.

Figures 13-4 and 13-5 on the next two pages define a simple Employee class and
its HourlyEmployee subclass. (You will have a chance to implement the other two
subclasses in exercise 1.) The Employee class has much the same form as it did in
Figure 10-1. The structure of the subclass definition is similar, but includes the name
of the superclass in parentheses after the subclass name, like this:

class HourlyEmployee(Employee):

In most cases, a subclass constructor must explicitly invoke the constructor for its
superclass to ensure that the object is properly initialized. The first line of the
__init__ method for the HourlyEmployee subclass therefore looks like this:

def __init__(self, name, title):
 Employee.__init__(self, name, title)

 13.2 Defining an employee hierarchy 451

Employee-py.png

452 Inheritance

Because the get_pay method is part of the specification for the Employee class itself,
the definition of Employee in Figure 13-4 also defines a get_pay method, which
raises the built-in NotImplementedError exception to indicate that the get_pay
method is not defined at the level of the Employee class. Fortunately, this error
condition will never occur as long as the client uses the Employee class hierarchy
correctly. Because Employee is an abstract class, clients will not call its constructor
but will instead create one of its concrete subclasses. Each of those subclasses must
replace the default version of get_pay with one that calculates the employee’s pay
appropriately. In object-oriented programming, the process of having a subclass
replace an inherited method definition is called overriding.

Python includes a built-in function isinstance, which is the preferred strategy
for checking the type of a value. A call to isinstance(value, type) returns True if
value is an instance of type or any of its subclasses, and False otherwise.

 13.3 Extending the graphics classes 453

 13.3 Extending the graphics classes
As you saw in Figure 13-2, the classes in the graphics library form an inheritance
hierarchy in which classes like GRect, GOval, and GLabel extend a more general
class called GObject. You can easily extend this hierarchy by defining new classes
that build on the existing ones. For this purpose, the two classes that offer the greatest
possibilities for extension are GPolygon and GCompound, and you will have the
opportunity to see examples of both in the sections that follow.

Extending the GPolygon class
In a way, you have already seen examples of programs that create new GObject
subclasses, although you didn’t at the time have the necessary vocabulary to see them
in that light. Consider, for example, the create_star function, which appears in
Figure Error! Reference source not found.-12 on page 184. That function creates
an empty GPolygon object and then adds the necessary edges to create a five-pointed
star, which is then returned to the client. It is, however, equally reasonable to think
of this function as a constructor for a new GPolygon subclass that appears on the
graphics window as a star. Figure 13-6 at the top of the next page contains much the
same code as Figure 6-12 but defines the operation as creating an instance of a new
GObject subclass instead of a new graphical object.

As a subclass of GPolygon, the GStar class implements the set_filled and
set_fill_color methods, which makes it possible to display a gold star outlined in
black at the center of the graphics window by executing the following function:

def draw_outlined_gold_star():
 gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT)
 cx = gw.get_width() / 2
 cy = gw.get_height() / 2
 star = GStar(STAR_SIZE)
 star.set_filled(True)
 star.set_fill_color("Gold")
 gw.add(star, cx, cy)

Calling this function produces the following output on the graphics window:

454 Inheritance

Extending the GCompound class
The GCompound class turns out to be an even more useful platform for designing
extended classes than GPolygon because it allows you to combine several graphical
objects into a single object that acts as an independent unit. As a simple example,
you can extend GCompound to create a new class called GTextBox that consists of a
rectangular box that includes a text string centered inside the frame. The code for the
GTextBox class itself appears in Figure 13-7. Once you have defined the GTextBox
class, you can use the following program to display a box containing the string
"Hello" in the middle of the window:

def hello_box():
 gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT)
 cx = gw.get_width() / 2
 cy = gw.get_height() / 2
 box = GTextBox(BOX_WIDTH, BOX_HEIGHT, "Hello")
 gw.add(box, cx - BOX_WIDTH / 2, cy - BOX_HEIGHT / 2)

 13.3 Extending the graphics classes 455

The output of this program is an 80 ´ 40 box containing the string "Hello" at the
center of the graphics window, like this:

456 Inheritance

In addition to the constructor that creates the GCompound along with the GRect
and GLabel objects it contains, the GTextBox class exports three additional
methods—set_line_color, set_fill_color, and set_text_color—that control
the colors of internal components. Each of these methods redirects the client’s
request to the graphical object that is responsible for displaying that feature. The
set_line_color and set_fill_color methods pass those messages along to the
GRect object stored in the local variable frame, and the set_text_color method
sends the appropriate message to the GLabel stored in the variable label. Passing
an operation along to an object stored inside a class is called forwarding.

 13.4 Decomposition and inheritance
The DrawHouse.py program in Figure 4-11 offers an illustration of how to apply the
idea of decomposition to drawing a house, by dividing the program into smaller
functions to draw the frame, the doors, and the windows. Suppose instead that you
want to write a graphical program that creates the following picture of a three-car
train consisting of a black engine, a green boxcar, and a red caboose:

How would you go about designing such a program?

If you use a decomposition strategy similar to the one described in Chapter 4, you
would implement this program by dividing it up into separate functions such as
draw_engine, draw_boxcar, and draw_caboose. Each of these functions could in
turn be broken down into functions that draw parts of each car, particularly when the
same code can be shared by more than one type of car. That strategy, however, has
a serious drawback that was not so serious in drawing a house. While houses tend to
stay in one place, trains are designed to move. If you want to animate the train, you
need to have your program change the position of every graphical object in the
diagram on each time step. It would be much better if the train were a GCompound
that you could animate as a single unit.

Fortunately, the strategy of decomposition is not limited to functions. In many
cases, it is equally useful to decompose a problem by creating a hierarchy of classes
whose structure reflects the relationships among the objects. For this application, it
makes sense to define a Train class as a subclass of GCompound so that it acts as a

 13.4 Decomposition and inheritance 457

single graphical object. The individual cars that form a train can then be objects of a
class called TrainCar, which is also a subclass of GCompound. The three different
types of train cars then become subclasses of TrainCar.

At this point, it helps to think carefully about the decomposition. In particular, it
often makes sense to look for subtasks that recur in multiple subclasses. To see how
that strategy might apply in the current problem, it’s worth taking another look at the
three different types of cars:

If you look at the diagrams for these three cars, you will see that they share a
number of common features. The wheels are the same, as are the connectors that link
the cars together. In fact, the body of the car itself is the same except for the color.
Each type of car shares a common framework that looks like this:

Thus, if you fill the interior of the car with the appropriate color, you can use it as the
foundation for any of the three car types. For the engine, you need to add a
smokestack, a cab, and a cowcatcher. For the boxcar, you need to add doors. For the
caboose, you need a cupola.

To make it possible to draw cars in any color, the simplest approach is to have the
TrainCar constructor take a color parameter that specifies the fill color of the gray
box shown in the most recent diagram. Individual subclasses can then choose
whether to make a specific decision about color, which might be that engines are
always black and cabooses are always red, or to pass that choice on to the subclass.
The Boxcar subclass, for example, can also take a color parameter and then pass it
along to the TrainCar constructor.

The fact that each car has two wheels suggests that defining a TrainWheel class
will simplify the TrainCar class by allowing the code for creating a wheel to be
shared. Putting all these ideas together gives rise to the class hierarchy shown in
Figure 13-8. Every class in the UML diagram is a GObject and can therefore be
displayed on the graphics window.

Given this design, you can assemble the three-car train shown at the beginning of
this section using the following code:

458 Inheritance

train = Train()
train.append(Engine())
train.append(Boxcar("Green"))
train.append(Caboose())

The first line creates an empty train, and the remaining lines add an engine, a green
boxcar, and a caboose to the end of the train. To center the train at the base of the
window, you can take advantage of the fact that the Train class inherits the
get_width method from GObject. You can therefore simply ask the train how long
it is and then subtract half its width from the coordinates of the center of the window.

The Train object created in this snippet of code is a GCompound that contains
every graphical object that appears in the window. If you want the train to move, all
you have to do is animate the location of the GCompound, since all of its pieces will
move together with the top-level compound.

The code to create and animate this train appears in Figure 13-9 on the next two
pages. The implementation includes the class definitions for Train, TrainCar,
TrainWheel, and Boxcar. You will have the chance to implement the Engine and
Caboose subclasses in exercise 8.

 13.4 Decomposition and inheritance 459

DrawTrain-py-p1.png

460 Inheritance

DrawTrain-py-p2.png

 13.5 Unit testing 461

 13.5 Unit testing
In software engineering, a unit test is a section of code associated with a single
module that checks if it is functioning correctly, independent of its connections to
other modules in an application. You have been writing unit tests ever since
Chapter 2 using test functions with assert statements to demonstrate that the other
functions in the module produce the correct results. And although the assertion-based
strategy is all you need in the context of an introductory programming course, Python
supports a more sophisticated model for writing such tests through the unittest
library, which uses inheritance in an interesting way.

The unittest library exports a TestCase class, which you then extend to write
the unit tests for your own modules. Each subclass defines one or more test methods
beginning with the prefix test. When you call unittest.main() at the end of the
module, the unittest framework goes through the Python environment, finds all the
subclasses of TestCase; for each of those, the framework finds all the test methods,
and then calls each one to see whether it succeeds.

Each of the test methods performs its checking by calling one of the methods
defined in the TestCase class, which are therefore inherited in your subclass.
Figure 13-10 lists the various assert methods available in the TestCase class.

462 Inheritance

As an example, the following test program verifies a few simple properties of
Python’s arithmetic operators:

import unittest

class TestArithmeticOperators(unittest.TestCase):

 def test_arithmetic_operators(self):
 self.assertEqual(2 + 2, 4)
 self.assertEqual(10 - 5, 5)
 self.assertEqual(2 * 3, 6)
 self.assertEqual(6 / 4, 1.5)
 self.assertEqual(6 // 4, 1)
 self.assertIsInstance(4 / 2, float)
 self.assertIsInstance(4 // 2, int)
 with self.assertRaises(ZeroDivisionError):
 4 // 0

unittest.main()

The last two lines in the test_arithmetic_operators method illustrate the
standard usage pattern for the assertRaises method, which checks whether the code
inside the with body raises the specified exception type.

You have probably noticed that the names of the various assert methods in the
unittest library use camel-case names instead of the standard snake-case style that
Python coders prefer. Python’s guidelines offer at least some flexibility on this point.
Camel-case function and method names are allowed “in	 contexts	 where	 that's	
already	 the	 prevailing	 style	 to	 retain	 backwards	 compatibility.”	 	 Python’s	
unittest library is adapted from Java’s JUnit library developed by Kent Beck and
Erich Gamma, which is in turn derived from a similar package in Smalltalk. Those
packages for other languages use camel-case names, and maintaining that style makes
it easier to implement unit testing in multiple languages.

The code in Figure 13-11 on the next page offers a more extensive example in the
form of a test suite for the Pig Latin translator. The unit test appears entirely within
the startup boilerplate, which ensures that none of the test code—including the import
of the unittest library—is executed unless the module is run from the command
line, which triggers the test operation. Running the piglatin.py module as a main
program generates the following output:

 13.5 Unit testing 463

PigLatinUnitTest-py.png

464 Inheritance

 13.6 Deciding when to use inheritance
Although inheritance is a powerful concept that is ideal for many applications, it can
easily be overused. Before deciding to implement a class hierarchy, it is important to
think carefully about whether that design is appropriate. Quite often, it is not.

The best illustration I can offer of where inheritance is misused comes from
several textbooks that suggest the example of a “pizza” class hierarchy, presumably
because some students pay more attention when pizza is involved. In this model, the
base of the hierarchy is a Pizza class, which takes care of those features—such as a
crust, a tomato base, and cheese—that are common to all pizzas, or at least to those
pizzas supported by the model. Different types of pizzas are then represented as
subclasses of the Pizza class. For example, if your list of available toppings included
pepperoni and mushrooms, you might envision a class hierarchy like this:

So far, so good. I can believe that pepperoni pizzas and mushroom pizzas are both
subclasses of a more general Pizza class. The situation, however, gets more
complicated if your customers want pizzas with more than one ingredient. What
happens if someone orders a pizza with pepperoni and mushrooms. In languages like
Python that support multiple inheritance (which is beyond the scope of this book),
you might try to extend the class hierarchy by defining a PepperoniMushroomPizza
class that inherits from both the PepperoniPizza and MushroomPizza classes.

The problem with this strategy is that the PepperoniMushroomPizza class is not
really a subclass of those parents. The subclass relationship should allow you to
substitute the words “is a” in place of the subclass arrow. In the Portable Graphics
Library, for example, a GRect is a GFillableObject, which in turn is a GObject.
Similarly, an ant in the biological hierarchy shown in Figure 13-1 is an insect and an
animal. If for no other reason than the fact that it is no longer vegetarian, a
pepperoni-and-mushroom pizza is not a mushroom pizza, no matter how you slice it.

 13.6 Deciding when to use inheritance 465

What you really want to represent a range of different pizzas is not a hierarchy at
all but instead a single Pizza class that includes a list of ingredients as part of its
state. The Pizza class could then simply export an add_topping method that would
allow the client to add any number of toppings to the base. Inheritance is simply out
of place in this example.

As an example that stands in contrast to the misguided attempt to create a pizza
hierarchy, consider how you might build a hierarchy of the various droids that exist
in the Star Wars universe. The original movie introduced two lovable droids, R2-D2
and C-3PO, who provided a sense of continuity by appearing in all of the nine films
that made up George Lucas’s original vision. The two droids, however, are different
in many ways. C-3PO introduces itself as a “cyborg” in that first film, and the many
Star Wars sites on the web inform us that R2-D2 is an “astromech.” In later films,
we meet other droids in each of these classes. The Force Awakens brings us into
contact with another astromech, the roly-poly BB-8. Rogue One introduces a cyborg
with the designation K-2SO.

These droid subclasses have different behavior. Cyborgs can communicate in
human languages, while astromechs communicate in a binary language of beeps and
whistles. Unsurprisingly, give their structural resemblance to humans, droids walk
upright on two legs, while astromechs exhibit a variety of strategies for movement.

The fact that these behaviors are often associated with a class of droid rather than
a specific model makes using a class hierarchy much more appropriate. All droids
“talk” in some fashion, but that communication is implemented differently for
cyborgs and astromechs suggests that those two classes would require a different
implementation of a talk method. And while a single implementation of a move
method could presumably be shared by all cyborgs, that method would have to be
specified at a lower level to account for R2-D2’s strategy of rotating and then rolling
forward and BB-8’s more flexible model of rolling in any direction.

Figure 13-12 at the top of the next page suggests a hierarchy for droids that
accommodates both their differences and their commonalities. All droids respond to
the methods move and talk, even though the implementations of those methods
appear at different levels in the hierarchy.

As a general rule, inheritance makes sense when the classes you are working with
have the following two properties:

1. The classes exhibit a clear hierarchical structure in which the “is a” relationship

holds between every subclass and its parent.

2. You can identify shared behavior at higher levels of the hierarchy, which makes
it appropriate to define methods that can then be inherited by the subclasses.

466 Inheritance

 Summary
This chapter includes a brief introduction to the idea of inheritance in Python along
with some appropriate examples. Important points in this chapter include the
following:

• Classes in an object-oriented language form hierarchies in which classes at lower

levels inherit the methods defined by the classes above them in the hierarchy.

• The immediate descendants of a class are called its subclasses. The immediate
ancestor of a class is called its superclass.

 Review questions 467

• Classes that form part of the inheritance hierarchy but do not correspond to any
actual objects are called abstract classes.

• The Universal Modeling Language or UML provides a notational structure for
representing the relationships in a class hierarchy. Each subclass in a UML
diagram is connected to its superclass using an arrow with an open arrowhead.

• The graphics library presented in Chapters 4 and 6 uses the class hierarchy shown
in the UML diagram in Figure 13-2 on page 360. That hierarchy includes two
abstract classes—GObject and GFillableObject—that serve to unify graphical
objects that share a set of common operations.

• You can implement a subclass in Python by including the name of its superclass
in parentheses as part of the class definition. The constructor for a subclass should
begin by calling the constructor of the superclass.

• The best way to check the type of a value is to call isinstance(value, type),
which returns True if value is an instance of type or any of its subclasses.

• The classes in the graphics library, especially GPolygon and GCompound, offer
useful starting points for inheritance relationships as illustrated by the GStar,
GTextBox, and DrawTrain programs in Figures 13-6, 13-7, and 13-9.

• Inheritance allows you to apply the principles of top-down design and stepwise
refinement in the data domain.

• Testing the behavior of a single module independently is called unit testing.
Python supports unit testing through the unittest library. Clients of the
unittest library write a suite of test methods as part of a class that extends
unittest.TestCase. The test methods use the various assert methods listed
in Figure 13-10 to check that the module is producing correct results.

• Inheritance can easily be overused. In general, class hierarchies make sense only
when the classes exhibit a clear hierarchical structure and when you can identify
shared behavior that can be inherited by classes at lower levels in the hierarchy.

 Review questions
1. Choose a favorite animal and add it to the biological hierarchy in Figure 13-1.

To find the appropriate place in the hierarchy, you will need to use the web to
look up its phylum, class, order, family, genus, and species.

2. Define the terms subclass and superclass.

3. True or false: A subclass inherits the methods in its superclass along with those

of all its superclasses in the inheritance hierarchy.

4. What does UML stand for?

468 Inheritance

5. How is the relationship between subclasses and superclasses represented in a
UML diagram?

6. How can you determine what methods a class in a UML diagram supports?

7. What is an abstract class?

8. In your own words, explain the purpose of the GFillableObject class in the

graphics hierarchy shown in Figure 13-2.

9. The implementation of get_pay in the Employee class signals failure by raising

an error exception. What keeps this error from occurring if the client uses the
employee hierarchy correctly?

10. When you are defining a subclass in Python, how do you specify its superclass?

11. How does a subclass trigger the initialization of its superclass?

12. What term is used to describe the process of providing a new definition for a

method to replace one defined in a superclass?

13. What built-in Python method should you use to determine whether a value is an

instance of a particular type?

14. Which two classes in the Portable Graphics Library are most likely to serve as
the basis for extension?

15. What is meant by the term forwarding?

16. The Train class in Figure 13-9 exports a method called append to add a car to

the end of the train. Would it have worked just as well to use add as the name
of this method?

17. How does unit testing differ from any other kind of testing?

18. What class in the unittest library forms the foundation of the unit tests you
write for your own modules?

19. How do you check that a computation raises an expected exception in a test

method constructed using the unittest library?

20. Why does the unittest library use camel case for the assert methods instead

of snake case, which is more conventional in Python?

21. True or false: Inheritance is often overused in programming applications.

22. What two criteria does the chapter suggest for determining whether inheritance

is an appropriate strategy when defining a data structure?

 Exercises 469

 Exercises
1. Complete the definition of the Employee hierarchy from Figures 13-4 and 13-5

by defining CommissionedEmployee and SalariedEmployee.

2. Inheritance comes up naturally in many games. If you are writing a chess

program, for example, you can represent the pieces by defining an abstract
ChessPiece class along with the subclasses King, Queen, Rook, Bishop,
Knight, and Pawn for the different piece types, as shown in The ChessPiece
class keeps track of the color and location of the piece. Each of the subclasses
extends ChessPiece by implementing the moves for that piece.

The following diagram shows the pieces in their initial locations:

Chess players identify each square on the board using a two-character string that
combines a letter indicating the column and a digit indicating the row. For
example, the white queen is initially on square d1.

470 Inheritance

Implement the classes shown in the UML diagram in Figure 13-13. The
constructors for the concrete classes take an argument bw, which is either "B" or
"W", and an argument sq, which is the two-character string identifying the
square. The get_moves method should return an array of all the two-character
locations to which that piece could move from its current square, assuming that
the rest of the board were empty. Figure 13-14 shows how the different pieces
move, in case you are unfamiliar with the rules of chess. The white pieces can
move to any of the squares marked with an ´, and the black pieces can move to
any square marked with an ¡. The white pawn in the last diagram can move
either one or two squares because it is in its initial position on row 2, but the
black pawn can only move one square because it not in its starting position.

3. Create a new GRegularPolygon class that extends GPolygon so that it is easy

to represent a regular polygon, which is a polygon whose sides all have the same
length and whose angles are equal. The GRegularPolygon constructor should
take two parameters: sides, which indicates the number of sides, and radius,
which indicates the distance from the reference point at the center to any of its
vertices. The polygon should be oriented so that it is flat along the bottom. For
example, calling GRegularPolygon(5, 25) should create a GRegularPolygon
object that looks like this:

 Exercises 471

Similarly, calling GRegularPolygon(200, 25) should create a 200-sided
polygon whose appearance—at least at the scale of the graphics window—is
indistinguishable from that of a circle of radius 25.

4. Use the GRegularPolygon class from the preceding exercise to create a
GStopSign class that create a picture that looks like this:

5. Extend the GTextBox class from Figure 13-7 so that it exports a set_font

method that resets the font used for the text string. Because changing the font
typically changes the dimensions of the label, the implementation of set_font
will need to adjust the position of the label within the box.

6. Implement a GCompound subclass called GVariable class that makes it easy to
draw box diagrams of variables on the graphics window. The methods
implemented for GVariable appear in Figure 13-15. The reference point for the
GVariable should be the upper left corner of the variable box.

472 Inheritance

7. Complete the implementation of the DrawTrain.py program in Figure 13-9 by
writing definitions for the Engine and Caboose classes. Update the main
program so that the train includes an engine, a green boxcar, an orange boxcar,
and a caboose.

8. In Chapter 6, you had the chance to work with several programs that let you
create shapes by dragging the mouse on the graphics window. Using those
programs as a starting point, create a more elaborate DrawShapes.py program
that displays an onscreen menu of five shapes—a filled rectangle, an outlined
rectangle, a filled oval, an outlined oval, and a straight line—along the left side
of the window, as shown in the following diagram:

Clicking one of the squares in the menu chooses that shape as a drawing tool.
Thus, if you click the filled oval in the middle of the menu area, your program
should draw filled ovals. Clicking and dragging outside the menu should draw
the currently selected shape.

9. Use the unittest library to update the testing code in the quadratic.py
module presented in Figure 3-10. You should also change the implementation
of find_quadratic_roots so that it raises a ValueError exception if the
equation has no real roots and then check for that behavior in your unit test code.

Use the unittest library to write a comprehensive unit test for your revised
implementation of solve_quadratic.

10. Use the unittest library to write a unit test for the rational.py module that
appears in Figure 10-6 on page 338. The hard part of this exercise consists of
designing a good set of test methods that cover enough possibilities to give both
the implementers and the clients of the rational library confidence that it is
behaving correctly.

11. In the 1990s, my Stanford colleague Nick Parlante developed a wonderful

simulation game that not only involves inheritance but also pays tribute to the
evolutionary metaphor from which the idea of inheritance is derived. The
Darwin game operates in a rectangular grid that looks like this:

 Exercises 473

This sample world is populated with twenty creatures, ten of a species called
Flytrap and ten of a species called Rover, each of which is identified by the first
letter in its name. The orientation is indicated by the shape surrounding the letter;
the creature points in the direction of the arrow. Each creature runs a program
that is particular to its species. Thus, all Rovers behave in the same way, as do
all Flytraps, but the behavior of one species is different from that of the other.

As the simulation proceeds, every creature gets a turn. On its turn, a creature
executes one of the actions shown in the first section of Figure 13-16 at the top
of the next page. As soon as one of these actions is completed, the turn for that
creature ends. When every creature has had a turn, the process begins again.

If one creature is facing another creature of a different species in the next
square, the first creature can “infect” the second, which turns the infected
creature into an instance of the infecting one. The goal for each species in the
Darwin game is to infect as many creatures as possible.

The program for each species is represented as an array of strings, each of
which is one of the statements in Figure 13-16. The program for the Flytrap
creature, for example, consists of the following five-element array:

[# Index
 "if_different 3", # 0
 "turn_right", # 1
 "goto 0", # 2
 "infect", # 3
 "goto 0" # 4
]

474 Inheritance

Each creature instance keeps track of the index of the current instruction in
this program, which always begins at 0 when a creature is created. On a turn, the
creature executes instructions until one of the Darwin actions occurs. The
Flytrap creature, for example, begins by executing the "if_different 3"
instruction at index 0 in the array. If the Flytrap is facing a creature of a different
species, it goes to the "infect" instruction at index 3 and executes that
operation. If the if_different instruction does not apply, the creature
continues with the "turn_right" instruction at index 1. In either case, this
creature’s turn ends after executing the action. On its next turn, the creature
begins by executing one of the "goto 0" instructions, which sends the program
back to the top. The Flytrap creature therefore rotates clockwise until it sees a
creature of a different species, in which case it infects it to make it a Flytrap.

 Exercises 475

 Your job in this exercise is to implement both the Darwin file that runs the
simulation and the Creature class, which is the abstract superclass of Flytrap
and Rover as well as any other creatures you design. The definitions of these
two subclasses appear in Figure 13-17. Your definition of Creature must
provide the methods used in these subclasses. The Creature class is also
responsible for managing the display of the creature on the graphics window,
which is most easily accomplished by making Creature a subclass of
GCompound.

476 Inheritance

The main Darwin program is responsible for the following actions:

• Setting up the graphics window and drawing the grid

• Initializing the grid by creating 10 creatures of each species and positioning
them randomly in the grid facing in a random direction

• Iterating through the grid giving each creature a turn

The most interesting part of this problem is designing new creatures that perform
well in the survival-of-the-fittest challenge the Darwin game provides.

12. Many applications require some part of the implementation to read commands
from the user and then perform some operation in response. If, for example, you
implemented the Adventure game that appeared as exercise 7 in Chapter 12, you
needed to implement commands such as LOOK, TAKE, and DROP.

As long as the number of commands you need to recognize is small, you can
implement the task of interpreting commands using a sequence of if and elif
statements that compare the command word entered by the user against the
names of the various commands, like this:

if word.upper() == "LOOK":
 execute_look_command()
elif word.upper() == "TAKE":
 execute_take_command()
elif word.upper() == "DROP":
 execute_drop_command()
. . . and so on . . .

This kind of control structure is called a command dispatch.

A more elegant approach is to use inheritance to create a class hierarchy of
commands, particularly if several related commands are similar enough that they
can share parts of their implementation. The abstract class Command represents
the top of the hierarchy. Clients of the command-dispatch library then define
subclasses, each of which knows how to execute that particular type of command.
In the case of the Adventure game, for example, you might define concrete
subclasses called LookCommand, TakeCommand, and DropCommand. All
instances of the Command class and its subclasses define a method called execute
that performs the necessary operation. If you put each Command object into a
dictionary with its name as the key, all you need to do to implement the
command-dispatch operation is select its name from the dictionary and call its
execute method.

Reimplement the Adventure game (exercise 7 from Chapter 12) using this
model to execute the predefined commands.

