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C H A P T E R  1  
Introducing Python 

 
It’s my belief that Python is a lot easier [to teach than] C or 
C++ or Java . . . because all the details of the languages are 
so much harder. 

—Guido van Rossum 
 
 
 
 
 

 
Guido van Rossum (1956–) 

 
Guido van Rossum is a Dutch programmer best known as the inventor of the Python programming language.  
Van Rossum has overseen the development of Python from its genesis in 1989 as a “hobby project” through 
almost three decades of growing popularity.  Van Rossum holds a Master’s degree in mathematics and 
computer science from the University of Amsterdam.  His career includes positions at prestigious research 
labs, including the Centrum Wiskunde and Informatica in Amsterdam and the National Institute of Standards 
and Technology in Washington, as well as at leading industrial corporations such as Google and Dropbox. 



2     Introducing Python 

Before you can appreciate the power of computing, you need to learn at least the 
basics of a programming language.  The programs in this text use a programming 
language called Python, which was designed and implemented by Guido van 
Rossum.  Van Rossum explains that the name is a result of “being in a slightly 
irreverent mood (and [being] a big fan of Monty Python's Flying Circus).” 
 

Since its initial release in 1991, Python has since become one of the most popular 
programming languages in use today, both in industry and academia.  In particular, 
Python is now the most common programming language in introductory computer 
science courses. 
 

Van Rossum explicitly designed Python to be easy to teach, as demonstrated by 
the following design goals, which he included in a 1999 proposal entitled "Computer 
Programming for Everybody": 
 
• An easy and intuitive language just as powerful as major competitors 

• Open source, so anyone can contribute to its development 
• Code that is as understandable as plain English 

• Suitability for everyday tasks, allowing for short development times 
 

Although this text uses Python as its programming language, its focus is not on 
the language itself but on the programs that you write using that language.  It does 
not try to cover all of Python and deliberately avoids some of its more exotic features.  
Even so, the subset of Python it describes will give you the tools you need to write 
exciting applications that use the best features of the Python language. 
 

 1.1 Data and types 
For much of their history, computing machines—even before the age of modern 
computing—have worked primarily with numeric data.  The computers built in the 
mid 1960s were so closely tied to processing numeric data that they earned the 
nickname number crunchers as a result.  Information, however, comes in many 
forms, and computers are increasingly good at working with data of many different 
types.  When you write programs that count or add things up, you are working with 
numeric data.  When you write programs that manipulate characters—typically 
assembled into larger units such as words, sentences, and paragraphs—you are 
working with string data.  You will learn about these and many other data types as 
you progress through this book. 
 

In computer science, a data type is defined by two properties: a domain and a set 
of operations.  The domain is simply the set of values that are elements of that type.  
For numeric data, the domain consists of numbers like 0, 42, -273, and 3.14159265.  
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For string data, the domain comprises sequences of characters that appear on the 
keyboard or that can be displayed on the screen.  The set of operations is the toolbox 
that allows you to manipulate values of that type.  For numeric data, the set of 
operations includes addition, subtraction, multiplication, and division, along with a 
variety of more sophisticated functions.  For string data, however, it is hard to imagine 
what an operation like subtraction might mean.  Using string data requires a different 
set of operations, such as combining two strings to form a longer one or comparing 
two strings to see if they are in alphabetic order.  The general rule is that the set of 
operations must be appropriate to the elements of the domain.  The two components 
together—the domain and the operations—define a data type. 
 

 1.2 Numeric data 
Computers today store data in so many exciting forms that numbers may seem a bit 
boring.  Even so, numbers are a good starting point for talking about data, mostly 
because they are both simple and familiar.  You’ve been using numbers, after all, ever 
since you learned to count.  Moreover, as you’ll discover in Chapter 7, all information 
is represented inside the computer in numeric form. 
 

Representing numbers in Python 
One of the important design principles of modern programming languages is that 
concepts that are familiar to human readers should be expressed in an easily 
recognizable form.  Like most languages, Python adopts that principle for numeric 
representation, which means that you can write numbers in a Python program in much 
the same way you would write them anywhere else. 
 

In their most common form, numbers consist of a sequence of digits, optionally 
containing a decimal point.  Negative numbers are preceded by a minus sign.  For 
example, the following are all legal numbers in Python: 
 

0    42    -273    3.14159265    -0.5    1000000 
 

Note that large numbers, such as the value of one million shown in the last example, 
are written without using commas to separate the digits into groups of three. 
 

Numbers can also be written in a variant of scientific notation, in which the value 
is represented as a number multiplied by a power of 10.  To express a value in 
scientific notation, you write a number in standard decimal notation, followed 
immediately by the letter E and an integer exponent, optionally preceded by a + or - 
sign.  For example, the speed of light is approximately 2.9979 ´ 108 meters per 
second, which can be written in Python as 
 

2.9979E+8 
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In Python’s scientific notation, the letter E is shorthand for times 10 to the power. 
 

Like most languages, Python separates numbers into two classes: integers, which 
represent whole numbers, and floating-point numbers, which contain a decimal point.  
Integers have the advantage of being exact.  Floating-point numbers, by contrast, are 
approximations whose accuracy is determined by hardware limitations.  Fortunately, 
Python also defines its mathematical operators in a way that makes it less important 
than it is in most languages to pay attention to the distinction between these two types 
of numbers. 
 

In addition to integers and floating-point numbers, Python defines a third type of 
numeric data used to represent complex numbers, which combine a real component 
and an imaginary component corresponding to the square root of –1.  Although 
complex numbers are beyond the scope of this text, the fact that Python includes 
complex numbers as a fully supported, built-in type makes Python especially 
attractive for scientific and mathematical applications in which complex numbers 
play an important role. 
 
Arithmetic expressions 
The real power of numeric data comes from the fact that Python allows you to perform 
computation by applying mathematical operations, ranging in complexity from 
addition and subtraction up to highly sophisticated mathematical functions.  As in 
mathematics, Python allows you to express those calculations through the use of 
operators, such as + and - for addition and subtraction. 
 

If you want to understand how Python works, the best approach is to use the 
Python interpreter, which is called IDLE.  (Van Rossum claims that the name is an 
acronym of Integrated DeveLopment Environment, but the common assumption is 
that the name honors Monty Python’s Eric Idle.)  IDLE allows you to enter Python 
expressions and see what values they produce 
 

To get a sense of how interactions with IDLE work, suppose that you want to solve 
the following problem, which the singer-songwriter, political satirist, and 
mathematician Tom Lehrer proposed in his song “New Math” in 1965: 
 

 
 

To find the answer, all you have to do is enter the subtraction into IDLE, as follows: 
 

 
 

 
Tom Lehrer 
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This computation is an example of an arithmetic expression, which consists of a 
sequence of values called terms combined using symbols called operators, most of 
which are familiar from elementary-school arithmetic.  The arithmetic operators in 
Python include the following: 
 

- a Negation (multiply a by –1 to reverse its sign) 
a + b Addition (add a and b) 
a - b Subtraction (subtract b from a) 
a * b Multiplication (multiply a and b) 
a / b True division (divide a by b) 
a // b Floor division (a / b rounded down to the next integer) 
a % b Remainder (compute the mathematical result of a mod b) 
a ** b Exponentiation (raise a to the b power) 

 
Although most of these operators should be familiar from basic arithmetic, the // 

and % operators require additional explanation.  Intuitively, these operators compute 
the quotient and remainder, respectively, when one value divided by another.  For 
example, 7 // 3 has the value 2, because 7 divided by 3 leaves a whole number 
quotient of 2.  Similarly, 7 % 3 has the value 1, because 7 divided by 3 leaves a 
remainder of 1.  If one number is evenly divisible by another, there is no remainder, 
so that, for example, 12 % 4 has the value 0. 
 

Unlike almost every other programming language, Python defines // and % for 
negative operands so that the result is consistent with mathematical convention.  The 
// operator computes the result by performing an exact division and then rounding 
the result down to the next smaller integer.  In mathematics, rounding a number down 
to the closest integer is called computing its floor.  For example, the expression -
9 // 5 has the value –2, because exact division produces –1.8, and the floor of –1.8 
is –2.  In computing the remainder, the % operator applies what mathematicians call 
the mod operator, which always has the same sign as the divisor.  The // and % 
operators are related by the following equivalence: 
 

x  º  (x // y) ´ y + x % y 
 

Even though Python’s definition of these operators makes mathematicians happy, 
the programs in this text use the // and % operators only with positive integers, where 
the result corresponds to the notions of quotient and remainder that you learned in 
elementary school.  In part, the reason for this design decision is to avoid making 
programming seem more mathematical than it in fact is.  In addition, it is dangerous 
to rely on how these operators behave with negative numbers because Python’s 
definition—although it is clearly correct in mathematical terms—differs from how 
remainders are defined in other languages.  If you write a Python program that relies 
on this behavior, it will be hard to translate that program into a language that uses a 
different interpretation. 
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Mixing types in an expression 
Python allows you to mix integers and floating-point numbers freely in an expression.  
If you do so, the type of the result depends both on the operator and the types of the 
values to which it applies, which are called its operands.  For almost all of Python’s 
operators, the result is an integer if both operands are integers and a floating-point 
number if either or both of its operands is floating-point.  Thus, evaluating the 
expression 
 

17 + 25 
 

produces the integer 42.  By contrast, the expression 
 

7.5 - 4.5 
 

produces the floating-point value 3.0, even though the result is a whole number. 
 

There are two exceptions to Python’s standard rule for combining types.  The / 
operator, which performs exact division, always returns a floating-point result, even 
if both operands are integers.  The ** operator is a bit more complicated.  The result 
is an integer if the left operand is an integer and the right operand is a nonnegative 
integer.  In any other case, the result is a floating-point value.  For example, the 
expression 
 

2 ** 10 
 

calculates 210 and therefore produces the integer 1024.  The expression 
 

2 ** -1 
 

calculates 2–1, which is the floating-point number 0.5. 
 
Precedence 
Following the conventions of standard mathematics, multiplication, division, and 
remainder are performed before addition and subtraction, although you can use 
parentheses to change the evaluation order.  For example, if you want to average the 
numbers 4 and 7, you can enter the following expression into IDLE: 
 

 
 
If you leave out the parentheses, Python first divides 7 by 2 and then adds 4 and 3.5 
to produce the value 7.5, as follows: 
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The order in which Python evaluates the operators in an expression is governed 
by their precedence, which is a measure of how tightly each operator binds to its 
operands.  If two operators compete for the same operand, the one with higher 
precedence is applied first.  If two operators have the same precedence, they are 
applied from left to right.  The only exception is the exponentiation operator **, 
which is applied from right to left.  Computer scientists use the term associativity to 
indicate whether an operator groups to the left or to the right.  Most operators in 
Python are left-associative, which means that the leftmost operator is evaluated first.  
In Python, the only exception to this rule is the ** operator, which is right-associative 
and groups from right to left. 
 

Figure 1-1 shows a complete precedence table for the Python operators, many of 
which you will have little or no occasion to use.  As additional operators are 
introduced in this book, you can look them up in this table to see where they fit in the 
precedence hierarchy.  Since the purpose of the precedence rules is to ensure that 
Python expressions obey the same rules as their mathematical counterparts, you can 
usually rely on your intuition.  Moreover, if you are ever in any doubt, you can always 
include parentheses to make the order of operations explicit. 
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 1.3 Variables and assignment 
When you write a program that works with data values, it is often convenient to use 
names to refer to a value that can change as the program runs.  In programming, 
names that refer to values are called variables. 
 

Every variable in Python has two attributes: a name and a value.  To understand 
the relationship of these attributes, it is best to think of a variable as a box with a label 
attached to the outside, like this: 
 

 
 

The name of the variable appears on the label and is used to tell different boxes apart.  
If you have three variables in a program, each variable will have a different name.  
The value corresponds to the contents of the box.  The name of the box is fixed, but 
you can change the value as often as you like. 
 

You create a new variable in Python by assigning it a value in the context of an 
assignment statement, which has the following form: 
 

name = value 
 

For example, if you execute the assignment statement 
 

r = 10 
 

Python will create a new variable named r and assign it the value 10, as follows: 
 

 
 

As the word variable implies, the value of a variable is not fixed but can change 
over the course of a program.  For example, if you at some later point in a program 
execute the assignment statement 
 

r = 2.5 
 

the value in the box will change as follows: 
 

 
 

The value that appears to the right of the equal sign in an assignment statement 
can be any Python expression.  For example, you can compute the average of the 
numbers 3, 4, and 5 using the following statement: 
 

average = (3 + 4 + 5) / 3 
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Shorthand assignment 
Assignment statements are often used to modify the current value of a variable.  For 
example, you can add the value of deposit to balance using the statement 
 

balance = balance + deposit 
 

This statement takes the current value of balance, adds the value of deposit, and 
then stores the result back in balance.  Assignment statements of this form are so 
common that Python allows you to use the following shorthand: 
 

balance += deposit 
 
Similarly, you can subtract the value of surcharge from balance by writing 
 

balance -= surcharge 
 

More generally, the Python statement 
 

variable op= expression 
 
is equivalent to 
 

variable = variable op (expression) 
 
The parentheses are included in this pattern to emphasize that the expression is 
evaluated before op is applied.  Such statements are called shorthand assignments. 
 
Multiple assignment 
In Python, both the left and right sides of an assignment statement can be lists 
separated by commas.  An assignment statement involving more than one value is 
called a multiple assignment statement.  The left side of a multiple assignment 
statement is ordinarily a list of variables, and the right side is a list of expressions 
with the same number of elements. 
 

When Python encounters a multiple assignment statement, it assigns the value of 
the first expression to the first variable, the value of the second expression to the 
second variable, and so on.  For example, the following is a legal assignment 
statement in Python and has the effect of setting the variables a, b, and c to the values 
3, 4, and 5, respectively: 
 

a, b, c = 3, 4, 5 
 

Python evaluates all the expressions on the right side of a multiple assignment 
statement before it assigns any of the values.  For example, the statement 
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x, y = y, x 
 
has the effect of exchanging the values of the variables x and y.  Without multiple 
assignment, exchanging the value of two variables requires storing one of the values 
in a temporary variable so that its value is not lost when you perform the first 
assignment.  To achieve the same effect using standard assignment would therefore 
require the following code: 
 

tmp = x 
x = y 
y = tmp 

 
Naming conventions 
The names used for variables, functions, and so forth are collectively known as 
identifiers.  In Python, the rules for identifier formation are 
 
1. The identifier must start with a letter or an underscore (_). 
2. All other characters must be letters, digits, or underscores. 
3. The identifier must not be one of the reserved keywords listed in 1-2. 
 
Uppercase and lowercase letters appearing in an identifier are considered to be 
different.  Thus, the identifier ABC is not the same as the identifier abc. 
 

You can make your programs more readable by using variable names that 
immediately suggest the meaning of that variable.  If r, for example, refers to the 
radius of a circle, that name makes sense because it follows standard mathematical 
convention.  In most cases, however, it is better to use longer names that make it clear 
to anyone reading your program exactly what value a variable contains.  For example, 
if you need a variable to keep track of the number of pages in a document, it is better 
to use a name like number_of_pages than an abbreviated form like np. 
 

When you use a name that consists of several English words, it is useful to adopt 
some convention for marking the word divisions.  The official Python style guide 
recommends names like number_of_pages in which the individual words are 
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separated by underscores.  This style of separating words is called snake case, 
presumably because the underscores lie flat on the baseline of the text.  In accordance 
with Python’s style guidelines, this text uses snake case for the names of functions, 
variables, and methods. 
 

For the names of classes, which are introduced beginning in Chapter 4, Python 
uses a different strategy for marking word boundaries.  This strategy is called camel 
case, which marks word boundaries by using an uppercase letter at the beginning of 
each embedded word.  The name camel case comes from the fact that this style creates 
humps in the middle of an identifier name.  For example, one of the classes introduced 
in Chapter 12 is called TokenScanner, in which the division between Token and 
Scanner is marked using capitalization.  This book also uses camel case for the names 
of files, such as the AddTwoIntegers.py program file introduced later in this chapter.  
Camel case is widely used in languages other than Python, so it is important to 
become familiar with this style. 
 
Constants 
In addition to choosing meaningful variable names, you can make your programs 
more readable by giving names to values that do not change as a program runs.  Such 
values are called constants.  By convention, the names used to designate constant 
values are written entirely in uppercase using underscores to indicate word 
boundaries.  For example, you can use the statement 
 

SPEED_OF_LIGHT = 2.9979E+8 
 
to assign a name to the specified value, which otherwise might be difficult for people 
reading your program to recognize as the speed of light. 
 

Unlike most modern languages, Python does not allow you to specify that the 
value of a variable like SPEED_OF_LIGHT cannot be changed.  The idea that this value 
is a constant is instead a matter of convention.  Constant names in Python are written 
entirely in uppercase, adding underscores to indicate word boundaries. 
 

Although it violates the spirit of constants to change their values while a program 
is running, it is perfectly appropriate to use constants for values that you might want 
to change over the development cycle of an application.  The value of using constants 
for this purpose is discussed in more detail in section 1.8. 
 
Sequential calculations 
The ability to define variables and constants makes arithmetic calculations easier to 
follow, even in the IDLE interpreter.  The following sequence of statements, for 
example, compute an approximation of the area of a circle of radius 10, which is 
accurate to the number of digits specified for the constant PI: 
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 1.4 Functions 
One of the most powerful features of any programming language is the ability to 
define a function, which is a sequence of statements collected together under a single 
name.  Defining a function frees you from having to repeat the individual statements 
each time you want to perform that computation.  You instead specify the name of 
the function, which invokes the entire sequence. 
 

In computer science, the act of invoking a function by its name is referred to as 
calling the function.  As part of that operation, the caller can supply information in 
the form of arguments, which are expressions computed at the time of the call.  The 
arguments to a function are enclosed in parentheses and appear after the function 
name.  Inside the function, each of the arguments is assigned to a variable called a 
parameter.  The function uses these parameters to compute a result, which is 
delivered back to the caller.  This process is called returning a result. 
 

The term function is intended to evoke the similar concept in mathematics.  As in 
a programming language, functions in mathematics take data values enclosed in 
parentheses and compute a result, which is typically written in the form of a 
mathematical expression.  As an example, the mathematical function 
 

f (x) = x 
2 – 5 

 

expresses a relationship between the value of x and the value of the function.  To find 
the value of the function for a particular value of x, all you need to do is substitute 
that value in for the variable x in the function definition.  For example, you can 
determine that the value of f (0) is –5 by substituting 0 for x in the function definition, 
as follows: 
 

f (0) = 0 
2 – 5 = –5 

 

Similarly, f (3) has the value 4: 
 

f (3) = 3 
2 – 5 = 4 

 

In mathematics, functions are often represented using a graph that shows how the 
value of a function changes with respect to the value of x.  The graph for the function 
f appears in the left margin. 
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Defining functions 
In Python, a function definition takes the form shown inside the shaded pattern in the 
right margin, which is called a syntax box.  Boldface text in a syntax box represents 
the fixed portion of the pattern, which will always appear in precisely that form.  Italic 
text in a syntax box indicates the parts you can change for a particular instance of that 
pattern.  In this case, for example, a function must always begin with the keyword 
def and include the parentheses and colon shown in the example.  When you define 
a new function, you are free to choose the name, the list of parameters, and the 
statements that appear on subsequent lines.  The first line of a syntactic pattern is 
called the header line.  The statements that appear after the header line are called the 
body. 
 

Python determines the extent of the body of a function using the indentation of the 
code.  Each statement in the body is indented four spaces with respect to the header 
line.  If statements within the body have their own contents, as you will discover in 
Chapter 2, those statements use additional indentation to reflect the hierarchical 
structure of the code. 
 

Most functions will also include one or more return statements that specify the 
value returned to the caller.  This statement has the form shown on the right, where 
exp can be any Python expression.  When Python executes a return statement, it 
evaluates the expression and then returns to the point at which the function was called, 
substituting the computed value into the calling function. 
 
Simple function examples 
The details of defining a function are best introduced through examples.  The 
mathematical function f (x) = x 

2 – 5 from page 12 has the following form in Python: 
 

def f(x): 
   return x ** 2 - 5 

 
In this definition, x is the parameter variable, which is set by the argument passed by 
the caller.  For example, if you were to call f(2), the variable x would be set to the 
value 2.  The return statement specifies the computation needed to calculate the 
result.  Squaring x gives the value 4; subtracting 5 gives the final result of –1, which 
is passed back to the caller. 
 

You can define a function directly in the IDLE interpreter by typing its definition 
and then entering a blank line to show that the function definition is complete.  Once 
you have defined the function, you can call it from IDLE by writing its name and 
supplying the desired arguments, as shown in the following console session: 
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Parameter variables and variables introduced in an assignment statement are 
accessible only inside the function in which they appear.  For this reason, those 
variables are called local variables.  By contrast, variables defined outside of a 
function are global variables, which can be used anywhere in the program.  As 
programs get larger, using global variables makes those programs more difficult to 
read and maintain.  The programs in this book therefore avoid using any global 
variables except for constants.  Thus, it is reasonable to define SPEED_OF_LIGHT as a 
global constant, but variables whose values might change should always be local. 
 

You can use functions to compute values that come up in practical situations that 
are largely outside of traditional mathematics.  For example, if you travel outside the 
United States, you will discover that the rest of the world measures temperatures in 
Celsius rather than Fahrenheit.  The formula to convert a Celsius temperature to its 
Fahrenheit equivalent is 
 

 
 

which you can easily translate into the following Python function: 
 

def c_to_f (c): 
   return 9 / 5 * c + 32 

 

The use of the c_to_f function is illustrated in the following interaction with the 
IDLE console: 
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Built-in functions 
Python defines more than 70 built-in functions that are always available for your 
programs to call.  Most of those functions are beyond the scope of this chapter—and 
many are beyond the scope of this text—but the numeric functions in Figure 1-3 are 
likely to come in handy.  The following IDLE session gives you a sense of how these 
functions work: 
 

 
 
Library functions 
Beyond the built-in functions, Python defines several collections of functions and 
other useful definitions and makes those collections available as libraries.  One of the 
most useful libraries in Python is the math library, which includes several 
mathematical definitions that come up often when you are writing programs, even 
when those programs don’t seem particularly mathematical.  Figure 1 -4at the top of 
the next page lists several constants and functions available in the math library. 
 

In Python, you gain access to the facilities of a library by importing that library.  
To do so, you have two options.  The first is to use an import statement to indicate 
that your code would like to use the functions in that library using their fully qualified 
names, which consist of the name of the library, a period (which programmers usually 
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call a dot), and the name of the function.  The following IDLE session illustrates the 
use of this form of the import statement to calculate the square root of 2: 
 

 
 
The second option is to use a from-import statement to incorporate one or more 
functions directly into the current Python environment.  This style of import allows 
you to use the name of the library function without qualification, as follows: 
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The choice of which of these options to use depends to some extent on what you 
expect human readers of the program to understand.  The advantage of the fully 
qualified name is that readers know precisely where the function is defined.  On the 
other hand, if you are using mathematical functions extensively and expect any 
readers of the program to be familiar with them, the second version is more concise.  
The programs in this text use both styles. 
 

 1.5 Nonnumeric data 
So far, the programming examples in this chapter have worked only with numeric 
data.  These days, computers work less with numbers than with other forms of data.  
Although you will have a chance to learn about many other data types as you go 
through this text, learning a little bit about two common data types—strings and 
lists—will expand the range of programs that you can write.  You will learn more 
about each of these types in a subsequent chapter, but this presentation will be enough 
to get you started. 
 
Strings 
In today’s world, the most widely used type of data is  string data, which is a generic 
term for information composed of individual characters.  The ability of modern 
computers to process string data has led to the development of text messaging, 
electronic mail, word processing systems, social networking, and a wide variety of 
other useful applications. 
 

Conceptually, a string is a sequence of characters taken together as a unit.  As in 
most modern languages, Python includes strings as a built-in type, indicated in a 
program by enclosing the sequence of characters in quotation marks.  For example, 
the string "Python" is a sequence of six characters consisting of an uppercase letter 
followed by five lowercase letters.  The string "To be, or not to be" from Hamlet’s 
soliloquy is a sequence of 19 characters including 13 letters, five spaces, and a 
comma. 
 

Python allows you to use either single or double quotation marks to specify a 
string, but it is good practice to pick a style and then use it consistently.  The programs 
in this book use double quotation marks, mostly because that convention is common 
across a wide range of programming languages.  The only exception is when the string 
itself contains a double quotation mark, as in '"', which specifies a one-character 
string consisting of a double quotation mark.  You can also include a quotation mark 
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in a string by preceding it with a backslash character (\).  Thus, you can also write 
the one-character string containing a double quotation mark as "\"". 
 

For the most part, you can use strings as a Python data type in much the same way 
that you use numbers.  You can, for example, assign string values to variables, just as 
you do with numeric values.  For example, the assignment 
 

name = "Eric" 
 
creates a variable called name and initializes it to the four-character string "Eric". 
 

As with the numeric variables introduced earlier in the chapter, the easiest way to 
represent a string-valued variable is to draw a box with the name on the outside and 
the value on the inside, like this: 
 

 
 

The quotation marks are not part of the string but are nonetheless included in box 
diagrams to make it easier to see where the string begins and ends. 
 

Similarly, you can create string constants, as in the following example: 
 

ALPHABET = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" 
 

This statement defines the constant ALPHABET to be a string consisting of the 26 
uppercase letters, as illustrated by the following box diagram: 
 

 
 
Lists 
The strings described in the preceding section consist of ordered sequences of 
individual characters.  The string "Eric", for example, is a sequence of the four 
characters "E", "r", "i", and "c".  Generically, programmers refer to sequences of 
data values that appear in a fixed order as lists. 
 

As human beings, we seem to delight in making lists.  In 1998, the American Film 
Institute polled 1500 leaders of the film industry and created a list of the top 100 
American films of all time, of which the top ten entries appear in the sidebar in the 
left margin.  Lists are an example of a compound data type.  The list itself is a value 
in its own right, but it is also composed of individual components, which in this case 
are strings. 
 

Python makes it extremely easy to create a list.  All you have to do is enclose the 
elements of the list inside square brackets and separate the elements with commas.  
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For example, you can define the constant AFI_TOP_TEN_FILMS using the following 
declaration: 
 

AFI_TOP_TEN_FILMS = [ 
    "Citizen Kane", 
    "Casablanca", 
    "The Godfather", 
    "Gone with the Wind", 
    "Lawrence of Arabia", 
    "The Wizard of Oz", 
    "The Graduate", 
    "On the Waterfront", 
    "Schindler's List", 
    "Singing' in the Rain" 
] 

 
This declaration defines a list containing ten elements, each of which is a string.  It 
also illustrates an important convention about formatting long lines in Python.  In 
Python, the end of a statement is indicated by the end-of-line character, which is 
typically labeled as RETURN or ENTER on the keyboard.  If you want to break a long 
statement across multiple lines to make it more readable, you ordinarily need to 
precede each line break with a backslash character (/).  Python, however, makes an 
exception to this rule in the case of code enclosed within parentheses, square brackets, 
or curly braces, in which case the backslash character is not required.  In the definition 
of AFI_TOP_TEN_FILMS, for example, all the strings are enclosed inside the square 
brackets that create the list, so the backslash characters do not appear. 
 

The elements of a list can be of any type.  The following definition creates a list 
containing the five integers 4, 6, 8, 12, and 20: 
 

PLATONIC_SOLIDS = [ 4, 6, 8, 12, 20 ] 
 
If you are a fan of classical mathematics (or, alternatively, role-playing games that 
use a variety of oddly shaped dice), you may recognize these values as the number of 
sides of the only three-dimensional shapes in which the faces are identical polygons 
with equal angles and side lengths.  These shapes are the regular polyhedra, which 
are also known as the Platonic solids in honor of Plato’s identification of them as the 
only shapes whose perfect symmetry revealed the beauty of the universe. 
 
Operations on sequences 
In Section 1.1, you learned that data types are defined by two properties: a domain 
and a set of operations.  For strings, the domain is the set of all sequences of 
characters.  For lists, the domain is the set of all sequences of Python values.  Since 
both strings and lists are sequences, it is not surprising that the operations they support 
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are similar.  In fact, Python does a better job than most languages to ensure that the 
operations on these types adopt the same conventions, making those operations easier 
to learn and use. 
 

In Python, most operations on sequences are defined using an object-oriented 
model of programming, which you will learn more about in later chapters.  For the 
moment, it is sufficient to learn just three operations: 
 
1. Selecting an element from a sequence. 

2. Joining two sequences together end to end, which is called concatenation. 

3. Determining the length of a sequence. 
 

In Python, the elements of a sequence—whether those elements are characters in 
a string or values in a list—are numbered starting with 0.  For example, the elements 
of the list PLATONIC_SOLIDS are numbered like this: 
 

 
 
In computer science, each element number in a list is called the index of the 
corresponding element.  You select an individual element from a sequence by writing 
the name of the sequence, followed by the index number enclosed in square brackets.  
Thus, PLATONIC_SOLIDS[3] selects the value 12. 
 

Python specifies concatenation using the + operator, which is also used to indicate 
addition for numbers.  When Python evaluates the + operator, it first checks the types 
of the operands.  If both operands are numeric, Python interprets the + operator as 
addition.  If both operands are sequences, Python interprets the + operator as 
concatenation.  For example, the expression 
 

2 + 2 
 

has the value 4, because both of the operands to + are numbers.  Conversely, 
 

"abc" + "def" 
 

produces the six-character string "abcdef". 
 

In this example, it is important to observe that using the concatenation operator 
with strings does not introduce a space character or any other separator between the 
words.  If you want to combine two strings into a single string that represents two 
distinct words, you have to include the space explicitly.  For example, assuming that 
the variable greeting contains the string "Hello" and the variable name contains 
the string "Eric", the expression 
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greeting + " " + name 
 

produces the ten-character string "Hello Eric". 
 

Some languages—most notably Java and JavaScript—define the + operator so that 
it allows you to combine a string with other types.  If at least one of the operands to 
+ is a string, those languages automatically convert the other to its string form.  In 
Python, you must specify this conversion explicitly using the built-in function str, 
which converts values of any type to their string form as a sequence of characters.  
For example, calling str(1729) returns the four-character string "1729".  Similarly, 
calling str(12.50) returns the string "12.5".  The string value does not include the 
trailing zero that appears in the call, because Python interprets 12.50 as a number 
rather than as a string of digits.  As a number, 12.50 has the value 12.5. 
 

The str function therefore makes it possible to concatenate values of any type 
into a string expression.  For example, the expression 
 

"Fahrenheit " + str(451) 
 

produces the string "Fahrenheit 451" because the built-in str function converts the 
numeric value 451 to the string "451" before combining the strings together. 
 

Modern versions of Python, however, make it easy to assemble a string from 
values of different types by using a new feature called an f-string, which stands for 
formatted string.  Formatted strings are so marvelously useful that it makes sense to 
introduce them in a simple form here, deferring the details of their operation to 
Chapter 7. 
 

When Python encounters an f-string indicated by writing the letter f before the 
opening quotation mark, it looks inside the string for any expressions enclosed in 
curly braces and replaces each of those expressions with its value, performing any 
necessary string conversion automatically.  For example, you can insert the value of 
the variable temperature after the word "Fahrenheit" using the following f-string:  
 

f"The answer is {temperature}."
 
If temperature contains the integer 451, Python would interpret this string as 
"Fahrenheit 451", which is the title of a Ray Bradbury novel.  If temperature 
instead contains the integer 911, the value would be "Fahrenheit 911", the title of 
a film by Michael Moore.  Formatted strings are particularly useful in conjunction 
with calls to the print function, which you will learn about in Chapter 2. 
 

Python also includes built-in functions that make it possible to convert strings that 
represent numbers into their numeric counterparts.  If you give it a string argument, 
the int function tries to convert that string to an integer by checking to see that the 
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value is a string of digits, possibly preceded by a minus sign.  Thus, calling 
int("1729") produces the integer value 1729.  Similarly, the float function 
converts a string representing a floating-point number into its numeric counterpart, 
so that float("12.50") produces that value 12.5.  If you pass int or float a string 
that cannot be interpreted as a number of the appropriate type, Python signals that an 
error has occurred. 
 

In Python, you can determine the length of any sequence by calling the built-in 
function len.  For example, if you have initialized ALPHABET as shown on page 18, 
calling len(ALPHABET) returns the value 26.  Similarly, calling len("") returns the 
value 0, because the string "" contains no characters between the quotation marks.  
The string containing no characters at all is called the empty string.  As you will 
discover in Chapter 7, the empty string comes up frequently when you are writing 
programs to manipulate string data. 
 
Writing simple string functions 
Although you will need the additional operations from Chapter 7 to write anything 
more than the simplest string functions, it is worth looking at a few examples that use 
only the concatenation operator. 
 

The following function 
 

def double_string(s): 
   return s + s 

 

returns two copies of the supplied string joined together.  This function enables the 
following IDLE session: 
 

 
 
This screen transcript also includes two features that illustrate how the IDLE 
interpreter works with strings.  First, the IDLE interpreter displays string values using 
single quotation marks rather than the double-quoted strings used in the text.  Second, 
the IDLE sessions—along with code in figures or indented text blocks but not in text 
paragraphs—uses syntax coloring, in which different components of a program 
appear in different colors.  Keywords appear in orange, built-in functions appear in 
purple, strings appear in green, and console output appears in blue. 
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 1.6 Writing Python programs 
The program examples you have seen so far define functions by typing them directly 
into the IDLE interpreter.  In practice, experienced programmers rarely type more 
than a few lines into an interactive interpretive environment like IDLE.  What they 
do instead is use an editor, which is an application that allows you to create and 
modify files on your computer, to create files that define simple programs in their 
entirety or logically connected parts of a larger program.  Those files are called 
modules.  In Python, the names of files containing modules end with the suffix .py. 
 

As an example, Figure 1-5 combines the definition of the function c_to_f from 
page 14 with the corresponding definition of a function f_to_c into a single module 
stored in a file called temperature.py.  The code in Figure 1-5 illustrates two new 
features of Python, both of which are important for writing programs that are easy to 
understand and maintain.  The first line of temperature.py is an example of a 
comment, which consists of text designed to explain the operation of the program to 
human readers.  In Python, comments begin with the hashtag character (#) and extend 
through the end of the line.  Here—as in the first line of all modules used in this text—
the comment specifies the name of the file in which the code appears. 
 

The other new feature is the text that appears in green in Figure 1-5, which is used 
in three different places in the code.  These text strings are also comments for the 
reader, but are written in a different way.  Each one begins with three quotation marks 
on a line, continues with any number of text lines, and then ends with another line of 
three quotation marks.  In Python, these bits of commentary are called docstrings.  It 
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is good programming practice to include a docstring at the beginning of each module 
or function to describe its operation. 
 

Once you have created a module, you can use it with the IDLE interpreter in 
exactly the same way that you use one of the standard libraries.  You use an import 
statement—which may appear in either the import or from-import form—to 
acquire the definitions you need, which you can then use in your own code. 
 

The following IDLE session shows how to load the c_to_f and f_to_c functions 
from the temperature module and then use them in expressions: 
 

 
 
Specifying a start-up function 
The ability to store programs in files also makes it possible to run Python programs 
without using the IDLE interpreter.  The details for doing so differ slightly depending 
on what type of machine you’re using, but the idea is the same.  You need to open up 
a command window—which is called the shell on Unix systems, the Terminal 
application on the Macintosh, and Command Prompt on Windows—and then use the 
command window to invoke the Python interpreter on your program file.  Again, the 
precise syntax for the command line may differ from machine to machine, but the 
following command is typical: 
 

python3 name.py 
 
where name is the name of the Python module you want to run. 
 

Once you have entered this command, the Python interpreter takes over and reads 
in the contents of the specified module, just as if you typed those lines into IDLE.  A 
typical module includes assignment statements and function definitions but must also 
include some code after those definitions to get the program running. 
 

Although you could start the program by including an explicit function call at the 
end of the program file, doing so makes it difficult to use the program module as part 
of another application. By convention, what Python programmers do instead is add 
the following lines to the end of the program file, where function is the name of the 
function that starts the program: 
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if __name__ == "__main__": 
    function() 

 
The rather cryptic line at the beginning of this code fragment tests to see if this module 
is being invoked directly as a command or if it has been loaded as a library.  To do 
so, it relies on the fact that Python initializes the variable __name__ to the name of 
the module.  If a module is invoked from the command line, this variable contains the 
string "__main__".  In this case, the Python interpreter calls the specified function.  
If the module has been loaded as a library, that call is skipped. 
 

At this point, you shouldn’t worry if you don’t understand exactly what the startup 
code at the end of a program file does.  Code patterns that always appear in a specific 
form are often called boilerplate.  In general, it is more important simply to memorize 
the boilerplate than to learn precisely how it works. 
 
Communicating with the user 
Most application programs need to interact with the user in some way.  Modern 
applications typically communicate with the user through a graphical user interface 
or GUI.  Although you will have the opportunity to design simple graphical user 
interfaces beginning in Chapter 6, it is much easier to begin with an older style of 
interaction in which users communicate with applications through a console.  The 
application asks the user to enter values by typing on the keyboard, after which the 
application performs some calculations and then displays the results on the screen.  
Generically, the information the user enters is called input, and the information 
displayed back to the user is called output. 
 

When you are first learning to program, it is essential to appreciate the distinction 
between the way that functions communicate within a program and the way in which 
an application communicates with a user.  Functions communicates with one another 
by passing arguments and returning results.  Applications communicate with the user 
by calling input and output functions, which for the console are the input and print 
functions described later in this section.  If you are asked on an assignment or an 
exam to write a function that takes in some number of values and returns a result, that 
function will not ordinarily include calls to the input and print functions. 
 

Console applications often require the user to enter information on the keyboard 
and then use the input data to compute some result.  Python uses the built-in function 
input for this purpose.  The input function takes a string argument, which is then 
displayed on the console so that the user knows what information the program needs.  
This string is called a prompt.  After printing the prompt, the input function waits 
for the user to type in a line of text and then pressing the RETURN key.  The input 
function than returns that string to the caller, as illustrated in the following IDLE 
session: 
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Even though the input function always returns a string, you can use it in 
conjunction with the built-in functions int and float to read in numeric values.  If, 
for example, you want to read an integer from the user and store that value in the 
variable n, you can use the following code: 
 

n = int(input("Enter an integer? ")) 
 

Console output uses the built-in function print, which takes one or more 
arguments and then prints each one on the console, separated by spaces.  For example, 
if the variable answer contains the number 42, executing the statement 
 

print("The answer is", answer) 
 
generates the output 
 

 
 
where the space between the string and the number 42 is supplied by the comma in 
the print call. 
 

In most cases, however, it makes more sense to use Python’s f-string feature to 
generate the output string.  As an example, you could rewrite this statement to use an 
f-string like this: 
 

print(f"The answer is {answer}")
 

Console input and output are illustrated in more detail in the AddTwoIntegers.py 
program in Figure 1-6 at the top of the next page, which reads two integers from the 
user and then displays the result.  If you run AddTwoIntegers.py from the command 
line, Python will call the add_two_integers function, which generates a console 
transcript that looks something like this: 
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 Summary 
In this chapter, you have started your journey toward programming in Python by 
learning how to write simple expressions involving a few important data types 
including integers, floating-point numbers, and strings.  Important points introduced 
in the chapter include: 
 
• The primary focus of this book is not the Python language itself but rather the 

principles you need to understand the fundamentals of programming. 

• Data values come in many different types, each of which is defined by a domain 
and a set of operations. 

• Integers in Python are written as a string of decimal digits optionally preceded by 
a minus sign. 

• Floating-point numbers in Python are written in conventional decimal notation.   
Python also allows you to write numbers in scientific notation by adding the letter 
E and an exponent indicating the power of 10 by which the number is multiplied. 

• Expressions consist of individual terms connected by operators.  The 
subexpressions to which an operator applies are called its operands. 

• The order of operations is determined by rules of precedence.  The complete table 
of operators and their precedence appears in Figure 1-1 on page 7. 

• Variables in Python have two attributes: a name and a value.  Variables used in a 
Python program are created using an assignment statement in the form 

 

variable = expression 
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which establishes the name and value of the variable.  You can subsequently use 
assignment statements to change the value of an existing variable. When you 
assign a new value to a variable, any previous value is lost. 

• Python includes an abbreviated form of assignment in which the statement 
 

variable op= expression 
 

acts as a shorthand for the longer expression 
 

variable = variable op (expression) 
 

• Python allows multiple assignments within the same statement, as in 
 

a, b, c = 3, 4, 5 
 

which assigns a, b, and c the values 3, 4, and 5, respectively.  The values of the 
expressions on the right hand side are evaluated before any assignments are made, 
so that 

 
x, y = y, x 

 

exchanges the values of the variables x and y. 
 

• Variable names that include more than one word can be hard to read unless you 
mark the word divisions in some way.  The programs in this text follow the 
standard Python convention of using snake case in the names of variables, 
functions, and methods, in which the individual words are separated by 
underscores, as in the variable name number_of_pages.  Class names, which will 
be introduced in subsequent chapters, use a different style convention called camel 
case, in which each word embedded in the name starts with an uppercase letter, as 
in the class name GFillableObject. 

• Constants are used to specify values that do not change within a program.  By 
convention, you write the names of constants entirely in upper case, using the 
underscore to mark word boundaries. 

• A function is a block of code that has been organized into a separate unit and given 
a name.  Other parts of the program can then call that function, possibly passing 
it arguments and receiving a result returned by that function. 

• Variables that are assigned values inside the body of a function are called local 
variables and are visible only inside that function.  Variables defined outside of a 
function are global variables, which can be used anywhere in the program.  This 
book avoids global variables, because they make programs harder to maintain. 

• A function that returns a value must have a return statement that specifies the 
result.  Functions may return values of any type. 

• Python predefines a set of built-in functions that are always available for use in 
programs.  Figure 1-3 lists several of the more important ones. 



 Exercises     29 
 

• Python’s math library defines a variety of functions that implement such standard 
mathematical functions as sqrt, sin, and cos.  A list of the more common 
mathematical functions appears in Figure 1-4 on page 16. 

• Before you use a function defined in a library, you must import that library.  
Python supports two strategies for importing functions from libraries.  The import 
statement allows you to use a library function by specifying its fully qualified 
name.  The import-from statement allows you to import specific functions from 
a library, which you can then use without including the library name. 

 • A string is a sequence of characters taken together as a unit.  In Python, you write 
a string by enclosing its characters in quotation marks.  Python accepts either 
single or double quotation marks for this purpose. 

• Although strings support many additional operations that will be presented in 
Chapter 7, the examples in this chapter and the next few chapters use only the + 
operator to concatenate string values along with the built-in functions len, str, 
int, and float. 

• Although you can use concatenation to combine strings with values of other types, 
doing so is not as convenient as using f-strings.  An f-string begins with the letter 
f before the opening quotation mark and signifies that Python should substitute 
the corresponding value for any expressions enclosed in curly braces. 

• A list is a sequence of Python values taken together as a unit.  In Python, you write 
a list by enclosing its elements in square brackets. 

• Strings and lists are both examples of sequences in Python.  Each element of a 
sequence is assigned an index number starting with 0.  You can select an element 
from a sequence by enclosing the index in square brackets after the sequence. 

• Python programs are often stored in files called modules. As with functions 
defined in a library, you can use the facilities defined in a module by importing 
those definitions into your own computation. 

• Python applications typically define a startup function using the following pattern: 
 

if __name__ == "__main__": 
    function() 

 

• Functions in Python communicate by passing arguments and returning results.  
Console applications communicate with the user through the built-in functions 
input and print. 

 

 Review questions 
1. What are the two attributes that define a data type? 
 
2. What is the difference between an integer and a floating-point number? 
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3. Identify which of the following are legal numbers in Python: 
 

a) 42 g) 1,000,000 
b) -17 h) 3.1415926 
c) 2+3 i) 123456789 
d) -2.3 j) 0.000001 
e) 20 k) 1.1E+11 
f) 2.0 l) 1.1X+11 

 

4. Rewrite the following numbers using Python’s form for scientific notation: 
 

a) 6.02252 ´ 1023 
b) 29979250000.0 
c) 0.00000000529167 
d) 3.1415926535 

 

By the way, each of these values is an approximation of an important scientific 
or mathematical constant: (a) Avogadro’s number, which is the number of 
molecules in one mole of a chemical substance; (b) the speed of light in 
centimeters per second; (c) the Bohr radius in centimeters, which is the average 
radius of an electron’s orbit around a hydrogen atom in its lowest-energy state; 
and (d) the mathematical constant π. 

 

5. Indicate which of the following are legal variable names in Python: 
 

a) x g) total output 
b) formula1 h) a_very_long_variable_name 
c) average_rainfall i) 12_month_total 
d) %correct j) marginal-cost 
e) pass k) b4hand 
f) pass2 l) _stk_depth 

 

6. In your own words, describe the effect of the /, //, and % operators in Python? 
 

7. True or false: The - operator has the same precedence when it is used before an 
operand to indicate negation as it does when it is used to indicate subtraction. 

 

8. By applying the appropriate precedence rules, calculate the result of each of the 
following expressions: 

 

a) 6 + 5 / 4 - 3 
b) 2 + 2 * (2 * 2 - 2) % 2 / 2 
c) 10 + 9 * ((8 + 7) % 6) + 5 * 4 % 3 * 2 + 1 
d) 1 + 2 + (3 + 4) * ((5 * 6 % 7 * 8) - 9) - 10 

 

9. What shorthand assignment statement would you use to multiply the value of the 
variable salary by 2? 
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10. How can you use multiple assignment to exchange the values of the variables x 
and y?  How would you achieve the same effect using traditional assignment 
statements? 

 
11. What is the value of each of the following expressions: 
 

a) round(5.99) 
b) math.floor(5.99) 
c) math.ceil(5.99) 
d) math.floor(-5.99) 
e) math.sqrt(3 ** 2 + 4 ** 2) 

 
12. What is meant by the terms snake case and camel case? 
 

13. How do you specify a string value in Python? 
 

14. What is an f-string, and how do you specify one in Python? 
 

15. If a string is stored in the variable s, how would you determine its length? 
 

16. How would you create a constant DWARVES containing the names of the seven 
Disney dwarves (Bashful, Doc, Dopey, Grumpy, Happy, Sleepy, and Sneezy)? 

 

17. What index expression would you use to select the name Happy from the 
DWARVES list defined in the previous question. 

 

18. What is meant by the term concatenation? 
 

19. How does Python decide whether to interpret the + operator as addition or 
concatenation? 

 

20. What is the format of the startup boilerplate used to specify the starting function 
in a Python application? 

 

21. In your own words, describe the difference between communicating information 
using arguments and results as opposed to communicating information using the 
input and print functions. 

 

22. What is a prompt? 
 

22. How would you ask the user to enter a floating-point number signifying the 
radius of a circle? 

 

23. How would you rewrite the following f-string using concatenation, assuming that 
the values of the variables n1 and n2 are integers: 

 

print(f"The sum of {n1} and {n2} is {n1 + n2}.") 
 



32     Introducing Python 

 

 Exercises 
1. How would you implement the following mathematical function in Python: 
 

f (x) = x 
2 – 5x + 6 

 
2. According to mathematical historians, the German mathematician Carl Friedrich 

Gauss (1777–1855) began to show his mathematical talent at a very early age.  
When he was in primary school, Gauss was asked by his teacher to compute the 
sum of the first 100 integers.  Gauss is said to have produced the answer instantly 
by working out that the sum of the first N integers is given by the formula 

 

 
 

Write a function sum_first_n_integers that takes an integer n and returns the 
sum of the first n integers, as illustrated in the following sample run: 

 

 
 
3. Write a function triangle_area that computes the area of a triangle given 

values for its base and its height, as ahown in the following diagram: 
 

 
 

Given any triangle, the area is always one half of the base times the height. 
 
4. Write a function distance that calculates the distance from the origin to the 

point whose coordinates are given by the parameters x and y.  The formula for 
calculating this distance, traditionally attributed to the Greek philosopher 
Pythagoras in the 6th century BCE, is illustrated in the following diagram: 

 

 
 

 
Carl Friedrich Gauss 
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5. Write a function plural(word) that adds the string "s" to the end of the word 
to create a simple plural form.  This strategy, of course, does not work for all 
English words, many of which require adding "es" instead of "s" depending on 
the final consonant.  You will have a chance to solve that more sophisticated 
problem in Chapter 7. 

 
6. Write a function quote(s) that uses concatenation to add a double quotation 

mark to each end of the string s. 
 

7. It is a beautiful thing, the destruction of words. 
—Syme in George Orwell’s 1984 

 

In Orwell’s novel, Syme and his colleagues at the Ministry of Truth are engaged 
in simplifying English into a more regular language called Newspeak.  As Orwell 
describes in his appendix entitled “The Principles of Newspeak,” words can take 
a variety of prefixes to eliminate the need for the massive number of words we 
have in English.  For example, Orwell writes, 

 
Any word—this again applied in principle to every word in the language—
could be negatived by adding the affix un-, or could be strengthened by the 
affix plus-, or, for still greater emphasis, doubleplus-. Thus, for example, 
uncold meant “warm,” while pluscold and doublepluscold meant, 
respectively, “very cold” and “superlatively cold.” 

 

Define three functions—negate, intensify, and reinforce—that take a 
string and add the prefixes "un", "plus", and "double" to that string, 
respectively.  Your function definitions should allow you to generate the 
following console session: 

 

 
 
8. Use the temperature.py module as a model to design and implement a new 

module called metric.py that defines the following functions: 
 

• A function miles_to_kilometers that takes a value representing a distance 
in miles and returns the corresponding distance in kilometers. 

• A function feet_and_inches_to_centimeters that takes two arguments 
(feet and inches) and returns the equivalent distance in centimeters. 
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Your module should define the following constants and use them to perform the 
conversions: 

 

FEET_PER_MILE = 5280 
CENTIMETERS_PER_INCH = 2.54 
INCHES_PER_FOOT = 12 
CENTIMETERS_PER_METER = 100 
METERS_PER_KILOMETER = 1000 

 

Test your implementation by importing this module into IDLE and verifying the 
following conversions: 

 

• The standard distance for a marathon is 26.2 miles, which is approximately 
42.165 kilometers. 

• Eight feet and four inches represents a total length of 100 inches, which 
corresponds to 254 centimeters. 

 
9. Rewrite the temperature.py module so that it includes a main program that 

asks the user for a Fahrenheit temperature and then displays the Celsius 
equivalent. 

 
10. Write a program called AverageThreeNumbers.py that asks the user to enter 

three floating-point numbers and then computes their average.  A sample run of 
this program from the command line might look like this: 

 

 
 
11. Write a function digit_name that takes an integer between 0 and 9 and returns 

the English word for that digit as a string.  For example, calling digit_name(7) 
should return the string "seven".  The easiest way to implement this function 
given the facilities of Python you know is to put the strings for the ten digits into 
a constant list and then have the function select the appropriate element from the 
list. 
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I had a running compiler and nobody would touch it. . . . 
They carefully told me, computers could only do 
arithmetic; they could not do programs. 

— Grace Murray Hopper, as quoted in 
Charlene Billings, Grace Hopper: Navy 
Admiral and Computing Pioneer, 1989 

 
 

 
Grace Murray Hopper (1906–1992) 

 
Grace Murray Hopper studied mathematics and physics at Vassar College and went on to earn her Ph.D. in 
mathematics at Yale.  During the Second World War, Hopper joined the United States Navy and was posted 
to the Bureau of Ordinance Computation at Harvard University, where she worked with computing pioneer 
Howard Aiken.  Hopper became one of the first programmers of the Mark I digital computer, which was one 
of the first machines capable of performing complex calculations.  Hopper made several contributions to 
computing in its early years and was one of the major contributors to the development of the language 
COBOL, which continues to have widespread use in business programming applications.  In 1985, Hopper 
became the first woman promoted to the rank of admiral.  During her life, Grace Murray Hopper served as 
the most visible example of a successful woman in computer science. In recognition of that contribution, 
there is now an annual Celebration of Women in Computing, named in her honor. 
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In Chapter 1, you saw several examples of simple Python functions.  In each of those 
examples, execution of the function started with the first statement in its body and 
then continued through the remaining statements in order, possibly calling other 
functions along the way.  Before you can write more interesting applications, you 
need to learn how to control the operation of your program in more sophisticated 
ways. 
 

This chapter introduces new statement forms that enable you to change the way in 
which Python executes your programs.  Collectively, these statements are called 
control statements.  Control statements fall into the following two classes: 
 
1. Conditional statements.  Conditional statements specify that certain statements 

in a program should be executed only if a particular condition holds.  In Python, 
you specify conditional execution using an if statement, which exists in several 
forms.  The last section in this chapter also introduces the assert statement, 
which makes it easy to write simple test programs. 

2. Iterative statements.  Iterative statements specify that certain statements in a 
program should be executed repeatedly, forming what programmers call a loop.  
Python supports two iterative statements: a while statement that allows you to 
repeat a set of statements as long as some condition holds, and a for statement 
that allows you to repeat a set of statements a certain number of times or for each 
item in some collection. 

 
Students often believe that there must be some rule that determines when they 

need to use each of the various control statements a programming language provides.  
That’s not how programming works.  Control statements are tools for solving 
problems.  Before you can determine what control statement makes sense in a 
particular context, you have to give serious thought to the problem you are trying to 
solve and the strategy you should choose to solve it.  You write the code for a program 
after you have decided how to solve the underlying problem.  There is nothing 
automatic about the programming process. 
 

The fact that there are no magic rules that turn a problem statement into a working 
program is what makes programming such a valuable skill.  If it were possible to 
create programs by following some well-defined procedure, it would be easy to 
automate the process and eliminate the need for programmers entirely.  Programming 
consists of solving problems, many of which are extremely complex and require 
considerable ingenuity and creativity to solve.  Solving such problems is what makes 
computer programming hard; it is also what makes programming interesting and fun. 
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 2.1 Boolean data 
In Python, you express conditions by constructing expressions whose values are 
either true or false.  Such expressions are called Boolean expressions, after the 
English mathematician George Boole, who developed an algebraic approach for 
working with data of this type.  Boolean values are represented in Python using a 
built-in type whose domain consists of exactly two values: True and False. 
 

Python defines several operators that work with Boolean values.  These operators 
fall into two classes—relational operators and logical operators—as described in the 
next two sections. 
 
Relational operators 
The simplest questions you can ask in Python are those that compare two data values.  
You might want, for example, to determine whether two values are equal or whether 
one is greater than or smaller than another.  Traditional mathematics uses the 
operators =, ≠, <, >, ≤, and ≥ to signify the relationships equal to, not equal to, less 
than, greater than, less than or equal to, and greater than or equal to, respectively.  
Because several of these symbols don’t appear on a standard keyboard, Python 
represents these operators in a slightly different form, which uses the following 
character combinations in place of the usual mathematical symbols: 
 

== Equal to 
!= Not equal to 
< Less than 
> Greater than 
<= Less than or equal to 
>= Greater than or equal to 

 
Collectively, these operators are called relational operators because they test the 

relationship between two values.  Like the arithmetic operators introduced in Chapter 
1, relational operators appear between the two values to which they apply.  For 
example, if you need to check whether the value of x is less than 0, you can use the 
expression x < 0. 
 
Logical operators 
In addition to the relational operators, which take values of any type and produce 
Boolean results, Python defines three operators that take Boolean operands and 
combine them to form other Boolean values: 
 

not Logical not (True if the following operand is False) 
and Logical and (True if both operands are True) 
or Logical or (True if either or both operands are True) 

 

 
George Boole 
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These operators are called logical operators and are listed in decreasing order of 
precedence. 
 

Although the operators and, or, and not correspond to the English words and, or, 
and not, it is important to remember that English is somewhat imprecise when it 
comes to logic.   To avoid that imprecision, it helps to think of these operators in a 
more formal, mathematical way.  Logicians define these operators using truth tables, 
which show how the value of a Boolean expression changes as the values of its 
operands change.  For example, the truth table for the and operator, given Boolean 
values p and q, is 
 

 
 
The last column of the table indicates the value of the Boolean expression p and q, 
given the individual values of the Boolean variables p and q shown in the first two 
columns.  Thus, the first line in the truth table shows that when p is False and q is 
False, the value of the expression p and q is also False. 
 

The truth table for or is 
 

 
 
Even though the or operator corresponds to the English word or, it does not indicate 
one or the other, as it often does in English, but instead indicates either or both, which 
is its mathematical meaning. 
 

The not operator has the following simple truth table: 
 

 
 
If you need to determine how a more complex logical expression operates, you can 
break it down into these primitive operations and build up a truth table for the 
individual pieces of the expression. 
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In most cases, logical expressions are not so complicated that you need a truth 
table to figure them out.  The only case that often causes confusion is when the not 
operator comes up in conjunction with and or or.  When English speakers talk about 
situations that are not true (as is the case when you work with the not operator), a 
statement whose meaning is clear to human listeners is often at odds with 
mathematical logic.  Whenever you find that you need to express a condition 
involving the word not, you should use extra care to avoid errors. 
 

As an example, suppose you wanted to express the idea “x is not equal to either 2 
or 3” as part of a program.  Just reading from the English version of this conditional 
test, new programmers are likely to code this expression as follows: 
 

x != 2 or x != 3 
 

 

As noted in Chapter 1, this book uses the bug symbol to mark sections of code that 
contain deliberate errors.  In this case, the problem is that an informal English 
translation of the code does not correspond to its interpretation in Python.  If you look 
at this conditional test from a mathematical point of view, you can see that the 
expression is True if either (a) x is not equal to 2 or (b) x is not equal to 3.  No matter 
what value x has, one of the statements must be True, since, if x is 2, it cannot also 
be equal to 3, and vice versa. 
 

To fix this problem, you need to refine your understanding of the English 
expression so that it states the condition more precisely.  That is, you want the 
condition to be True whenever “it is not the case that either x is 2 or x is 3.”  You 
could translate this expression directly to Python by writing 
 

not (x == 2 or x == 3) 
 
but the resulting expression would be a bit ungainly.  The question you really want to 
ask is whether both of the following conditions are True: 
 

• x is not equal to 2, and  

• x is not equal to 3. 
 

If you think about the question in this form, you can write the test as 
 

x != 2 and x != 3 
 
This simplification is a specific illustration of the following more general relationship 
from mathematical logic: 
 

not (p or q)    is equivalent to    not p and not q 
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for any logical expressions p and q.  This transformation rule and its symmetric 
counterpart 
 

not (p and q)    is equivalent to    not p or not q 
 
are called De Morgan’s laws after the British mathematician Augustus De Morgan.  
Forgetting to apply these rules and relying instead on the English style of logic can 
lead to programming errors that are difficult to find. 
 
Short-circuit evaluation 
Python interprets the and and or operators in a way that differs from the interpretation 
used in many other programming languages.  In the programming language Pascal, 
for example, evaluating these operators requires evaluating both halves of the 
condition, even when the result can be determined partway through the process. 
 

The designers of Python (or, more accurately, the designers of earlier languages 
that influenced Python’s design) took a different approach that is usually more 
convenient for programmers.  Whenever Python evaluates an expression of the form 
 

exp1 and exp2 
 

or 
 

exp1 or exp2 
 
the individual subexpressions are always evaluated from left to right, and evaluation 
ends as soon as the answer can be determined.  For example, if exp1 is False in the 
expression involving and, there is no need to evaluate exp2 since the final answer will 
always be False.  Similarly, in the example using or, there is no need to evaluate the 
second operand if the first operand is True.  This style of evaluation, which stops as 
soon as the answer is known, is called short-circuit evaluation. 
 

A primary advantage of short-circuit evaluation is that it allows one condition to 
control the execution of a second one.  In many situations, the second part of a 
compound condition is meaningful only if the first part comes out a certain way.  For 
example, suppose you want to express the combined condition that (1) the value of 
the integer x is nonzero and (2) x divides evenly into y.  You can express this 
conditional test in Python as 
 

(x != 0) and (y % x == 0) 
 
because the expression y % x is evaluated only if x is nonzero.  The corresponding 
expression in Pascal fails to generate the desired result, because both parts of the 
Pascal condition will always be evaluated.  Thus, if x is 0, a Pascal program 
containing this expression will end up dividing by 0 even though it appears to have a 

 
Augustus De Morgan 



 2.1 Boolean data     41 

 

conditional test to check for that case.  Conditions that protect against evaluation 
errors in subsequent parts of a compound condition, such as the conditional test 
 

(x != 0) 
 
in the preceding example, are called guards. 
 
Avoiding fuzzy standards of truth 
In the programs included in this book, every conditional test produces a Boolean 
value, which means that it will always be either True or False.  Unfortunately, the 
Python language is rather less disciplined on this point.  Python defines the following 
values (a couple of which you have not yet seen) to be falsy, presumably to imply 
that they are like the legitimate Boolean value False: 
 

False, 0, None, math.nan, and any sequence of length 0 including "" 
 
Conversely, Python defines any other value to be truthy.  In any conditional context, 
any “falsy” value is treated as if it were the value False; any “truthy” value is treated 
as if it were the value True. 
 

The complexity of this situation is increased further by the fact that the and and 
or operators are implemented so that they allow operands to be of any type.  When 
Python evaluates a sequence of expressions joined together by the and operator, it 
returns the first falsy value in the sequence, so that the expression 
 

0 and True 
 
returns the integer 0, because 0 is falsy and thus determines the value of the entire 
expression.  Conversely, a sequence of expressions joined together by the or operator 
returns the first truthy value in the sequence. 
 

Overly clever programmers will find uses for Python’s rather convoluted 
interpretation of Boolean values.  If, however, you want to write programs that are 
easy to read and maintain, you should avoid relying on these fuzzy definitions of truth 
and falsity and make sure—as this book does—that every test produces a legitimate 
Boolean value.  In his book, JavaScript: The Good Parts, Douglas Crockford lists the 
“surprisingly large number of falsy values” in his appendix on the “awful parts” of 
JavaScript.  That feature is no less awful in Python.  But you might also take the 
following advice from a somewhat older source: 
 

Let what you say be simply “Yes” or “No”; anything more than this comes 
from evil. 

—Matthew 5:37, The New English Bible 
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Predicate functions 
Although functions in Python can return values of any type, functions that return 
Boolean values deserve special attention because they play such an important role in 
programming.  Functions that return Boolean values are called predicate functions. 
 

As you know from earlier in this chapter, there are only two Boolean values: True 
and False.  Thus a predicate function—no matter how many arguments it takes or 
how complicated its internal processing may be—must eventually return one of these 
two values.  The process of calling a predicate function is therefore analogous to 
asking a yes/no question and getting an answer.  For example, the following function 
definition answers the question “is n an even number?” for a particular integer n 
supplied by the caller as an argument: 
 

def is_even(n): 
    return n % 2 == 0 

 

A number is even if there is no remainder when you divide that number by two.  If n 
is even, the expression n % 2 == 0 has the value True, which is returned as the value 
of is_even.  If n is odd, the function returns False. 
 

As a second example, it is an interesting exercise to implement the predicate 
function is_leap_year, which determines whether a given year qualifies as a leap 
year.  Although one tends to think of leap years as occurring once every four years, 
astronomical realities are not quite so tidy.  Because it takes about a quarter of a day 
more than 365 days for the earth to complete its orbit, adding an extra day once every 
four years helps keep the calendar in sync with the sun, but it is still off by a slight 
amount.  To ensure that the beginning of the year does not slowly drift through the 
seasons, the rule used for leap years is in fact more complicated.  Leap years come 
every four years, except for years ending in 00, which are leap years only if they are 
divisible by 400.  Thus, 1900 was not a leap year even though 1900 is divisible by 4.  
The year 2000, on the other hand, was a leap year because 2000 is divisible by 400.  
For any leap year, one of the following conditions must hold: 
 

• The year is divisible by 4 but not divisible by 100, or 
• The year is divisible by 400. 
 
It is easy to code the correct rule in Python as a predicate function, as follows: 
 

def is_leap_year(year): 
   return ((year % 4 == 0) and (year % 100 != 0)) or \ 
           (year % 400 == 0) 

 
The return statement in the is_leap_year function illustrates an important 

feature of Python.  In contrast to most modern languages that ignore spaces and line 
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breaks, Python uses that spacing to define the hierarchical structure of a program.  In 
Python, a line break ordinarily signals the end of a statement.  Because the return 
statement includes a Boolean expression that doesn’t fit comfortably on a single line, 
you need to find some way to let the expression extend across more than one line.  
This example solves the problem by preceding the line break in the middle of the 
expression by a backward slash (\), which causes Python to treat the following line 
as part of this one.  Python also ignores any line breaks that occur within parentheses, 
square brackets, or curly braces, but that rule doesn’t apply in this example as it 
appears.  You will have many opportunities to see applications of this second rule, 
which removes the need for the line-continuation character. 
 

 2.2 The if statement 
The simplest way to express conditional execution in Python is by using the if 
statement, which comes in three forms, as shown in the syntax boxes on the left. The 
first form of the if statement is useful when you want to perform an action only under 
certain conditions.  The second is appropriate when you need to choose between two 
alternative courses of action.  The third, which can contain any number of elif 
clauses, makes sense if you need to choose among several different courses of action. 
 

The condition component of these templates is a Boolean expression, as defined 
in the preceding section.  This Boolean expression can be a simple comparison, a 
logical expression involving the and, or, and not operators, or a call to a predicate 
function.  For example, if you want to test whether the number stored in year 
corresponds to a leap year, you can use the following if statement, which calls the 
is_leap_year function defined on the preceding page: 
 

if is_leap_year(year): 
 

 In the first form of the if statement, Python executes the block of statements only 
if the conditional test evaluates to True.  If the conditional test is False, Python skips 
the body of the if statement entirely.  In the second form, Python executes the first 
block of statements if the condition is True and the second if the condition is False.  
In the third form, Python evaluates each of the conditions in turn and executes the 
statements associated with the first condition that evaluates to True.  If none of the 
conditions apply, Python executes the statements associated with the else keyword. 
 

You can use the if statement to implement your own versions of Python’s built-in 
functions.  For example, you can implement abs—at least for integers and 
floating-point numbers—as follows: 
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def abs(x): 
    if x < 0: 
        return -x 
    else: 
        return x 

 
Similarly, you can implement max for two arguments like this: 
 

def max(x, y): 
    if x > y: 
        return x 
    else: 
        return y 

 
As a third example, you can use the following definition to implement sign(x), 
which returns –1, 0, or 1, depending on the sign of x: 
 

def sign(x): 
    if x < 0: 
        return -1 
    elif x == 0: 
        return 0 
    else: 
        return 1 

 
Choosing which form of the if statement to use requires you to think about the 

structure of the problem.  You use the simple if statement when the problem requires 
code to be executed only if a particular condition applies.  You use the if-else form 
for situations in which the program must choose between two independent sets of 
actions.  You can often make this decision based on how you would describe the 
problem in English.  If that description contains the word otherwise or some similar 
expression, there is a good chance that you’ll need the if-else form.  If the English 
description conveys no such notion, the simple form of the if statement is probably 
sufficient.  Finally, you use the if-elif-else form to express a choice among several 
different options. 
 

 2.3 The while statement 
The simplest iterative construct is the while statement, which repeatedly executes a 
simple statement or block until the conditional expression becomes False.  The 
template for the while statement appears in the syntax box on the right.  The entire 
statement, including both the while control line itself and the statements enclosed 
within the body, constitutes a while loop.  When the program executes a while 
statement, it first evaluates the conditional expression to see if it is True or False.  If 
the condition is False, the loop terminates and the program continues with the next 
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statement after the entire loop.  If the condition is True, the entire body is executed, 
after which the program goes back to the top to check the condition again.  A single 
pass through the statements in the body constitutes a cycle of the loop. 
 

There are two important principles to observe about the operation of a while loop: 
 
1. The conditional test is performed before every cycle of the loop, including the 

first.  If the test is False initially, the body of the loop is not executed at all. 

2. The conditional test is performed only at the beginning of a loop cycle.  If that 
condition happens to become False at some point during the loop, the program 
doesn’t notice that fact until it has executed a complete cycle.  At that point, the 
program reevaluates the test condition.  If it is still False, the loop terminates. 

 
Summing the digits in a number 
As an illustration of the use of while, suppose that you have been asked to write a 
function called digit_sum that adds up the digits in an integer without converting it 
to a string.  Calling digit_sum(1729) should therefore produce the result 19, which 
is 1 + 7 + 2 + 9.  How would you go about implementing such a function? 
 

The first thing that your function needs to do is keep track of a running total.  The 
usual strategy for doing so is to declare a variable called total, set it to 0, add each 
digit to total one at a time, and finally return the value of total.  That much of the 
structure, with the rest of the problem written in English, appears below: 
 

def digit_sum(n): 
    total = 0 
    For each digit in the number, add that digit to total. 
    return total 

 
Programs that are written partly in a programming language and partly in English are 
called pseudocode. 
 

The sentence 
 

For each digit in the number, add that digit to total. 
 
clearly specifies a loop structure of some sort, since there is an operation that needs 
to be repeated for each digit in the number.  If it were easy to determine how many 
digits a number contained, you might choose to use the for loop described later in 
this chapter to run through precisely that many cycles.  As it happens, finding out how 
many digits there are in a number is just as hard as adding them up in the first place.  
The best way to write this program is just to keep adding in digits until you discover 
that you have added the last one.  Loops that run until some condition occurs are most 
often coded using the while statement. 
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The essence of this problem lies in determining how to break up a number into its 
component digits.  The last digit of an integer n is simply the remainder left over 
when n is divided by 10, which is the result of the expression n % 10.  The rest of the 
number—the integer that consists of all digits except the last one—is given by 
n // 10.  For example, if n has the value 1729, you can use these two expressions to 
break that number into two parts, 172 and 9, as shown in the following diagram: 
 

 
 
Thus, in order to add up the digits in the number, all you need to do is add the value 
n % 10 to the variable total on each cycle of the loop and then replace the value of 
n by n // 10.  The next cycle will add in the second-to-last digit from the original 
number, and so on, until all the digits have been processed. 
 

But how do you know when to stop?  As you compute n // 10 in each cycle, you 
will eventually reach the point at which n becomes 0.  At that point, you’ve processed 
all the digits in the number.  Thus, the while loop needed for the problem is 
 

while n > 0: 
    total += n % 10 
    n = n // 10 

 
The implementation of the digit_sum function appears in Figure 2-1. 
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Aligning output fields 
You can also use the while statement to add spaces to a string in order to ensure that 
strings of different lengths line up correctly when displayed on the Python console.  
For example, columns of numbers are conventionally aligned on the right by adding 
spaces at the beginning of the number.  Although you will discover in Chapter 7 that 
there is a library function that has the same effect, you can also use the following 
function, which takes a value and a field width: 
 

def align_right(value, width): 
    result = str(value) 
    while len(result) < width: 
        result = " " + result 
    return result 

 
The function returns a string in which value appears at the right edge of a field that 
is width characters wide.  The first line of the function uses the str function to 
convert value to a string and then assigns that value to the variable result.  From 
here, the function uses concatenation to add spaces to the beginning of result until 
it has attained the desired length.  The last statement then returns the padded string to 
the caller.  You will have a chance to see align_right in action in section 2.4. 
 
Reading console input until a sentinel appears 
Another context in which the while loop comes in handy is in programs that read 
input lines until the user enters a special value that indicates that the data entry process 
is complete.  That special value is called a sentinel.  This style of input has the 
character required for a while loop in that it repeatedly reads lines from the user as 
long as those lines don’t match the sentinel value. 
 

To get a better sense of when this style of operation might come up, imagine that 
you have been asked to write a program that reads in integers from the user, adding 
them up as the process goes along.  When the input list is complete, the program 
should display the overall total.  The program needs some sentinel to stop in order to 
ensure that the program doesn’t keep asking for numbers forever.  The following 
execution trace shows the operation of an as-yet-unwritten add_list function that 
uses a blank line as the sentinel to mark the end of the input: 
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The structure of this program is closely related to that of the digit_sum function 
shown in Figure 2-1.  In pseudocode form, the add_list function looks like this: 
 

def add_list(): 
    print("This program adds a list of integers.") 
    print("Enter a blank line to stop.") 
    total = 0 
    For each input value until the sentinel appears, add that number to total. 
    print("The sum is", total) 

 
What’s left is finding a way to express the remaining pseudocode line in English. 
 

Writing the necessary code to implement this operation is not as simple as it might 
at first appear.  As the pseudocode makes clear, the loop should terminate when the 
input value is equal to the sentinel.  In order to check this condition, however, the 
program must have first read in some value.  If the program has not yet read in a 
value, the termination condition doesn’t make sense. 
 

The problem that arises in implementing the read-until-sentinel pattern is that the 
check for the termination condition appears in the middle of the loop instead of at the 
beginning.  A loop that requires that some operation be performed before testing for 
completion represents an instance of what programmers call the loop-and-a-half 
problem. 
 

Python offers at several strategies for solving the loop-and-a-half problem, each 
of which uses a while loop in some form.  Unfortunately, none of these strategies is 
perfect.  One strategy for is to read in the first number outside the loop and then 
execute the loop until the sentinel appears.  In this form, the missing statements look 
like this: 
 

line = input(" ? ") 
while line != "": 
    total += int(line) 
    line = input(" ? ") 

 
Although this strategy works, there are two aspects of this code that violate one’s 
intuition about the problem.  First, the statements in the body of the while loop begin 
by adding a value to total and then reading in a line, even though the conceptual 
order of operations in the pseudocode formulation is to read a line and then add a 
value.  Second, the same exact statement 
 

line = input(" ? ") 
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appears twice in the code, even though there is only one conceptual operation.  Such 
instances of repeated code make programs more difficult to maintain, because it is 
easy to change one instance without changing the other. 
 

A second approach to solving the loop-and-a-half problem is to make use of the 
break statement, which Python has inherited from the programming language C.  The 
break statement makes it possible to express the necessary control structure in a form 
that mirrors the order of operations from the pseudocode, which consists of repeating 
the following steps: 
 
1. Read in a value. 

2. If the value is equal to the sentinel, exit from the loop. 
3. Perform whatever processing is required for that value. 
 
Using break allows you to code the loop-until-sentinel pattern like this: 
 

while True: 
    line = input(" ? ") 
    if line == "": 
        break 
    total += int(line) 

 
The order of operations now matches the intuitive conception of the process, and the 
code includes no duplicated lines. 
 

Although several early studies have demonstrated that students are more likely to 
write correct code if they use this coding model, many computer science experts reject 
the idea of using the break statement because it buries the exit condition inside the 
body of the loop.  This style of programming makes it impossible for readers of the 
program to tell from the header line of the while loop—which on its own makes it 
seem as if the loop will run forever—without searching through the entire loop body 
looking for the point at which the loop is complete. 
 

The approach used in this text is to introduce a Boolean variable, which 
programmers often refer to as a flag, to keep track of whether the process has finished.  
Using the flag-based strategy, the implementation has the form shown in Figure 2-2.  
As long as the finished flag is False, as it is at the beginning because of the explicit 
assignment statement that precedes the loop, the code reads in a line from the user 
and then checks to see whether that line is empty.  If so, the first clause of the if 
statement sets finished to True so the loop will terminate.  If not, the else clause 
adds the numeric value of the line to the variable total. 
 

Although the flag-based code is slightly longer, this strategy avoids the problems 
from the earlier approaches and is well worth memorizing for your own programs. 
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 2.4 The for statement 
The most important control statement in Python is the for statement, which is 
typically used in situations in which you know how many cycles the loop will run 
before it begins.  The general form of the for statement appears in the syntax box on 
the left.  When Python encounters a loop of this sort, it executes the statement in the 
body with the variable indicated by the placeholder var set to each element in the 
collection of values specified by iterable.  Python uses the term iterable to specify a 
data value that supports iteration, which is the formal term computer scientists use 
for the process of looping through a collection one value at a time 
 
Iterating over a range of integers 
One of the most common uses of the for statement is to cycle through a range of 
integers.  In this case, the iterable placeholder in the for loop paradigm consists of a 
call to the built-in function range, which returns an iterable value whose elements 
are the desired integers.  The for loop then executes one cycle for each value. 
 



 2.4 The for statement     51 

 

The range function offers several different patterns that give you considerable 
control over the order in which the for loop processes the elements.  These patterns 
are determined by the number of arguments, as follows: 
 
• If you call range with one argument, as in range(n), the result generates a 

sequence of n values beginning with 0 and extending up to the value n – 1. 

• If you call range with two arguments in the form range(start, limit), the result 
generates a sequence beginning with start and continuing up to but not including 
the value of limit. 

 • If you call range with three arguments in the form range(start, limit, step), the 
result generates a sequence beginning with start and then counts in increments of 
step up to but not including limit.  If the value of step is negative, the sequence 
begins with start and then counts backwards down to but not including limit. 

 
Figure 2-3 illustrates each of these argument patterns in the context of a for loop that 
displays each of the values in the range. 
 

The variable that appears in the for loop pattern is called an index variable.  In 
each of the examples in Figure 2-3, the index variable is named i.  Although using 
single-letter names can sometimes make programs more difficult to understand, using 
i as an index variable follows a well-established programming convention.  Just as 
the single-letter variables names x and y are perfectly appropriate if they refer to 
coordinate values, programmers immediately recognize the variable name i as a loop 
index that cycles through a sequence of integers. 
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The last example in Figure 2-3 shows that you can use the range function to count 
backwards.  You could use this feature to write a function that simulates a countdown 
from the early days of the space program: 
 

def countdown(n): 
    for t in range(n, -1, -1): 
        print(t) 

 
Calling countdown(10) produces the following output on the console: 
 

 
 
The countdown function also demonstrates that any variable can be used as an index 
variable.  In this case, the variable is called t, presumably because that is traditional 
for a rocket countdown, as in the phrase “T minus 10 seconds and counting.” 
 
 

The factorial function 
The factorial of a nonnegative integer n, which is traditionally written as n! in 
mathematics, is defined to be the product of the integers between 1 and n.  The first 
ten factorials are shown in the following table: 
 

0!   = 1  (by definition) 
1!   = 1 = 1 
2!   = 2 = 1 ´ 2 
3!   = 6 = 1 ´ 2 ´ 3 
4!   = 24 = 1 ´ 2 ´ 3 ´ 4 
5!   = 120 = 1 ´ 2 ´ 3 ´ 4 ´ 5 
6!   = 720 = 1 ´ 2 ´ 3 ´ 4 ´ 5 ´ 6 
7!   = 5040 = 1 ´ 2 ´ 3 ´ 4 ´ 5 ´ 6 ´ 7 
8!   = 40320 = 1 ´ 2 ´ 3 ´ 4 ´ 5 ´ 6 ´ 7 ´ 8 
9!   = 362880 = 1 ´ 2 ´ 3 ´ 4 ´ 5 ´ 6 ´ 7 ´ 8 ´ 9 

 
Factorials have extensive applications in statistics, combinatorial mathematics, 

and computer science.  A function to compute factorials is therefore a useful tool for 
solving problems in those domains.  You can implement a function fact(n) by 
initializing a variable called result to 1 and then multiplying result by each of the 
integers between 1 and n, inclusive.  The resulting code looks like this: 
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def fact(n): 
    result = 1 
    for i in range(1, n + 1): 
        result *= i 
    return result 

 
Note that the for loop specifies the upper limit of the range as n + 1 to ensure that the 
value n is included in the product. 
 

The FactorialTable.py program in Figure 2-4 on the next page displays a list 
of the factorials starting at LOWER_LIMIT and extending up to but not including 
UPPER_LIMIT, as illustrated by the following sample run: 
 

 
 

The code for this program is divided into multiple modules.  The main program is 
stored in the FactorialTable.py module shown at the top of Figure 2-4.  The code 
in FactorialTable.py produces the table shown in the sample run but relies on a 
separate factorial.py model for the fact function and an alignment.py module 
(which you will have a chance to write in exercise 9) for the align_right function 
defined on page 47. 
 

The module that together define the FactorialTable application play slightly 
different roles.  The FactorialTable.py module defines a Python program that 
delivers output to the user through the use of print statements.  The factorial.py 
and the as-yet-unwritten alignment.py modules each represent a Python library that 
performs a service for the main program without communicating directly with the 
user.  The functions in the library modules communicate with their callers by taking 
arguments as input and returning results. 
 

The names of these modules reflect a convention that applies throughout this text.  
Modules that are intended to be run as programs use camel-case names beginning 
with an uppercase letter, as illustrated by the module name FactorialTable.py.  
Modules intended to be used as libraries, such as factorial.py and alignment.py 
in this chapter or like the temperature.py module from Chapter 1 have names 
written entirely in lowercase letters. 
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Nested for statements 
In many applications, you will discover that you need to write one for loop inside 
another so that the statements in the innermost loop are executed for every possible 
combination of values of the for loop indices.  Suppose, for example, that you want 
to display a multiplication table showing the product of every pair of numbers in the 
range 1 to 10.  You would like the output of the program to look like this: 
 

 
 

The code to draw this multiplication table appears in Figure 2-5.  To create the 
individual entries, you need a pair of nested for loops: an outer loop that runs through 
each of the rows and an inner loop that runs through each of the entries in each row.  
The code inside the inner for loop will be executed once for every row and column, 
for a total of 100 individual entries in the table. 
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The outer loop runs through each value of i from 1 to 10 and is responsible for 
displaying one row of the table on each cycle.  To do so, the code first declares the 
variable line and initializes it to be the empty string.  The inner loop then runs 
through the values of j from 1 to 10 and concatenates the product of i and j to the 
end of line after calling the align_right function to ensure that the columns have 
the same width.  When the inner loop is complete, the program calls print to display 
the completed line of the multiplication table. 
 

A useful way to get some practice using nested for loops is to write programs that 
draw patterns on the console by displaying lines of characters.  As a simple example, 
the following function draws a triangle in which the number of stars increases by one 
in each row: 
 

def draw_console_triangle(size): 
    for i in range(size): 
        line = "" 
        for j in range(i + 1): 
            line += "*" 
        print(line) 

 
Calling draw_console_triangle(10), for example, produces the following output 
on the console: 
 

 
 
You will have a chance to create several similar displays in the exercises. 
 
Iterating over sequences 
The examples of the for statement you have seen so far all use the range function to 
specify the sequence of values.  If you look back at the original description of the for 
loop pattern, however, you will see that header line has the following more general 
format: 
 

for var in iterable: 
 

Python includes several data types that support iteration, any of which can be used 
in place of the iterable component of this pattern.  In many cases, those data types 
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represent sequences of individual values.  Given any sequence, you can use the for 
statement to step through the elements of that sequence one value at a time.  The first 
cycle of the for loop sets the index variable to the first element in the sequence, the 
second cycle sets the variable to the second element, and the process continues in this 
fashion through the entire sequence. 
 

Even though you won’t encounter most of Python’s iterable types until later in this 
book, you have already seen two iterable types, which are the string and list type 
introduced in Chapter 1.  Conceptually, a string is a sequence of characters.  As with 
any sequence, you can use a for loop to step through each of these characters in turn.  
The following IDLE session, for example, uses a for loop to display the characters 
in the string "Hello", one character per line: 
 

 
 
When Python executes this for loop, it interprets "Hello" as a sequence of 
one-character strings and then assigns each of those strings to the index variable ch 
on successive cycles of the loop, starting with "H" and continuing through "o". 
 

You can use this strategy of iterating through each character in a string to 
implement a function count_char(c, s), which returns the number of times the 
character c appears in the string s: 
 

def count_char(c, s): 
    count = 0 
    for ch in s: 
        if c == ch: 
            count += 1 
    return count 

 
For example, calling count_char("u", "unusual") returns the value 3 because the 
character "u" appears three times in the string "unusual". 
 

You will have more opportunities to use the for loop with strings in Chapter 7 
and with more general sequences beginning in Chapter 8. 
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The reversed and sorted functions 
Python’s library of built-in functions includes two that take one iterable value as an 
argument and return another that cycles through the same values but does so in a 
different order.  The reversed function returns an iterable value that runs through its 
elements backwards.  For example, you can use reversed to rewrite the countdown 
function from page 52 as follows: 
 

def countdown(n): 
    for t in reversed(range(0, n + 1)): 
        print(t) 

 
The built-in sorted function takes any iterable object and return a list that 

contains the elements from that object in sorted order.  For example, the code 
sequence 
 

INNER_PLANETS = [ "Mercury", "Venus", "Earth", "Mars" ] 
for planet in sorted(INNER_PLANETS): 
    print(planet) 

 
produces the following output on the console: 
 

 
 
Similarly, calling sorted on a string (which is, after all, an iterable object whose 
elements are the individual characters) returns a sorted list of those characters.  For 
example, calling sorted("word") returns the list [ "d", "o", "r", "w" ].  You will 
have occasion to use this function in Chapter 3. 
 

 2.5 The assert statement 
The last control statement covered in this chapter is the assert statement, which 
typically has the form shown in the syntax box on the left.  Unlike the other control 
statements, the assert statement doesn’t include a body; all you have is a conditional 
tesr, which should be a Boolean expression of the form used in the if and while 
statements.  The assert statement represents a declaration of something that you, as 
the programmer, believe to be true at that point in the execution of the program and 
asks Python to verify that fact for you.  If the test is indeed true, Python moves on to 
the next statement.  If not, Python displays the failed assertion and terminates the 
program execution with a failure condition called an assertion error. 
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The following sample run illustrates the operation of the assert statement in the 
context of the IDLE interpreter: 
 

 
 
The first line, which makes the generally uncontroversial statement that two plus two 
is four, executes silently, producing no output.  The second line, which claims (as 
O’Brien does in the George Orwell novel Nineteen Eighty-Four) that two plus two is 
five, generates an error message showing the offending assertion. 
 

The most useful application of the assert statement comes in writing functions 
that test the operation of a module.  For example, in the library factorial.py 
module shown in Figure 2-4 on page 54, it would be good programming practice to 
add a test_fact function composed of several assert statements checking that the 
fact function computed the correct result.  That function might look like this: 
 

def test_fact(): 
    assert fact(0) == 1 
    assert fact(1) == 1 
    assert fact(2) == 2 
    assert fact(5) == 120 
    assert fact(10) == 3628800 
    assert fact(20) == 2432902008176640000 

 
You can’t possibly test all possible values for the arguments, but you can select 
specific values that give you confidence in the correctness of the implementation.  
Here, for example, the code tests the value of fact(0), which is defined to be 1, and 
the value for a reasonably large argument like 20. 
 

You can also use assert statements to verify that the arguments that the caller 
passes to a library function meet the conditions required for a correct result.  For 
example, the fact function is defined only for nonnegative integers.  Adding the 
following assert statement to check that requirement can simplify later debugging:  
 

    assert isinstance(n, int) and n >= 0 
 
This statement uses the built-in isinstance function, which checks whether the first 
argument has the type specified by the second.  A version of the factorial.py 
module that incorporates both these changes appears in Figure 2-6. 
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 Summary 
The purpose of this chapter is to introduce the most common control statements in 
Python and explore examples of their use.  The important points include: 
 
• One of the most useful types in any modern programming language is Boolean 

data, for which the domain consists of just two values: True and False. 

• The relational operators (<, <=, >, >=, ==, and !=) perform comparisons to create 
Boolean values.  The logical operators (and, or, and not) combine Boolean 
values to express more complex conditions. 

• The logical operators and and or are evaluated in left-to-right order in such a way 
that the evaluation stops as soon as the program can determine the result.  This 
behavior is called short-circuit evaluation. 

• Functions that return Boolean values play an important role in computer science 
and are called predicate functions. 

• Control statements fall into two classes: conditional and iterative. 
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• The if statement specifies conditional execution when a section of code should 
be executed only in certain cases or when the program needs to choose between 
two alternate paths. 

• The while statement specifies repetition as long as some condition is met. 

• In some applications, it is necessary to perform part of a while loop before 
checking whether the termination condition applies.  Programmers refer to this 
situation as the loop-and-a-half problem.  Several strategies exist for coding such 
loops, none of which is perfect.  This book recommends using a flag to keep track 
of whether the loop has finished. 

• A particular common example of the loop-and-a-half problem arises when a 
program needs to read input lines until a blank line appears.  This book uses the 
following code pattern to implement this structure: 

 

finished = False 
while not finished: 
    line = input(" ? ") 
    if line == "": 
        finished = True 
    else: 
        perform some operation using the input line 

 

• The for statement is used to cycle through every value in an iterable object. 

• Most of the for loops used in this chapter specify the limits of the iteration using 
the built-in function range, which can take one, two, or three arguments.  Calling 
range(n) generates a sequence of n values beginning with 0 and extending up to 
the value n – 1.  The two-argument form range(start, limit) iterates through a 
sequence beginning with start and continuing up to but not including the value of 
limit.  The three-argument form range(start, limit, step) iterates through a 
sequence beginning with start and then counts in increments of step up to but not 
including the value of limit. 

• You can use the for statement to step through every value in a sequence, such as 
a string or a list. 

• The built-in functions reversed and sorted each convert an iterable object into 
a new one that cycles through the elements in a different order.  The reversed 
function produces an iterator that runs backwards; the sorted function produces 
a list in which the elements appear in sorted order. 

• The assert statement asks Python to check whether some Boolean condition 
holds.  You can use the assert statement to write test functions for your modules 
or to check that functions in a library are called with valid arguments. 

• The built-in function isinstance(value, type) checks to see whether value has 
the specified type. 
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 Review questions 
1. What are the Python keywords for the two Boolean values? 
 
2. Describe in English what the following conditional expression means: 
 

(x != 4) or (x != 17) 
 

For what values of x is this condition equal to True? 
 
3. What is meant by the term short-circuit evaluation? 
 
4. What is a predicate function? 
 
5. What are the two classes of control statements? 
 
6. What does it mean to say that two control statements are nested? 
 
7. Suppose the body of a while loop contains a statement that, when executed, 

causes the condition for that while loop to become False.  Does the loop 
terminate immediately at that point or does it complete the current cycle? 

 
8. What is the loop-and-a-half problem? 
 
9. What programming pattern does these notes recommend for reading input lines 

until a blank line appears? 
 
10. What term do computer scientists use to refer to an incomplete program written 

partly in a programming language and partly in English? 
 
11. Describe the sequence of values generated by each of the following calls to the 

built-in function range: 
 

a) range(7) 
b) range(1, 10) 
c) range(5, 25, 5) 
d) range(1, -2, -2) 

 
12. What for loop header line would you use in each of the following situations: 
 

a) Counting from 1 to 100. 
b) Counting by sevens starting at 0 until the number has more than two digits. 
c) Counting backward by twos from 100 to 0. 

 
13. How would you write a for loop to cycle through the characters in a string s? 
 
14. Describe briefly the built-in functions reversed, sorted, and isinstance. 
 
15. What two applications does the chapter describe for the assert statement? 
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 Exercises 
1. As a way to pass the time on long bus trips, young people growing up in the 

United States have been known to sing the following rather repetitive song: 
 

99 bottles of beer on the wall. 
99 bottles of beer. 
You take one down, pass it around. 
98 bottles of beer on the wall. 
 
98 bottles of beer on the wall. . . . 

 

Anyway, you get the idea.  Write a Python program to display the lyrics of this 
song using print.  In testing your program, it would make sense to use some 
constant other than 99 as the initial number of bottles. 

 
2. Write a function that takes a positive integer N and then calculates and displays 

the sum of the first N odd integers.  For example, if N is 4, your function should 
display the value 16, which is 1 + 3 + 5 + 7. 

 

3.  Why is everything either at sixes or at sevens? 
—Gilbert and Sullivan, H.M.S. Pinafore, 1878 

 

Write a program that displays the integers between 1 and 100 that are divisible 
by either 6 or 7 but not both. 

 

4. Use the digit_sum function as a model to define a function that takes a number 
and returns a number that contains the same digits in the reverse order, as 
illustrated by the following IDLE transcript: 

 

 
 

The idea in this exercise is not to take the integer apart character by character, 
which you will not learn how to do until Chapter 7.  Instead, you need to use 
arithmetic to compute the reversed integer as you go. 

 

5. The digital root of an integer n is defined as the result of summing the digits 
repeatedly until only a single digit remains.  For example, the digital root of 1729 
can be calculated using the following steps: 

 

Step 1: 1 + 7 + 2 + 9 ® 19 
Step 2: 1 + 9 ® 10 
Step 3: 1 + 0 ® 1 
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Because the total at the end of step 3 is the single digit 1, that value is the digital 
root.  Write a function digital_root that returns this value. 

 

6. Write a Python program that reads in numbers until the user enters a blank line 
and then prints their average.  A sample run of your program might look like this: 

 

 
 
7. Write a function draw_console_box(width, height) that draws a box on the 

console with the specified dimensions.  The corners of the box should be 
represented using a plus sign (+), the top and bottom borders using a minus sign 
(-), and the left and right borders using a vertical bar (|).  For example, calling 
draw_console_box(52, 6) should produce the following diagram: 

 

 
 
8. Write a function draw_console_pyramid(height) that draws a pyramid of the 

specified height in which the width of each row increases by two as you move 
downward on the console.  Each of the rows should be centered with respect to 
the others, and the bottom line should begin at the left margin.  Thus, calling 
draw_console_pyramid(8) should produce the following figure: 

 

 
 
9. Implement a library module called alignment.py that defines the function 

align_right as given on page 47 along with the corresponding functions 
align_left and align_center.  Make sure that your module includes a test 
function. 

 



 

C H A P T E R  3  
Algorithmic Thinking 

 
 

Computational thinking is a fundamental skill for 
everyone, not just for computer scientists. To reading, 
writing, and arithmetic, we should add computational 
thinking to every child’s analytical ability. 

— Jeannette Wing, “Computational Thinking,” 
Communications of the ACM, 2006 

 
 

 
Jeannette Wing (1956–) 

 
Jeannette Wing received her Ph.D. in Computer Science from MIT in 1983 and has subsequently held faculty 
positions at the University of Southern California, Carnegie Mellon, and Columbia University.  In addition 
to her academic work, Wing has served as Corporate Vice President of Microsoft Research and as a research 
director at the National Science Foundation.  In 2006, during her time as head of the Computer Science 
Department at Carnegie Mellon, Wing published an influential article entitled “Computational Thinking” in 
Communications of the ACM, the flagship journal of the leading professional society for computing.  In that 
article, Wing argued that every person growing up today needs to understand not only what computation can 
do but also how to unlock that power using the patterns of thought that studying computer science fosters.   
As Wing notes in her article, “computational thinking will have become ingrained in everyone’s lives when 
words like algorithm . . . are part of everyone’s vocabulary.” 
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The concept of an algorithm is fundamental to computer science.  The word algorithm 
comes from the name of the 9th-century Persian mathematician Muhammad ibn Mūsā 
al-Khwārizmī, whose work had significant impact on modern mathematics.  Figure 
3-6 shows a photograph of a statue of al-Khwārizmī near his birthplace in what is 
now Uzbekistan. 
 

Although it is usually sufficient to think of an algorithm as a strategy for solving 
a problem, modern computer science formalizes that definition so that algorithm 
refers to a solution strategy that is 
 

• Clear and unambiguous, in the sense that the description is understandable. 
• Effective, in the sense that it is possible to carry out the steps in the strategy. 
• Finite, in the sense that the strategy terminates after some number of steps. 
 
This chapter begins by looking at a few historically important algorithms and then 
shifts its focus toward the process of designing your own solution strategies.  The 
final section then explores topics in testing, debugging, and software maintenance. 
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 3.1 Algorithms in history 
Although the concept of an algorithm has taken on new significance in the computing 
age, algorithmic techniques for solving problems have existed even before the time 
of al-Khwārizmī.  The next few sections offer a few examples of historically 
important algorithms.  These algorithms are interesting in their own right, but they 
also offer useful illustrations of how control statements can be used in practice. 
 
An early square-root algorithm 
One of the earliest known algorithms dates back almost 4000 years to when 
Babylonian mathematicians discovered a procedure for calculating square roots.  The 
primary evidence of the existence of an algorithmic process comes from cuneiform 
tablets such as the one shown in Figure 3-2, which shows an approximation of the 
square root of 2 that is far more accurate than anyone could possibly derive through 
measurement alone.  And although the precise details of how Babylonian 
mathematicians performed the necessary calculations have been lost, historians 
believe that their technique was similar to the algorithm described by the 1st-century 
Greek mathematician Hero of Alexandria, who noted its Babylonian origin. 
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The Babylonian method for calculating square roots is an example of a general 
technique called successive approximation, in which you begin by making a rough 
guess at the answer and then improve that guess through a series of refinements that 
get closer and closer to the exact answer.  For example, if you want to find the square 
root of some number n, you start by choosing some smaller number g as your first 
guess.  At every point in the process, your guess g will be smaller or larger than the 
actual square root.  In either case, if you divide n by g, the result will inevitably lie 
on the opposite side of the desired value.  For example, if g is too small, n divided by 
g will be too large, and vice versa.  Averaging the two values will always give a better 
approximation.  At each step, you simply replace your previous guess g with the result 
of the following formula, which averages g and n divided by g: 
 

 
 
You then continue to apply this formula to each new guess until the answer is as close 
to the actual value as you need it to be. 
 

To get more of a sense of how the Babylonian method works, it helps to consider 
a simple example.  Suppose that you want to calculate, as the scribes who incised the 
cuneiform tablet did, the square root of 2.  One possible first guess for g is 1, which 
is half the value of n.  The first approximation step therefore computes the following 
average: 
 

 
 
The value 1.5 is closer to the actual square root of 2—which is approximately 
1.4142136—so the process is on the right track. 
 

To calculate the next approximation, all you need to do is plug     into the formula 
as the next value of g, and calculate the new average, as follows: 
 

 
 
From this point, you simply repeat the calculation with      as the new value of g: 
 

 
 
Applying successive approximation one more time gives you 
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After just four cycles, the Babylonian method has produced an approximation to 
the square root of 2 that is correct to eight decimal digits.  Moreover, because each 
step generates an approximation that is closer to the exact value, you can repeat the 
process to produce an approximation with any desired level of accuracy. 
 

Figure 3-3 shows the definition of a sqrt function that uses the Babylonian 
method to approximate the square root of its argument.  The function uses a while 
loop to continue the process until the approximation reaches the desired level of 
precision.  In this implementation, the while loop continues until the difference 
between the square of the current approximation and the original number is no larger 
than the value of the constant TOLERANCE. 
 
Finding the greatest common divisor 
Although you have seen a few simple algorithms implemented in the context of the 
programming examples, you have had little chance to focus on the nature of the 
algorithmic process itself.  Most of the programming problems you have seen so far 
are simple enough that the appropriate solution strategy springs immediately to mind.  
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As problems become more complex, however, their solutions require more thought, 
and you will need to consider more than one strategy before writing the final program. 
 

As an illustration of how algorithmic strategies take shape, the sections that follow 
consider two solutions to another problem from classical mathematics, which is to 
find the greatest common divisor of two integers.  Given two integers x and y, the 
greatest common divisor (or gcd for short) is the largest integer that divides evenly 
into both.  For example, the gcd of 49 and 35 is 7, the gcd of 6 and 18 is 6, and the 
gcd of 32 and 33 is 1. 
 

Suppose that you have been asked to write a function that accepts two positive 
integers x and y as input and returns their greatest common divisor.  From the caller’s 
point of view, what you want is a function gcd(x, y) that takes the two integers as 
arguments and returns another integer that is their greatest common divisor.  The 
header line for this function is therefore 
 

def gcd(x, y): 
 

In many ways, the most obvious approach is simply to try every possibility.  To 
start, you simply “guess” that gcd(x, y) is the smaller of x and y, because any larger 
value could not possibly divide evenly into a smaller number.  You then proceed by 
dividing x and y by your guess and seeing if it divides evenly into both.  If it does, 
you have the answer; if not, you subtract 1 from your guess and try again.  A strategy 
that tries every possibility is often called a brute-force approach. 
 

The brute-force approach to calculating the gcd function looks like this in Python: 
 

def gcd(x, y): 
    guess = min(x, y) 
    while x % guess != 0 or y % guess != 0: 
        guess -= 1 
    return guess 

 
Before you decide that this implementation is in fact a valid algorithm for computing 
the gcd function, you need to ask yourself several questions about the code.  Will the 
brute-force implementation of gcd always give the correct answer?  Will it always 
terminate, or might the function continue forever? 
 

To determine whether the program gives the correct answer, you need to look at 
the condition in the while loop, which looks like this: 
 

x % guess != 0 or y % guess != 0 
 
As always, the while condition indicates under what circumstances the loop will 
continue.  To find out what condition causes the loop to terminate, you have to negate 
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the while condition.  Negating a condition involving logical operators is tricky unless 
you remember De Morgan’s laws, which were introduced in Chapter 2.  De Morgan’s 
laws indicate that the following condition must hold when the while loop exits: 
 

x % guess == 0 and y % guess == 0 
 

From this condition, you can see immediately that the final value of guess is 
certainly a common divisor.  To recognize that it is in fact the greatest common 
divisor, you have to think about the strategy embodied in the while loop.  The critical 
factor to notice in the strategy is that the program counts backward through all the 
possibilities.  The greatest common divisor can never be larger than x or y, and the 
brute-force search therefore begins with the smaller of these two values.  If the 
program ever gets out of the while loop, it must have already tried each value 
between the starting point and the current value of guess.  Thus, if there were a larger 
value that divided evenly into both x and y, the program would already have found it 
in an earlier iteration of the while loop. 
 

In recognizing that the function terminates, the key insight is that the value of 
guess must eventually reach 1, unless a larger common divisor is found.  At this 
point, the while loop will surely terminate, because 1 will divide evenly into both x 
and y, no matter what values those variables have. 
 

Brute force is not, however, the only effective strategy.  Although brute-force 
algorithms have their place in other contexts, they are a poor choice for the gcd 
function if you are concerned about efficiency.  For example, if you call 
 

gcd(1000005, 1000000) 
 
the brute-force algorithm will run through the body of the while loop almost a million 
times before it comes up with the answer 5, even though you can instantly arrive at 
that result just by thinking about the two numbers. 
 

What you need to find is an algorithm that is guaranteed to terminate with the 
correct answer but that requires fewer steps than the brute-force approach.  This is 
where cleverness and a clear understanding of the problem pay off.  Fortunately, the 
necessary creative insight was described sometime around 300 BCE by the Greek 
mathematician Euclid, whose Elements (book 7, proposition II) contains an elegant 
solution to this problem.  In modern English, Euclid’s algorithm can be described as 
follows: 
 
1. Divide x by y and compute the remainder; call that remainder r. 

2. If r is zero, the procedure is complete, and the answer is y. 

3. If r is not zero, set x equal to the old value of y, set y equal to r, and repeat the 
entire process. 

 



72     Algorithmic Thinking 

You can easily translate this algorithmic description into the following code: 
 

def gcd(x, y): 
    r = x % y 
    while r != 0: 
        x = y 
        y = r 
        r = x % y 
    return y 

 
This implementation of the gcd function also correctly finds the greatest common 
divisor of two integers.  It differs from the brute-force implementation in two respects.  
On the one hand, it computes the result much more quickly.  On the other, it is more 
difficult to prove correct. 
 

Although a formal proof of correctness for Euclid’s algorithm is beyond the scope 
of this book, you can easily get a feel for how the algorithm works by adopting the 
mental model of mathematics the Greeks used.  In Greek mathematics, geometry held 
center stage, and numbers were thought of as distances.  For example, when Euclid 
set out to find the greatest common divisor of two whole numbers, such as 51 and 15, 
he framed the problem as one of finding the longest measuring stick that could be 
used to mark off each of the two distances involved.  Thus, you can visualize the 
specific problem by starting out with two sticks, one 51 units long and one 15 units 
long, as follows: 
 

 
 
The problem is to find a new measuring stick that you can lay end to end on top of 
each of these sticks so that it precisely covers each of the distances x and y. 
 

Euclid’s algorithm begins by marking off the large stick in units of the shorter one, 
like this: 
 

 
 
Unless the smaller number is an exact divisor of the larger one, there is some 
remainder, as indicated by the shaded section of the lower stick.  In this case, 15 goes 
into 51 three times with 6 left over, which means that the shaded region is 6 units 
long.  The fundamental insight that Euclid had is that the greatest common divisor for 
the original two distances must also be the greatest common divisor of the length of 
the shorter stick and the length of the shaded region in the diagram. 
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Given this observation, you can solve the original problem by reducing it to a 
simpler problem involving smaller numbers.  Here, the new numbers are 15 and 6, 
and you can find their greatest common divisor by reapplying Euclid’s algorithm.  
You start by representing the new values, x¢ and y¢, as measuring sticks of the 
appropriate length.  You then mark off the larger stick in units of the smaller one. 
 

 
 
Once again, this process results in a leftover region, which this time has length 3.  If 
you then repeat the process one more time, you discover that the shaded region of 
length 3 is itself the common divisor of x¢ and y¢ and, therefore, by Euclid’s 
proposition, of the original numbers x and y.  That 3 is indeed a common divisor of 
the original numbers is demonstrated by the following diagram: 
 

 
 
Euclid supplies a complete proof of his proposition in the Elements.  If you are 
intrigued by how mathematicians thought about such problems more than 2000 years 
ago, you may find it interesting to look up translations of the original Greek text. 
 

Although Euclid’s algorithm and the brute-force algorithm correctly compute the 
greatest common divisor of two integers, there is an enormous difference in the 
efficiency between the two algorithmic strategies.  Suppose once again that you call 
 

gcd(1000005, 1000000) 
 
The brute-force algorithm requires on the order of a million steps to find the answer; 
Euclid’s algorithm requires only two.  At the beginning of Euclid’s algorithm, x is 
1000005, y is 1000000, and r is set to 5 during the first cycle of the loop.  Since the 
value of r is not 0, the program sets x to 1000000, sets y to 5, and starts again.  On 
the second cycle, the new value of r is 0, so the program exits from the while loop 
and reports that the answer is 5. 
 

The two strategies for computing greatest common divisors presented in this 
section offer a clear demonstration that the choice of algorithm can have a profound 
effect on the efficiency of the solution.  In Chapter 9, you will learn how to quantify 
such differences in performance along with several general approaches for improving 
algorithmic efficiency. 
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The first program in modern computing history 
One problem that has particular relevance to the history of modern computing is that 
of finding the largest factor of an integer, which is believed to be the first programs 
executed on the Small-Scale Experimental Machine at Manchester University—the 
first computer to implement the stored-program architecture that is used in essentially 
all computers today.  The author of the program was Tom Kilburn, the lead engineer 
on the team that built the machine, which its inventors nicknamed the “Baby.” 
 

Because the Baby had extremely limited capabilities, Kilburn’s solution strategy 
had to be almost absurdly simple.  Given a number N, the program used the 
brute-force strategy of counting down from N - 1 until it found a divisor is found.  
Taking some advantage of Python’s extended set of operations, Kilburn’s algorithm 
might look like this: 
 

def largest_factor(n): 
    factor = n - 1 
    while n % factor != 0: 
        factor -= 1 
    return factor 

 
The following IDLE log shows the results from two calls to the largest_factor 
function: 
 

 
 
When the second of these calculations was run on the Manchester Baby on June 21, 
1948, the program took 52 minutes to compute the answer.  In the process, it 
demonstrated both the efficacy and the reliability of the Baby’s architecture. 
 

 3.2 Devising your own algorithms 
In my many years of experience teaching programming, I am convinced that the 
students who experience the most trouble are those who believe that the computer is 
a magical device for which they have not yet learned the proper incantations.  When 
faced with a programming problem, those students believe that they don’t know what 
to do and look instead for some essentially mechanical procedure—an algorithm, if 
you will—for turning a programming problem into working code.  No such algorithm 
exists.  Each new programming problem requires creativity to apply the tools you 
already know to come up with a solution. 
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When you start working on a programming problem, the most important question 
to ask is how you would solve the problem if you didn’t have a computer.  If you can 
figure that out, the actual process of writing the code becomes much easier.  You need 
to design an algorithm specifically tailored for the problem at hand. 
 

Devising such an algorithm, of course, may not be easy.  I certainly wouldn’t 
expect most students to discover Euclid’s algorithm for finding the greatest common 
divisor on their own.  At the same time, anyone who has learned basic arithmetic 
should be able to design and implement the brute-force algorithm that counts down 
from the smaller number until it finds a number that divides evenly into both of the 
numbers in question.  The code, which you have already seen on page 70, is worth 
repeating: 
 

def gcd(x, y): 
    guess = min(x, y) 
    while x % guess != 0 or y % guess != 0: 
        guess -= 1 
    return guess 

 
There is undoubtedly some complexity involved in coding the condition for the while 
loop, but the overall approach is straightforward.  Similarly, it doesn’t take a scientist 
of Tom Kilburn’s cleverness to realize that you can find the largest factor of an integer 
N by counting downward from N - 1 until you find one that divides evenly into N. 
 

The next few sections work through problems for which the solution should be at 
least as manageable.  In each of these examples, you can easily work out a solution 
by hand.  The computer may find the solution faster, but there aren’t any operations 
or concepts that you don’t already understand. 
 
Finding the largest value in a list entered by the user 
The first example of a problem you could easily solve on your own is that of finding 
the largest value in a sequence of numbers given to you, one at a time, by the user.  A 
sample run of the program might look like this: 
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Before you try to write the program (or look at the solution in Figure 3-4 on the next 
page), imagine that you are trying to solve this problem just as the computer does.  
You need to ask the user for each number, check for the blank line marking the end 
of the input, and then print out the largest value entered.  Much of the logic is therefore 
the same as that in the AddList.py program from Chapter 2.  The only difference is 
that, instead of adding the numbers as you go, you need to find the largest. 
 

What do you do when you get the first number, which is 314 in the sample run?  
You have to write it down somewhere because it might turn out to be the largest value 
since you haven’t yet seen any of the others.  But what happens when the user gives 
you the second number, which is 159?  Do you need to write it down?  The 159 can’t 
be the largest number because it’s smaller than the 314 you wrote down earlier.  You 
can therefore ignore it entirely.  You can ignore the third number (265) for exactly 
the same reason.  When you get the 358 as the fourth number, however, you can’t be 
so cavalier because 358 is greater than 314.  You therefore need to remember the 358, 
although you can now forget about the 314. 
 

The fundamental insight you need to design this algorithm is that you only have 
to keep track of the value that is the largest value so far.  You are free to discard all 
of the other values.  In the Python implementation, you can store this value in a 
variable called largest.  If the current number is stored in the variable value, all 
you need to do as each new value comes in is execute the following code: 
 

if value > largest: 
    largest = value 

 
In English, these lines tell Python to check whether the current value is greater than 
the largest value so far and, if so, record the current value as the new largest value. 
 

There are still a few details to consider before writing the final program, one of 
which is how to initialize the value of largest.  In the AddList.py program, it made 
since to initialize the value of total to 0 and then add each new input value to it.  In 
this program, however, you can’t simply set largest to 0 because the program would 
then fail if all the input values were negative (and no one said they couldn’t be).  What 
makes sense instead is to initialize largest to the special Python value None, which 
is included in the language to indicate a missing value.  You need to check to see if 
largest is None when you check the current value and again when you print the final 
answer, but those changes are conceptually small. 
 

Even small conceptual changes, however, can pose issues for programmers just 
starting out.  For reasons that are beyond the scope of this text, Python’s conventions 
dictate that programs should check for the value None using the is operator rather 
than the == operator.  Although either would work in this case, it makes sense to start 
following the convention as early as possible. 
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Finding all two-letter words 
Given the popularity of word puzzles like Wordle and Spelling Bee in The New York 
Times, it is fun to look for algorithms that might be useful in playing word games.  
One example that illustrates how different algorithms exist for solving the same 
problem is making a list of the two-letter words that appear in a dictionary.  This list 
is so important in Scrabble that most serious players take the time to memorize it. 
 

Once again, the first step in solving this problem is to think about how you would 
approach it without the aid of a computer.  Imagine that you have a physical dictionary 
and a notepad.  How might you go about making the list of all two-letter words? 
 

Although doing so will be time-consuming, you can adopt the brute-force strategy 
of opening the dictionary and going through all the words in order, making a list as 
you go of all the two-letter entries.  In a dictionary of English words, the first entry is 
the word a.  That word has only one-letter, so you ignore it and move on to the next.  
If the dictionary is reasonably complete, the second entry is the word aa, which is the 
Hawaiian name for a particular form of lava characterized by its rough texture.  That 
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word has two letters, so you write it down.  The pseudocode version of this algorithm 
therefore looks like this: 
 

for each word in the dictionary: 
    if the length of that word is two: 
        Write down the word. 

 
To translate this pseudocode into an actual program, you need a dictionary that 

Python can read.  The libraries associated with this text include an english.py 
module that defines a constant ENGLISH_WORDS whose value is an alphabetical list of 
the words in an at-least-reasonably-complete dictionary of English words.  No magic 
is involved in creating this list.  If you look at the contents of english.py, you will 
see a definition that begins with the lines 
 

ENGLISH_WORDS = [ 
  "a", "aa", "aah", "aahed", "aahing", "aahs", "aal", "aalii", 

 
and ends many thousands of lines later with the words 
 

  "zymotic", "zymurgies", "zymurgy", "zyzzyva", "zyzzyvas" 
] 

 
A program that uses this definition to produce the two-letter word list appears in 
Figure 3-5. 
 

The solution strategy in Figure 3-5, however, is not the only one you might choose, 
nor is it the most efficient one.  Looking at every word in the dictionary takes time, 
particularly if you try to do so by hand.  By contrast, looking up a collection of letters 
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to see whether it exists in the dictionary is comparatively fast because the alphabetical 
arrangement of the dictionary helps guide you to where the word—if indeed it is a 
word—must appear.  This insight suggests the following pseudocode algorithm: 
 

for every possible combination of two letters: 
    if that combination exists in the dictionary: 
        Write down that two-letter combination. 

 
Implementing this strategy in Python requires you to use a second feature from 

the english.py module.  In addition to the constant ENGLISH_WORDS, this library 
defines a predicate function is_english_word(letters) that checks whether the 
string letters appears in the list of English words.  That check, moreover, is 
extremely efficient because it uses a fast search algorithm that you will learn about in 
Chapter 9.  Figure 3-6 shows the Python implementation of this strategy, which runs 
almost three times faster than the brute-force version. 
 
Finding anagrams 
 

The english.py module allows you to solve other interesting problems that arise in 
word games, a few of which appear in the exercises.  To emphasize how much you 
can accomplish with a small amount of code, this section implements a program that 
finds all the English words that contain a particular set of letters.  For example, given 
the seven letters a, e, i, m, n, r, and s, you can form each of the following three words: 
marines, remains, and seminar.  Words that contain the same letters in a different 
order are called anagrams. 
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Having a program to find anagrams would be helpful in solving Wordle puzzles 
but even more valuable in Scrabble, where you get a 50-point bonus by playing all 
seven of your tiles in a single turn for what Scrabble players call a bingo.  Although 
using such a program in an actual game would certainly be cheating, you could use it 
to help you learn various letter combinations that form seven-letter words. 
 

Although a general technique for generating all rearrangements of a string requires 
concepts beyond the scope of this text, you can achieve the desired result by going 
through the list of English words and adding every word that contains a particular 
combination of letters to a list of anagrams.  Moreover, all you need to do to test 
whether two combinations of letters are the same is to see if sorting those 
combinations produces the same list.  As it happens, you already saw in Chapter 2 
that you can use the built-in function sorted to transform a string into an alphabetized 
list of its characters.  That insight is all you need to write the program to find all 
anagrams, which appears in Figure 3-7. 
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The program in Figure 3-7 defines both a create_anagram_list function that 
generates the list of anagrams and a main program called find_anagrams that makes 
it easy for the user to enter a set of letters and get back the list of anagrams.  A sample 
run of this program might look like this: 
 

 
 

 3.3 Testing and debugging 
Although you may sometimes get lucky with extremely simple programs, one of the 
truths you’ll soon have to accept as a programmer is that very few of your programs 
will run correctly the first time around.  Most of the time, you will need to spend a 
considerable fraction of your time testing the program to see whether it works, 
discovering that it doesn’t, and then settling into the process of debugging, in which 
you find and fix the errors in your code. 
 

Perhaps the most compelling description of the centrality of debugging to the 
programming process comes from the British computing pioneer Maurice Wilkes 
(1913–2010), who in 1979 offered the following reflection from his early years in the 
field: 
 

As soon as we started programming, we found to our surprise that it wasn’t 
as easy to get programs right as we had thought.  We had to discover 
debugging.  I can remember the exact instant when I realized that a large 
part of my life from then on was going to be spent in finding mistakes in 
my own programs. 

 
Programming defensively 
Even though it is impossible to avoid bugs altogether, you can reduce the number of 
bugs by being careful during the programming process.  Just as it’s important to drive 
defensively in your car, it makes sense to program defensively as you write your code.  
The most important aspect of defensive programming is looking over your programs 
to ensure that they do what you intend them to do.  You will also find that taking the 
time to make your code as clear and readable as possible will help avoid problems 
down the road. 
 

 
Maurice Wilkes 



82     Algorithmic Thinking 

Becoming a good debugger 
Debugging is one of the most creative and intellectually challenging aspects of 
programming.  It can also be one of the most frustrating.  If you are just beginning 
your study of programming, it is likely that the frustrating aspects of debugging will 
loom much larger than the excitement of meeting an interesting intellectual challenge.  
That fact in itself is by no means surprising.  Debugging, after all, is a skill that takes 
time to learn.  Before you have developed the necessary experience and expertise, 
your forays into the world of debugging will often leave you facing a completely 
mysterious problem that you have no idea how to solve.  And when your assignment 
is due the next day and you can make no progress until you somehow solve that 
mystery, frustration is probably the most natural reaction. 
 

To a surprising extent, the challenges that people face while debugging are not so 
much technical as they are psychological.  To become a successful debugger, the most 
important thing is to start thinking in new ways that get you beyond the psychological 
barriers that stand in your way.  There is no magical, step-by-step approach to finding 
the problems, which are usually of your own making.  What you need is logic, 
creativity, patience, and a considerable amount of practice. 
 
The phases of the programming process 
When you are developing a program, the actual process of writing the code is only 
one piece of a more complex intellectual activity.  Before you sit down to write the 
code, it is always wise to spend some time thinking about the program design.  As 
you will discover as you start to write more sophisticated applications, programs are 
often too large to write as a single function, which in turn forces you to decompose 
the problem into more manageable pieces.  Putting some thought into the design of 
that decomposition before you start writing the individual functions is almost certain 
to reduce the total amount of time—and frustration—involved in the project as a 
whole.  After you’ve written the code, you need to test whether it works and, in all 
probability, spend some time ferreting out the bugs that prevent the program from 
doing what you want. 
 

These four activities—designing, coding, testing, and debugging—constitute the 
principal components of the programming process.  And although there are certainly 
some constraints on order (you can’t debug code that you haven’t yet written, for 
example), it is a mistake to think of these phases as rigidly sequential.  The biggest 
problem that students have comes from thinking that it makes sense to design and 
code the entire program and then try to get it working as a whole.  Professional 
programmers never work that way.  They develop a preliminary design, write some 
pieces of the code, test those pieces to see if they work as intended, and then fix the 
bugs that the testing uncovers.  Only when that individual piece is working do 
professional programmers return to code, test, and debug the next section of the 
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program.  From time to time, they go back and revisit the design as they learn from 
the experience of seeing how well the original design works in practice.  You must 
learn to work in much the same way. 
 

It is equally important to recognize that each phase in the programming process 
requires a fundamentally different approach.  As you move back and forth among the 
various phases, you need to adopt different ways of thinking.  In my experience, the 
best way to illustrate how these approaches differ is to associate each phase with a 
profession that depends on much the same skills and modes of thought. 
 

During the design phase, you have to think like an architect.  You need to have a 
sense not only of the problem that must be solved but also an understanding of the 
underlying aesthetics of different solution strategies.  Those aesthetic judgments are 
not entirely free from constraints.  You know what’s needed, you recognize what’s 
possible, and you choose the best design that lies within those constraints. 
 

When you move to the coding phase, your role shifts to that of the engineer.  Now 
your job is to apply your understanding of programming to transform a theoretical 
design into an actual implementation.  This phase is by no means mechanical and 
requires a significant amount of creativity, but your goal is to produce a program that 
you believe implements the design. 
 

In many respects, the testing phase is the most difficult aspect of the process to 
understand.  When you act as a tester, your role is not to establish that the program 
works, but just the opposite.  Your job is to break it.  A tester therefore needs to 
assume the role of a vandal.  You need to search deliberately for anything that might 
go wrong and take real joy in finding any flaws.  It is in this phase of the programming 
process that the most difficult psychological barriers arise.  As the author of the 
program, you want it to work; as the tester, you want it to fail.  Many people have 
trouble shifting focus in this way.  After all, it’s hard to be overjoyed at pointing out 
the stupid mistakes the programmer made when you also happen to be that 
programmer.  Even so, you need to make this shift. 
 

Finally, your job in the debugging phase is that of a detective.  The testing process 
reveals the existence of errors but does not necessarily reveal why they occur.  Your 
job during the debugging phase is to sort through all the available evidence, create a 
hypothesis about what is going wrong, check that hypothesis through additional 
testing, and then make the necessary corrections. 
 

As with testing, the debugging phase is full of psychological pitfalls.  When you 
were writing the code in your role as engineer, you believed that it worked correctly 
when you designed it in your role as architect.  You now have to discover why it 
doesn’t, which means that you have to discard any preconceptions you’ve retained 
from those earlier phases and approach the problem with a fresh perspective.  Making 

Phases and roles in the 
programming process 

 

Design = Architect 
Coding = Engineer 
Testing = Vandal 
Debugging = Detective 
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that shift successfully is always a difficult challenge.  Code that looked correct to you 
once is likely to look just as good when you come back to it a second time. 
 

What you need to keep in mind is that the testing phase has determined that the 
program is not working correctly.  There must be a problem somewhere.  It’s not the 
browser or Python that’s misbehaving or some unfortunate conjunction of the planets.  
As Cassius reminds Brutus in Shakespeare’s Julius Caesar, “the fault, dear Brutus, is 
not in our stars, but in ourselves.”  You introduced the error when you wrote the code, 
and it is your job to find it. 
 

This book will offer additional suggestions about debugging as you learn how to 
write more complex programs, but the following principle will serve you better than 
any specific debugging strategy or technique: 
 

When you are trying to find a bug, it is more important to understand 
what your program is doing than to understand what it isn’t doing. 

 

Most students who come upon a problem in their code go back to the original problem 
and try to figure out why their program isn’t doing what they wanted.  Although such 
an approach can be helpful in some cases, it is far more likely that this kind of thinking 
will make you blind to the real problem.  If you make an unwarranted assumption the 
first time around, you are likely to make it again, and therefore find it difficult to see 
any reason why your program isn’t doing the right thing.  You need instead to gather 
information about what your program is doing and then work out where it goes wrong. 
 

Although many modern Python programming environments come equipped with 
sophisticated debuggers, you are likely to get the most mileage out of the built-in 
function print. If you discover that your program isn’t working, you can add a few 
calls to print at places where you think your program might be going down the 
wrong path.  In some cases, it’s sufficient to include a line like 
 

print("I got here") 
 

to the program.  If the message "I got here" appears on the console, you know that 
the program got to that point in the code.  It is often even more helpful to use print 
to display the value of an important variable.  If, for example, you expect the variable 
n to have the value 100 at some point in the code, you can add the line 
 

print(f"n = {n}") 
 

If running the program shows that n has the value 0 instead, you know that something 
has gone wrong prior to this point.  Narrowing down the region of the program in 
which the problem might be located puts you in a much better position to find and 
correct the error. 
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Since the process of debugging is similar to the art of detection, it seems 
appropriate to offer some of the more relevant bits of debugging wisdom I’ve 
encountered in detective fiction, which appear in Figure 3-8.  I also strongly 
recommend Robert Pirsig’s critically acclaimed novel Zen and the Art of Motorcycle 
Maintenance: An Inquiry into Values (Bantam, 1974), which stands as the best 
exposition of the art and psychology of debugging ever written.  The most relevant 
section is the discussion of “gumption traps” in Chapter 26. 
 
An example of a psychological barrier 
Although most testing and debugging challenges involve a level of programming 
sophistication beyond the scope of this chapter, there is a very simple program that 
illustrates just how easy it is to let your assumptions blind you not only to the cause 
of an error but even to its very existence.  Throughout the many years I’ve taught 
computer science, one of my favorite problems to assign at the beginning of the term 
is to write a function that solves the quadratic equation 
 

 ax2  +  bx  +  c  =  0 
 

This equation has two solutions given by the formula 
 

x  =   
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The first solution is obtained by using + in place of the ± symbol; the second is 
obtained by using – instead.  The problem I give students is to write a function that 
takes a, b, and c as parameters and displays the two resulting solutions for x. 
 

Although the majority can solve this problem correctly, there are always a number 
of students—as much as 20 percent of a large class—who turn in functions that look 
something like this: 
 

def solve_quadratic(a, b, c): 
    r = math.sqrt(b*b - 4*a*c) 
    x1 = (-b + r) / 2*a 
    x2 = (-b - r) / 2*a 
    print(f"x1 = {x1}") 
    print(f"x2 = {x2}") 

 

 

This text uses a red bug to mark code that is incorrect.  This implementation of 
solve_quadratic is buggy, although the problem is subtle.  It looks as if the 
expression 2*a is in the denominator of the fraction, when in fact it isn’t.  In Python, 
operators in the same precedence class, such as the / and * in the lines defining x1 
and x2, are evaluated in left-to-right order.  The parenthesized value in these 
expressions is therefore first divided by 2 and then multiplied by a.  Python requires 
parentheses around the denominator (2*a). 
 

The real lesson in this example, however, lies in the fact that many students 
compound their mistake by failing to discover it.  Most of the students who make this 
error fail to test their programs for any values of the coefficient a other than 1, since 
those are the easiest answers to compute by hand.  If a is 1, it doesn’t matter whether 
you multiply or divide by a because the answer will be the same.  Worse still, students 
who test their program for other values of a often fail to notice that their programs 
give incorrect answers.  I often get sample runs that look like this: 
 

 
 

This sample run asserts that x = 32 and x= 16 are solutions to the equation 
 

8 x2  –  6 x  +  1  =  0 
 
but it is easy to check that neither of these values satisfy the equation.  Even so, 
students happily submit such programs without noticing that the answers are wrong. 
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Writing test programs 
Whenever you write a function, it is a good idea to write a function to check that your 
implementation works for a reasonably large set of cases.  In doing so, it is often 
useful to make use of Python’s assert statement, which you have already seen in 
Chapter 2.  The code in Figure 3-9 defines three functions: a main program called 
quadratic that lets the user enter the coefficients and see the results, a function 
called find_quadratic_roots that other code could use to determine the solve the 
quadratic equation, and a function called find_quadratic that uses assert 
statements to verify that the results are correct. 
 

The fact that the quadratic.py module includes both a main program and a 
function that other programmers might want to use as a library makes it a little 
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difficult to know exactly what the standard startup code should do.  In this example, 
the boilerplate consists of the lines 
 

if __name__ == "__main__": 
    quadratic() 

 
Thus, if you invoke the quadratic.py module from the command line or a Python 
development environment, it runs the main program for the user, which might 
produce the following sample run: 
 

 
 
If you want to run the test program instead, you need to invoke it explicitly from 
IDLE or whatever Python development environment you’re using.  A better strategy, 
however, is to install the pytest package, which implements an automated testing 
environment.  If you run it from the command line using 
 

pytest quadratic.py 
 
the pytest application will search the quadratic.py module for any functions 
whose names begin with test_ to see if any of the assertions fail. 
 

The decision to combine a main program and a test function in the same has 
another implication for the module design.  It is difficult to write test functions for a 
main program that communicates directly with the user by making calls to input and 
print.  What you need to instead is separate the functions—as the code in Figure 3-9 
does—so that different functions take care of the user interaction and the underlying 
calculation.  The test function can then make assertions about the calculations without 
requiring the user to take any explicit action. 
 
Software maintenance 
One of the more surprising aspects of software development is that programs require 
maintenance.  In fact, studies of software development indicate that, for commercial 
applications, paying programmers to maintain the software after it has been released 
constitutes between 80 and 90 percent of the total cost.  In the context of software, 
however, it is a little hard to imagine precisely what maintenance means.  At first 
hearing, the idea sounds rather bizarre.  If you think in terms of a car or a bridge, 
maintenance occurs when something has broken—some of the metal has rusted away, 
a piece of some mechanical linkage has worn out from overuse, or something has 
gotten smashed up in an accident.  None of these situations apply to software.  The 
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code itself doesn’t rust.  Using the same program over and over again does not in any 
way diminish its functioning.  Accidental misuse can certainly have dangerous 
consequences but does not usually damage the program itself; even if it does, the 
program can often be restored from a backup copy.  What does maintenance mean in 
such an environment? 
 

Software requires maintenance for two principal reasons.  First, even after 
considerable testing and, in some cases, years of field use, bugs can still survive in 
the code.  When some unanticipated situation arises, the bug, previously dormant, 
causes the program to fail.  Thus, debugging is an essential part of program 
maintenance.  It is not, however, the most important part.  Far more consequential, 
especially in terms of the impact on the overall cost of program maintenance, is that 
programs need to change in response to changing requirements.  Users often want 
new features in their applications, and software developers try to provide those 
features to maintain customer loyalty.  In either case—whether one wants to repair a 
bug or add a feature—someone has to look at the program, figure out what’s going 
on, make the necessary changes, verify that those changes work, and then release a 
new version.  This process is difficult, time-consuming, expensive, and prone to error. 
 

Program maintenance is especially difficult because many programmers do not 
write their programs for the long haul.  To them it seems sufficient to get the program 
working and then move on to something else.  The discipline of writing programs so 
that they can be understood and maintained by others is called software engineering.  
In this text, you are encouraged to write programs that demonstrate effective software 
engineering techniques. 
 

Many novice programmers are disturbed to learn that there is no precise set of 
rules you can follow to ensure good programming style.  Software engineering is not 
a cookbook sort of process.  It is instead a skill blended with more than a little bit of 
artistry.  Practice is critical.  One learns to write well-structured programs by writing 
them, and by reading others, much as one learns to be a novelist.  Becoming an 
effective programmer requires discipline—the discipline not to cut corners or to 
forget, in the rush to complete a project, about that future maintainer.  Good 
programming practice also requires developing an aesthetic sense of what it means 
for a program to be readable and well presented. 
 

Although there are no hard-and-fast rules for writing maintainable programs, there 
are certainly some important principles, including the following: 
 

• Write both your code and your comments with future maintainers in mind. 
• Choose names for variables, constants, and functions that convey their purpose. 
• Use indentation to highlight the hierarchical structure of your programs. 
• Design your programs so that they are easy to modify as requirements change. 
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The last point in this list deserves additional discussion.  Given that programs will 
inevitably change over their lifetimes, it is good programming practice to help future 
maintainers make the necessary changes.  A useful strategy to support ongoing 
maintenance is to use constant definitions for values that you expect might change at 
some point down the road. 
 

The value of using constant definitions is perhaps easiest to illustrate in the context 
of a historical example.  Imagine for the moment that you are a programmer in the 
late 1960s working on the initial design of the ARPANET, which is the forerunner of 
today’s internet.  Because resources were highly constrained at that time, the 
designers of the ARPANET placed a limit on the number of computers (which were 
called hosts in the ARPANET days) that could be connected to the network.  In the 
early years of the ARPANET, that limit was 127 hosts.  If Python had existed in 1969, 
you might have declared a constant like this: 
 

MAXIMUM_NUMBER_OF_HOSTS = 127 
 
At some later point, however, the explosive growth of networking would force you 
to raise this bound. 
 

Making that change would be easy if you had defined a constant but hard if you 
had instead written the number 127.  In that case, you would need to change all 
instances of 127 that refer to the number of hosts.  Some instances of 127 might refer 
to things other than the limit on the number of hosts, and it would be important not to 
change any of those values.  In the likely event that you had made a mistake in that 
process, you would have a very hard time tracking down the bug. 
 

 Summary 
The focus of this chapter is on the concept of an algorithm and on how to approach 
designing, implementing, testing, and debugging algorithms of your own.  The 
important points include: 
 
• An algorithm is a strategy that is clear and unambiguous, effective, and finite. 

• Algorithms have existed since long before computers.  Important historical 
examples include the Babylonian method for approximating square roots from 
between the 19th and 16th centuries BCE and Euclid’s algorithm for finding the 
greatest common divisors of two integers, which dates from around 300 BCE. 

• There are usually several different algorithms for solving a particular problem.  
Algorithms for solving a problem often vary dramatically in their efficiency.  
Choosing the algorithm that best fits the application is an important part of your 
task as a programmer. 
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• Although they are rarely the most efficient, it is often easiest to find a brute-force 
algorithm that tries every possible solution looking for an answer.  An early 
example from the dawn of the computing age is the first program run on the 
Small-Scale Experimental Machine at Manchester University in 1948, which 
calculated the largest factor of an integer N by trying each successively smaller 
number until it found one that divided evenly into N. 

• When you are given a programming problem, it is often useful to think about how 
you would solve it without a computer.  If you don’t understand the solution 
strategy, you will be unable to write a program that carries out the necessary steps. 

• Another useful programming strategy is figuring out what information you need 
to remember and what information you can safely forget.  In the program shown 
in Figure 3-4 that finds the largest number in a list of values entered by the user, 
you don’t need to remember all the values the user gives you; all you need to 
remember is the largest value so far. 

• Python includes a keyword called None that you can use to indicate the absence 
of an actual value.  By convention, Python programs test for this special value 
using the is operator, as in the following statement from the FindLargest.py 
program in Figure 3-4: 

 

if largest is None: 
 

• The libraries associated with this text include a module called english.py that 
exports a constant ENGLISH_WORDS containing an alphabetical list of English 
words and a predicate function is_english_word that checks whether its 
argument is a valid English word. 

• The four phases of the programming process are design, coding, testing, and 
debugging, although it is best to view these phases as interrelated rather than 
sequential.  Professional programmers typically code one piece of a program, test 
it, debug it, and then go back and work on the next piece. 

• Each phase in the programming process requires you to behave in a different way.  
During the design phase, you act as an architect.  When you are coding, you 
function as an engineer.  During testing, you must act like a vandal, striving to 
break the program, not to prove that it works.  When debugging, you need to think 
like a detective employing all the cleverness and insight of a Sherlock Holmes. 

• When you are trying to find a bug, it is more important to understand what your 
program is doing than to understand what it isn’t doing. 

• In seeking to understand what your program is doing, your most helpful resource 
is the built-in print function. 

• The most serious problems programmers face during the testing and debugging 
phases are psychological rather than technical.  It is extremely easy to let your 
assumptions and desires get in the way of understanding where the problems lie. 
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• It is good programming practice to include test programs along with the definitions 
of any functions that you write. 

• Programs require maintenance over their life cycles both to correct bugs and to 
add new features as user requirements change. 

 
 

 Review questions 
1. What are the two words that Muhammad ibn Mūsā al-Khwārizmī and his work 

gave to English? 
 
2. What conditions must a solution strategy meet in order to be an algorithm? 
 
3. How would you define a brute-force strategy? 
 
4. Use Euclid’s algorithm to compute the greatest common divisor of 7735 and 

4185.  What values does the local variable r take on during the calculation? 
 
5. In the examples that use Euclid’s algorithm to calculate gcd(x, y), the value of 

x has always been larger than y.  What happens if x is smaller than y? 
 
6. What was the nickname of the Small-Scale Experimental Machine developed at 

Manchester University that was in many respects the first modern digital 
computer? 

 
7. True or false: A good way to approach many programming problems is to figure 

out how you would solve it yourself without using a computer. 
 
8. How would you write a Python expression that tests whether the value of the 

variable x is equal to the special constant None? 
 
9. The programs in this chapter use two definitions exported by the english.py 

module.  What are those two definitions? 
 
10. The two versions of the TwoLetterWords.py program both generate a list of the 

valid two-letter words in English.  Will those versions always generate those 
words in the same order?  Why or why not? 

 
11. Explain the purpose of the calls to the function sorted in the FindAnagrams.py 

module shown in Figure 3-7. 
 
12. What are the four phases of the programming process identified in this chapter?  

For each of those phases, what professional role does the chapter offer as a model 
for how to perform that phase? 
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13. True or false: Professional programmers work through the four phases of the 
programming process in order, finishing each one before moving on to the next. 

 

14. True or false: When you are testing your program, your primary goal is to show 
that it works. 

 
15. What piece of advice does the chapter offer to help you think effectively about 

debugging? 
 

16. What built-in function does the text identify as the most useful debugging tool? 
 
17. In your own words, explain what is meant by program maintenance. 
 

 Exercises 
1. Modify the Babylonian algorithm as presented in the text so that it calculates 

cube roots instead of square roots.  Express the algorithm in the form of a 
function cuberoot(n) that returns the cube root of the argument n.  The creative 
part of this problem is figuring out what numbers you should average to obtain a 
new guess on each cycle of the loop.  If g, for example, lies to one side of the 
cube root of n, what value can you compute using n and g that would be 
approximately as close to the root but on the opposite side?  If you can find such 
a value, averaging the two will yield a result that is closer to the actual answer. 

 
2. As noted in the description of the program for the Manchester Baby to find the 

largest factor of an integer, the solution that appears in the text takes “some 
advantage of Python’s extended set of operations.”  The Manchester Baby could 
not perform multiplication and division and therefore had no immediate way to 
calculate a remainder.  Rewrite the largest_factor function so that it uses only 
assignment, addition, subtraction, and comparing a number against 0. 

 
3. One of the important strategic principles in Scrabble is to conserve your S tiles, 

because the rules for English plurals mean that many words take an S-hook at 
the end.  Some words, of course, allow an S tile to be added at the beginning, but 
it turns out that there are 680 words—including, for example, the words cold and 
hot—that allow an S-hook on both ends.  Write a program that uses the 
english.py module to display a list of all such words. 

 
4. The FindAnagrams.py program checks to see if two words are anagrams by 

sorting the letters of each word and seeing whether those sorted lists match.  
Some English words already have their letters arranged in sorted order, such as 
is, aft, cost, below, and almost. Write a program that display a list of all words 
defined in the english.py module that have this property. 
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5. In many cases, as in the case of the two strategies presented for calculating the 
greatest common divisor, using a better algorithm can result in an enormous 
increases in efficiency.  Even if you can’t find improvements at that level, it is 
still useful to look for modifications that produce more modest performance 
gains.  As presented in the text, the FindAnagrams.py program ends up sorting 
the letters in every dictionary word, but there is no point in doing so unless the 
word has the correct length.  Rewrite FindAnagrams.py so that it checks that 
the length of the dictionary word matches that of the letter sequence before you 
call sorted. 

 
6. Write a Python program that reads in integers up to a blank line and then prints 

both the largest and second-largest values in the user’s input, as follows: 
 

 
 

The values in this sample run are the number of pages in the British hardcover 
editions of J. K. Rowling’s Harry Potter series.  The output tells us that the 
longest book is the Harry Potter and the Order of the Phoenix at 766 pages and 
the second-longest book is Harry Potter and the Goblet of Fire at 636 pages. 

 
7. The German mathematician Gottfried Wilhelm von Leibniz discovered the rather 

remarkable fact that the mathematical constant p can be computed using the 
following mathematical relationship: 

 

 
 

The formula to the right of the equal sign represents an infinite series; each 
fraction represents a term in that series.  If you start with 1, subtract one-third, 
add one-fifth, and so on, for each of the odd integers, you get a number that gets 
closer and closer to the value of p/4 as you go along. 

 

Write a program that calculates an approximation of p consisting of the first 
10,000 terms in Leibniz’s series. 

 
8. An integer greater than 1 is said to be prime if it has no divisors other than itself 

and one.  The number 17, for example, is prime because it has no factors other 
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than 1 and 17.  The number 91, however, is not prime because it is divisible by 
7 and 13.  Write a predicate function is_prime(n) that returns True if the 
integer n is prime, and False otherwise.  As an initial strategy, implement 
is_prime using a brute-force algorithm that simply tests every possible divisor.  
Once you have that version working, look for improvements that increase your 
algorithm’s efficiency without affecting its correctness. 

 
9. The first program written for the Manchester Baby found the largest factor of a 

number.  A more interesting problem is to find the complete set of factors.  Write 
a function print_factors(n) that lists all the factors in the form of a single 
line that includes the number n, an equal sign, and the individual factors 
separated by asterisks, as illustrated in the following IDLE transcript: 

 

 
 
10. Greek mathematicians took a special interest in numbers that are equal to the sum 

of their proper divisors (a proper divisor of n is any divisor less than n itself).  
They called such numbers perfect numbers.  For example, 6 is a perfect number 
because it is the sum of 1, 2, and 3, which are the integers less than 6 that divide 
evenly into 6.  Similarly, 28 is a perfect number because it is the sum of 1, 2, 4, 
7, and 14. 

 

Write a predicate function is_perfect(n) that returns True if the integer n 
is perfect, and False otherwise.  Test your implementation by writing a program 
that uses the is_perfect function to check for perfect numbers in the range 1 
to 9999 by testing each number in turn.  Whenever your program identifies a 
perfect number, it should display that number on the screen.  The first two lines 
of output should be 6 and 28.  Your program should find two other perfect 
numbers in that range as well. 

 
11. Although Euclid’s algorithm for calculating the greatest common divisor is one 

of the oldest to be dignified with that term, there are other algorithms that date 
back many centuries.  In the Middle Ages, one of the problems that required 
sophisticated algorithmic thinking was determining the date of Easter, which 
falls on the first Sunday after the first full moon following the vernal equinox.  
Given this definition, the calculation involves interacting cycles of the day of the 
week, the orbit of the moon, and the passage of the sun through the zodiac.  Early 
algorithms for solving this problem date back to the third century and are 
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described in the writings of the eighth-century scholar known as the Venerable 
Bede.  In 1800, the German mathematician Carl Friedrich Gauss published an 
algorithm for determining the date of Easter that was purely computational in the 
sense that it relied on arithmetic rather than looking up values in tables.  His 
algorithm—translated from the German—appears in Figure 3-11. 

 

Write a Python function find_easter_date(year) that returns a string 
showing the date of Easter in the specified year.  For example, calling 
find_easter_date(1800) returns the string "April 13" because that is the 
date of Easter in the year that Gauss published his algorithm. 

 

Unfortunately, the algorithm in Figure 3-11 works only for years in the 18th 
and 19th centuries.  It is easy, however, to search the web for extensions that work 
for all years.  Once you have completed your implementation of Gauss’s 
algorithm, undertake the necessary research to implement a more general 
approach. 

 
12. Working from the perspective of a designer, come up with an algorithm for tying 

your shoelaces and then write it down in English as carefully as you can.  Once 
you have done so, shift your role to that of a tester and see if you can find any 
parts of the algorithm that are sufficient unclear or ambiguous that you can make 
the process fail even while obeying each of the instructions to the letter, at least 
under some interpretation.  Finally, take on the role of debugger to fix the bugs 
you found during the testing phase. 

 



 
 

C H A P T E R  4  
Simple Graphics 

 
A display connected to a digital computer gives us a chance 
to gain familiarity with concepts not realizable in the 
physical world. It is a looking glass into a mathematical 
wonderland. 

— Ivan Sutherland, “The Ultimate Display,” 1965 
 
 
 
 

 
Ivan Sutherland (1938–) 

 
Ivan Sutherland was born in Nebraska and developed a passion for computers while still in high school, when 
a family friend gave him the opportunity to program a tiny relay-based machine called SIMON.  Since 
computer science was not yet an academic discipline, Sutherland majored in electrical engineering at 
Pittsburgh’s Carnegie Institute of Technology (now Carnegie Mellon University) and then went on to get a 
Master’s degree at Caltech and a Ph.D. from MIT.  His doctoral thesis, “Sketchpad: A man-machine graphical 
communications system,” became one of the cornerstones of computer graphics and introduced the idea of 
the graphical user interface, which has become an essential feature of modern software.  After completing 
his degree, Sutherland held faculty positions at Harvard, the University of Utah, and Caltech before leaving 
academia to found a computer-graphics company.  Sutherland received the ACM Turing Award in 1988. 
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Although it is possible to learn the fundamentals of programming using only the 
numeric and string types you saw in Chapter 1, numbers and strings are not as exciting 
as they were in the early years of computing.  For students who have grown up in the 
21st century, much of the excitement surrounding computers comes from their ability 
to work with other more interesting types of data, including images and interactive 
graphical objects.  Python is ideal for working with graphical data.  Introducing just 
a few graphical types will enable you to create applications that are much more 
engaging and give you a greater incentive to master the material. 
 

This chapter introduces you to the facilities in the Portable Graphics Library, a 
collection of tools for writing simple graphical applications.  The discussion in this 
chapter provides enough information to get you started; more advanced features of 
the graphics library will be introduced as they are needed. 
 

 4.1 Your first graphics program 
As is usually the case when you are studying programming, the best way to learn how 
graphical programs work is to look at an example.  Although many examples might 
serve, the cultural history of computer science suggests using a particular 
programming problem as a starting point.  That programming problem first appeared 
in The C Programming Language by Brian Kernighan and Dennis Ritchie, who offer 
the following advice on the first page of Chapter 1: 
 

The only way to learn a new programming language is by writing 
programs in it.  The first program to write is the same for all languages: 
 

Print the words 
hello, world 

 

This is the big hurdle; to leap over it you have to be able to create the 
program text somewhere, compile it successfully, load it, run it, and find 
out where the output went.  With these mechanical details mastered, 
everything else is comparatively easy. 

 
That advice was followed by the four-line text of the “Hello World” program, which 
became part of the heritage shared by all C programmers. 
 

Although the existence of a sophisticated interactive environment like IDLE 
makes it unnecessary—and entirely too easy—to use “Hello World” as your first 
Python program, it makes sense to use that problem as a starting point for graphical 
programs.  The code for a graphically oriented GraphicsHelloWorld.py program 
appears in Figure 4-1.  The new goal is not to print the words “hello, world” but 
instead to display those words in a graphics window. 
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The main function for the GraphicsHelloWorld.py program looks like this: 
 

def hello_world(): 
    gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT) 
    msg = GLabel("hello, world", 50, 100) 
    gw.add(msg) 

 
The first two statements in this function define the variable gw, which stands for 
“graphics window,” and the variable msg, which refers to the message on the screen.  
The last statement then adds the message to the graphics window. 
 

At one level, these statements are similar to the ones you have seen in the earlier 
chapters.  Each of the two assignment statements introduces a new variable and then 
initializes it to a value produced by calling a function.  The important difference lies 
in the types of those values. 
 

 4.2 Classes, objects, and methods 
One of the most important things to notice about the GraphicsHelloWorld.py 
program in Figure 4-1 is that the values stored in the variables gw and msg are more 
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complex than the values you’ve worked with so far, even though the underlying 
principles are the same.  So far, the values you have stored in variables have been 
numbers and strings.  In the GraphicsHelloWorld.py program, the value stored in 
each of the variables is an object, which is the term computer science uses to refer to 
a conceptually integrated entity that ties together the information that defines the state 
of the object and the operations that affect that state. 
 

Each of these objects is a representative of a class, which is easiest to imagine as 
a template that defines the attributes and operations shared by all objects of a 
particular type.  A single class can give rise to many different objects; each such 
object is said to be an instance of that class. 
 
Creating objects 
The GraphicsHelloWorld.py program uses the following assignment statements to 
create two objects: 
 

gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT) 
msg = GLabel("hello, world", 50, 100) 

 

The names GWindow and GLabel are part of the pgl module, which implements the 
Portable Graphics Library.  The first line after the introductory comments is 
 

from pgl import GWindow, GLabel 
 
which imports these two classes.  The GWindow class represents a graphical window 
on the screen, and the GLabel class represents a string that can appear in that window.  
Functions that create new objects are called constructors and are written using camel 
case, starting with an uppercase letter. 
 

The assignment statement 
 

gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT) 
 

uses the GWindow constructor to create an object whose class is GWindow.  The 
parameters GWINDOW_WIDTH and GWINDOW_HEIGHT specify the window size in units 
called pixels, which are the tiny dots that cover the face of the display.  The call to 
GWindow therefore creates a new GWindow object that is 500 pixels wide and 200 
pixels high.  That object is then assigned to a variable named gw, which makes it 
possible for the program to refer to the window in the rest of the code. 
 

Even though the declarations of the variables gw and msg create the necessary 
objects, these lines alone do not cause the GLabel to appear in the GWindow.  To get 
the message to appear, the program has to tell the GWindow object stored in gw to add 
the GLabel stored in msg to its internal list of graphical objects to display on the 
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window. This step in the process is the responsibility of the last line in the 
GraphicsHelloWorld.py program, which looks like this: 
 

gw.add(msg) 
 

Understanding how this statement works requires you to learn a little more about the 
way that Python implements objects. 
 
Sending messages to objects 
When you are programming in a language that supports objects, it is useful to adopt 
at least some of the ideas and terminology of the object-oriented paradigm, a 
conceptual model of programming that focuses on objects and their interactions rather 
than on the more traditional model in which data and operations are seen as separate.  
In object-oriented programming, the generic term for anything that triggers a 
particular behavior in an object is called a message.  In Python, sending a message to 
an object is implemented by calling a function associated with that object.  Functions 
that are associated with an object are called methods, and the object on which the 
method is invoked is called the receiver. 
 

In Python, method calls use the following syntax: 
 

receiver.name(arguments) 
 

In the method call gw.add(msg), the graphics window stored in gw is the receiver, 
and add is the name of the method that responds to the message.  The argument msg 
lets the implementation of the GWindow class know what graphical object to add, 
which in this case is the GLabel stored in the msg variable.  The GWindow responds 
by displaying the message at the specified coordinates on the screen, which creates 
the following image: 
 

 
 

As you can see from the screen image, the desired message is there.  The message is 
not very large or exciting, but you’ll have a chance to spice it up later in the chapter. 
 

References 
In Python, the value stored in a variable like gw is not the entire object but instead a 
reference, which is a value internal to the computer that serves as a link to the data 
in the actual object.  In the GraphicsHelloWorld.py program, the declaration 
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gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT) 
 

initializes the variable gw to contain a reference to an on-screen window capable of 
displaying graphical objects, as illustrated by the following diagram: 
 

 
 
As the arrow suggests, the reference stored in gw points to a larger value that 
represents the graphics window on the screen. 
 

The assignment statement  
 

msg = GLabel("hello, world", 50, 100) 
 

operates in a similar fashion. This line creates a GLabel object and assigns a reference 
to that object to the variable msg, as follows: 
 

 
 

Although it is often possible to ignore the distinction between a reference and its 
associated object, it is important to understand that assigning an object value to a 
variable does not copy the entire object but instead copies only the reference.  For 
example, if you were to write the statement 
 

msg2 = msg 
 
Python would not create a second object but would instead arrange it so that msg and 
msg2 both contained references to the same object, as follows: 
 

 
 
If you need to create a second GLabel—even one that has the same contents—you 
need to call the GLabel constructor. 
 

Understanding how Python uses references as links to larger data structures will 
be particularly important when you learn about arrays and objects in Chapters 8 
through 12. 
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Encapsulation 
The diagrams for the GLabel objects in the preceding section show only the data 
values that are stored inside those objects.  In addition to these values, objects also 
contain the private data and associated code necessary to implement the class.  That 
information, however, is not available to the main program but is instead securely 
packaged inside the GLabel object. This model of packaging data and code together 
is called encapsulation. 
 

 4.3 Graphical objects 
The GLabel class is only one of several classes in the Portable Graphics Library.  This 
section introduces three other classes—GRect, GOval, and GLine—that, together 
with GLabel and GWindow, provide a useful “starter kit” for writing graphical 
programs. 
 

The GRect class 
The GRect class allows you to create rectangles and add them to the graphics window.  
For example, the program in Figure 4-2 creates a graphics window and then adds a 
rectangle to the window, solidly filled using the color blue, like this: 
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The BlueRectangle.py program is similar to the GraphicsHelloWorld.py 
program from Figure 4-1.  The blue_rectangle function begins—as the main 
functions for all graphics programs in this book do—by creating a GWindow of the 
desired size and assigning it to the variable gw. 
 

The next statement in the blue_rectangle function is 
 

rect = GRect(150, 50, 200, 100) 
 
which creates a GRect object used to display the rectangle in the window.  In this call, 
the first two arguments, 150 and 50, indicate the x and y coordinates at which the 
rectangle should be positioned; the second two arguments, 200 and 100, specify the 
width and height of the rectangle.  As in the earlier call to GWindow, each of these 
values is measured in pixels. This geometry is illustrated in Figure 4-3. 
 

When you work with the graphics library, it is important to keep in mind that the 
coordinate values in the y direction increase as you move down the screen, with the 
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(0, 0) origin in the upper left corner.  To maintain consistency with this convention, 
the origin of a graphical object is usually defined to be its upper left corner.  The 
GRect object stored in the variable rect is therefore positioned so that its upper left 
corner is at the point (150, 50) relative to the upper left corner of the window. 
 

The remaining statements in the blue_rectangle function are all examples of 
method calls.  For example, the statement 
 

rect.set_color("Blue") 
 
sends the rectangle object a set_color message asking it to change its color.  The 
argument to set_color is a string, which is usually one of the color names from 
Figure 4-4.  Here, the set_color call tells the rectangle to set its color to blue. 
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If the 140 standard web colors listed in Figure 4-4 are not enough for you, the 
Portable Graphics Library allows you to specify 16,777,216 different colors by 
indicating the proportion of the three primary colors of light: red, green, and blue.  To 
do so, all you need to do is specify the color as a string in the form "#rrggbb", where 
rr indicates the red value, gg indicates the green value, and bb indicates the blue value.  
Each of these values is expressed as a two-digit number written in hexadecimal, or 
base 16.  You may already be familiar with this form of color specification from 
designing web pages.  If not, you will have a chance to learn more about hexadecimal 
notation in Chapter 7. 
 

The next line in the blue_rectangle function is the method call 
 

rect.set_filled(True) 
 

which sends a set_filled message to the rectangle.  The set_filled method takes 
a Boolean argument, which specifies whether the rectangle is filled or outlined.  
Calling rect.set_filled(True) indicates that the interior of the rectangle should 
be filled.  Conversely, calling rect.set_filled(False) indicates that it should not 
be, which leaves only the outline. 
 

The final line in the blue_rectangle function is the method call 
 

gw.add(rect) 
 
which sends an add message to the graphics window, asking it to add the graphical 
object stored in rect to the contents of the window.  Adding the rectangle produces 
the final contents of the display. 
 

By default, the GRect function creates rectangles that are unfilled.  Thus, if you 
left this statement out of blue_rectangle, the result would look like this: 
 

 
 

For filled shapes, you can set the interior color by calling set_fill_color with 
any of the color names from Figure 4-4.  For example, if you replace the call to 
set_color("Blue") in Figure 4-2 with a call to set_fill_color("Cyan"), the 
rectangle would be filled in cyan but outlined in black, like this: 
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The GOval class 
As its name suggests, the GOval class is used to display an oval-shaped figure in a 
graphics window.  The GOval constructor takes the same arguments as GRect, but 
the two classes display different objects on the screen.  The GRect class displays a 
rectangle whose location and size are determined by the arguments. The GOval class 
displays the oval that fits exactly inside the corresponding rectangle. 
 

The relationship between the GRect and the GOval classes is most easily 
illustrated by example.  The following function definition takes the code from the 
earlier BlueRectangle.py program and extends it by adding a GOval with the same 
coordinates and dimensions: 
 

def grect_plus_goval(): 
    gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT) 
    rect = GRect(150, 50, 200, 100) 
    rect.set_filled(True) 
    rect.set_color("Blue") 
    gw.add(rect) 
    oval = GOval(150, 50, 200, 100) 
    oval.set_filled(True) 
    oval.set_color("Red") 
    gw.add(oval) 

 
The resulting output looks like this: 
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There are two important things to notice in this example.  First, the red GOval 
extends so that its edges touch the boundary of the rectangle.  Second, the GOval, 
which was added after the GRect, hides the portions of the rectangle that lie 
underneath the oval.  If you were to add these figures in the opposite order, all you 
would see is the blue GRect, because the entire GOval would be within the boundaries 
of the GRect. 
 
The GLine class 
The GLine class is used to display line segments on the graphics window.  The GLine 
function takes four arguments, which are the x and y coordinates of the two endpoints.  
For example, the function call 
 

GLine(0, 0, GWINDOW_WIDTH, GWINDOW_HEIGHT) 
 
creates a GLine object running from the point (0, 0) in the upper left corner of the 
graphics window to the point at the opposite corner in the lower right. 
 

The following function uses the GLine class to draw the two diagonals across the 
graphics window: 
 

def draw_diagonals(): 
    gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT) 
    gw.add(GLine(0, 0, GWINDOW_WIDTH, GWINDOW_HEIGHT)) 
    gw.add(GLine(0, GWINDOW_HEIGHT, GWINDOW_WIDTH, 0)) 

 
Loading this program in the browser generates the following display: 
 

 
 
The GLabel class 
When you last saw the GLabel class in the GraphicsHelloWorld.py program, the 
results were not entirely satisfying.  The message appearing on the screen was too 
small to generate much excitement.  To make the "hello, world" message bigger, 
you need to display the GLabel in a different font. 
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In all likelihood, you already know about fonts from working with other computer 
applications and have an intuitive sense that fonts determine the style in which 
characters appear.  More formally, a font is an encoding that maps characters into 
images that appear on the screen.  To change the font of the GLabel, you need to send 
it a set_font message, which might look like this: 
 

msg.set_font("36px 'Times New Roman'") 
 
This call to the set_font method tells the GLabel stored in msg to change its font to 
one in which the height of a text line is 36 pixels and the font family is Times New 
Roman, used by The New York Times.  If you include the set_font call in the 
program, the graphics window will look like this: 
 

 
 

The string passed as the argument to set_font is written so that it conforms to 
style specifications used on the web, which is called CSS for cascading style sheets.  
This string specifies several font properties, which appear in the following order: 
 
• The font style, which can be used to indicate an alternative form of the font.  This 

specification is ordinarily omitted from the font string to indicate a normal font 
but may appear as italic or oblique to indicate an italic variant or a slanted one. 

• The font weight, which specifies how dark the font should be.  This specification 
is omitted for normal fonts but may appear as bold to specify a boldface one. 

• The font size, which specifies how tall the characters should be by indicating the 
distance between two successive lines of text.  In CSS, the font size is usually 
specified in pixel units as a number followed by the suffix px, as in the 36px 
specification used in the most recent call to set_font. 

• The font family, which specifies the name associated with the font.  If the name 
of the font contains spaces, it must be quoted, usually using single quotation marks 
because the font specification appears inside a double-quoted string.  Setting the 
text in Times New Roman, for example, therefore requires the font string to 
include 'Times New Roman'.  Because different computers support different fonts, 
CSS allows a font specification to include several family names separated by 
commas.  The browser will then use the first font family that is available. 
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CSS defines several generic family names, which do not identify a specific font 
but instead describe a type of font that is always available in some form.  The most 
common generic family names appear in Figure 4-5.  It is good practice to end the list 
of preferred font families with one of these generic names to ensure that your program 
will run on the widest possible set of browsers. 
 

As you probably know from using your word processor, it can be fun to 
experiment with different fonts.  On most Macintosh systems, for example, there is a 
font called Lucida Blackletter that produces a script reminiscent of the style of 
illuminated manuscripts of medieval times.  To set the message in this font, you could 
change the set_font call in this program to 
 

msg.set_font("24px 'Lucida Blackletter',Serif") 
 

Note that the font string includes the generic family name Serif as an alternative.  If 
the browser displaying the page could not find a font called Lucida Blackletter, it 
could then substitute one of the standard serif fonts, such as Times New Roman.  If, 
however, it were able to load the Lucida Blackletter font successfully, the output 
would look something like this: 
 

 
 

The GLabel class uses its own geometric model, which is similar to the ones that 
typesetters have used over the centuries since Gutenberg’s invention of the printing 
press.  The notion of a font, of course, originally comes from printing.  Printers would 
load different sizes and styles of type into their presses to control the way in which 
characters appeared on a page.  The terminology that the graphics library uses to 
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describe both fonts and labels also derives from the typesetting world.  You will find 
it easier to understand the behavior of the GLabel class if you learn the following 
terms: 
 
• The baseline is the imaginary line on which characters sit. 

• The origin is the point at which the text of a label begins.  In languages that read 
left to right, the origin is the point on the baseline at the left edge of the first 
character.  In languages that read right to left, the origin is the point at the right 
edge of the first character, at the right end of the line. 

• The height is the distance between successive baselines in multiline text. 

• The ascent is the maximum distance that characters extend above the baseline. 

• The descent is the maximum distance that characters extend below the baseline. 
 
The interpretation of these terms in the context of the GLabel class is illustrated in 
Figure 4-6. 
 

The GLabel class includes methods that allow you to determine these properties.  
For example, the GLabel class includes a method called get_ascent to determine 
the ascent of the font in which the label appears.  In addition, it includes a method 
called get_width that determines the horizontal extent of the GLabel. 
 

These methods make it possible to center a label in the window, although they 
raise an interesting question.  The only function you’ve seen to create a GLabel takes 
its initial coordinates as parameters.  If you want to center a label, you won’t know 
those coordinates until after you have created the label.  To solve this problem, the 
function that creates a GLabel comes in two forms.  The first takes the string for the 
label along with the x and y coordinates of the origin.  The second leaves out the 
origin point, setting the origin to the default value of (0, 0). 
 



112     Simple Graphics 

Suppose, for example, that you want to center the string "hello, world" in the 
graphics window.  To do so, you first need to create the GLabel, then change its font 
so the label has the appearance you want, and finally determine the dimensions of the 
label to calculate the correct initial position.  You can then supply those coordinates 
in the add method, which takes optional x and y parameters to set the location of the 
object when you add it to the GWindow.  The following function from the 
CenteredHelloWorld.py program implements this strategy: 
 

def hello_world(): 
    gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT) 
    msg = GLabel("hello, world") 
    msg.set_font("36px 'Sans-Serif'") 
    x = (gw.get_width() - msg.get_width()) / 2 
    y = (gw.get_height() + msg.get_ascent()) / 2 
    gw.add(msg, x, y) 

 

The coordinate values necessary to center the GLabel appear in the assignment 
statements for x and y, which specify the origin point for the centered label.  To 
compute the x coordinate of the label, you need to shift the origin left by half the 
width of the label from the center of the window.  Centering the label in the vertical 
dimension is a bit trickier.  You can get pretty close by defining the y coordinate to 
be half the font ascent below the centerline.  These declarations also introduce the 
fact that the GWindow object also implements get_width and get_height, so you 
can use these methods to determine the width and height of the window. 
 

Running the CenteredHelloWorld.py program creates the following image: 
 

 
 

If you’re a stickler for aesthetic detail, you may find that using get_ascent to 
center a GLabel vertically doesn’t produce the optimal result.  Most labels that you 
display on the canvas will appear to be a few pixels too low. If you want things to 
look perfect, you may have to adjust the vertical centering by a pixel or two. 
 

The most important methods in the GRect, GOval, GLine, and GLabel classes are 
summarized in Figure 4-7.  Other classes and methods will be introduced in later 
chapters as they become relevant. 
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 4.4 The graphics window 
Although it is essential for any program that uses the graphics library, the GWindow 
class is conceptually different from the other classes in the library.  Classes like GRect 
and GLabel represent objects that you can display in a graphics window.  The 
GWindow class represents the graphics window itself. 
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The GWindow object is conventionally initialized using the line 
 

gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT) 
 
which appears at the beginning of every program that uses the graphics library.  This 
statement creates the graphics window and installs it in the web page so that it is 
visible to the user.  It also serves to implement the conceptual framework for 
displaying graphical objects.  The conceptual framework implemented by a library 
package is called its model.  The model gives you a sense of how you should think 
about working with that package. 
 

One of the most important roles of a model is to establish what analogies and 
metaphors are appropriate for the package.  Many real-world metaphors are possible 
for computer graphics, just as there are many different ways to create visual art.  One 
possible metaphor is that of painting, in which the artist selects a paintbrush and a 
color and then draws images by moving the brush across a screen that represents a 
virtual canvas. 
 

For consistency with the principles of object-oriented design, the Portable 
Graphics Library uses the metaphor of a collage.  A collage artist works by taking 
various objects and assembling them on a background canvas.  In the real world, those 
objects might be, for example, geometrical shapes, words clipped from newspapers, 
lines formed from bits of string, or images taken from magazines.  The graphics 
library offers counterparts for all these objects. 
 

The fact that the graphics window uses the collage model has implications for the 
way you describe the process of creating a design.  If you were using the metaphor of 
painting, you might talk about making a brush stroke in a particular position or filling 
an area with paint.  With the collage model, the key operations are adding and 
removing objects, along with repositioning them on the background canvas. 
 

Collages also have the property that some objects can be positioned on top of other 
objects, obscuring whatever is behind them.  Removing those objects reveals 
whatever used to be underneath.  In this book, the back-to-front ordering of objects 
in the collage is called the stacking order, although you will sometimes see it referred 
to as z-ordering in more formal writing.  The name z-ordering comes from the fact 
that the stacking order occurs along the axis that comes out of the two-dimensional 
plane formed by the x and y axes.  In mathematics, the axis coming out of the plane 
is called the z-axis. 
 

The methods exported by the GWindow class appear in Figure 4-8.  For now, your 
most important methods are add, get_width, and get_height.  The other methods 
will be described in more detail when they are needed for an application. 
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 4.5 Creating graphical applications 
You can use the Portable Graphics Library to create graphical displays composed of 
instances of the GRect, GOval, GLine, and GLabel classes. Suppose, for example, 
that you want to display a red balloon marked with an upbeat message, as follows: 
 

 
 
This program, which appears in Figure 4-9 at the top of the next page, displays three 
graphical objects: 
 
1. A GOval representing the balloon itself, outlined in black and filled in red 

2. A GLine representing the cord attached to the balloon. 

3. A GLabel displaying the string "CS is fun!" drawn in white. 
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The objects themselves are not hard to create.  What typically takes the most time 
when you are creating this kind of display is figuring out how to specify the sizes of 
each object and how to position them in the window so that everything fits together 
in the way you want it to appear. 
 

The simplest strategy for specifying the sizes and other properties of graphical 
objects is to define them as constants, as shown in the RedBalloon.py example.  The 
constants indicate that the graphics window is 500 pixels wide and 300 pixels high, 
that the balloon itself is 140 pixels wide and 160 pixels tall, that the message it 
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displays is the string "CS is fun!", and that the cord tied to the base of the balloon 
is 100 pixels long. 
 

Your primary task in writing the program is to figure out exactly how to position 
the graphical objects given the values of these constants.  The entire figure—the 
balloon together with its cord—is centered in the graphics window, which means that 
you have to figure out the coordinate locations for each of the objects relative to the 
center of the window.  The coordinates of the center are easily computed using the 
following declarations, which will show up repeatedly in other examples: 
 

cx = gw.get_width() / 2 
cy = gw.get_height() / 2 

 
The upper left corner of the oval representing the balloon is then shifted left from 

cx by half the width of the balloon and shifted upward from cy by half the total height, 
which is BALLOON_HEIGHT + CORD_LENGTH.  The coordinates of the upper left corner 
of the oval can therefore be computed as follows: 
 

balloon_x = cx - BALLOON_WIDTH / 2 
balloon_y = cy - (BALLOON_HEIGHT + CORD_LENGTH) / 2 

 
The remaining coordinates can be computed similarly.  The y-coordinate of the top 
of the cord, for example, can be computed using the following expression: 
 

cord_y = balloon_y + BALLOON_HEIGHT 
 

 4.6 Decomposition 
One of the most important challenges you will face as a programmer is finding ways 
to reduce the conceptual complexity of your programs.  Large programs are typically 
difficult to understand as a whole.  The only way to keep such programs within the 
limits of human comprehension is to break them up into simpler, more manageable 
pieces.  In programming, this process is called decomposition. 
 

Decomposition is a fundamental strategy that applies at several levels of the 
programming process.  At the function level, decomposition is the process of breaking 
a large task down into simpler subtasks that together complete the task as a whole.  
Those subtasks may themselves require further decomposition, which creates a 
hierarchy of subtasks of the sort illustrated in Figure 4-10.  In that diagram—which 
presents only the general structure of a typical solution and offers no details about the 
problem itself—the complete task is decomposed into three primary subtasks.  The 
second of those subtasks is then divided further into two subtasks at an even lower 
level of detail.  Depending on the complexity of the actual problem, the subdivision 
may require more subtasks or more levels of decomposition. 
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Learning how to find the most useful decomposition requires considerable 

practice.  If you define the individual subtasks appropriately, each one will have 
conceptual integrity as a unit and make the program as a whole much simpler to 
understand.  If you choose the subtasks inappropriately, your decomposition can end 
up getting in the way.  Although this chapter offers some useful guidelines, there are 
no hard-and-fast rules for selecting a particular decomposition; you will learn how to 
apply this process through experience. 
 
Stepwise refinement 
When you are trying to find an effective decomposition, one of the best strategies is 
to start at the highest levels of abstraction and work your way downward to the details.  
You begin by thinking about the program as a whole.  Assuming that the program is 
large enough to require decomposition, your next step is to divide the entire problem 
into its major components.  Once you figure out what the major subtasks are, you can 
then repeat the process to decompose any of the subtasks that are themselves too large 
to solve in a few lines of code.  At the end of this process, you will be left with a set 
of individual tasks, each of which is simple enough to be implemented as a single 
function.  This process is called top-down design, or stepwise refinement. 
 
A simple example of decomposition 
The best way to understand the process of stepwise refinement is to work through a 
simple example.  The RedBalloon.py program in Figure 4-9 is written as a single 
function.  In more sophisticated graphical applications, it makes sense to decompose 
the program into multiple functions, each of which is responsible for part of the 
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drawing.  As you do so, it is important to think carefully about how to decompose the 
problem so that each of the functions makes sense on its own. 
 

Suppose, for example, that you have decided to draw a picture of your dream 
house, using a level of detail that one might find in an elementary-school art class.  In 
the end, you want the picture on the graphics window to look like this: 
 

 
 
Although there are other reasonable choices, one strategy is to subdivide the problem 
into functions that draw the house frame, the door, and each of the windows.  These 
functions then have responsibility for drawing the parts of the picture shown in the 
right margin.  You can then draw the entire house by making one call to draw_frame, 
one call to draw_door, and two calls to draw_window.  An implementation of 
DrawHouse.py using this strategy appears in Figure 4-11. 
 

An essential part of the decomposition process is figuring out what parameters 
need to be passed to each of subsidiary function so that it knows precisely how to 
draw the component of the picture for which that function is responsible.  As in the 
RedBalloon.py program, some of the values can be specified using constants.  
Some, however, have to be passed as parameters to these functions.  At a minimum, 
the draw_window function needs to know the x and y coordinates of the window so 
that it can draw a window in two different places. 
 

Deciding which values to declare as constants and which to pass as parameters 
requires evaluating the tradeoffs between the two models.  In general, declaring 
constants is simpler but limits the program’s flexibility.  At the same time, passing      
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DrawHouse-py-p1.png 
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too many parameters makes functions harder to understand and use.  In most 
applications, it makes sense to adopt a hybrid strategy in which you use constants to 
specify values that remain the same throughout the program and parameters to specify 
values that callers will want to change. 
 

Each of the functions in Figure 4-11 takes three parameters: the graphics window 
gw and the coordinates x and y, which specify the location at which that part of the 
entire picture should appear.  For consistency with the model used by the Portable 
Graphics Library, these coordinate values specify the upper left corner of that 
component of the picture.  For graphical objects that don’t have an upper left corner, 
the usual strategy is to have the coordinates refer—as they do for the GOval class—
to the upper left corner of the rectangle that encloses the object, which is called its 
bounding box. 
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 4.7 Control structures and graphics 
The control statements you learned about in Chapter 2 come up often in graphical 
programming, particularly when you need to draw many copies of the same figure in 
different positions on the graphics window.  As an example, the program in Figure 
4-12 draws five circles centered in the graphics window, like this: 
 

 
 
It is worth taking a look at the code for the DrawFiveCircles.py program to make 
sure you understand how the expressions ensure that the circles are centered. 
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When you work with two-dimensional graphical designs, you often need nested 
loops to arrange graphical objects in both the horizontal and vertical directions.  The 
Checkerboard.py program in Figure 4-13, for example, draws a checkerboard that 
looks like this: 
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Once again, it is worth taking some time to go through the code in Figure 4-13, paying 
particular attention to the following details: 
 
• The program is designed so that you can easily change the dimensions of the 

checkerboard by changing the values of the constants N_ROWS and N_COLUMNS. 

• The checkerboard is arranged so that it is centered in the graphics window.  The 
variables x0 and y0 are used to hold the coordinates of the upper left corner of the 
centered board. 

• The decision to fill a square is made by checking whether the sum of its row 
number and column number is even or odd.  For white squares, this sum is even; 
for black squares, this sum is odd.  Note, however, that you don’t need to include 
an if statement in the code to test this condition.  All you need to do is call the 
set_filled method with the appropriate Boolean value. 

 

 4.8 Functions that return graphical objects 
It is important to keep in mind that graphical objects are data values in Python in 
precisely the same way that numbers and strings are.  You can therefore assign 
graphical objects to variables, pass them as arguments to function calls, or have 
functions return them as results.  Functions that return values of one of the GObject 
subclasses can be extremely useful as tools in creating graphical applications that 
need to display a shape with certain preset features, such as size and color. 
 

The Target.py program in Figure 4-14 illustrates this feature by defining a 
create_filled_circle function that takes four arguments: the values x and y 
representing the coordinates of the center of the circle, a number r specifying the 
radius of the circle, and a string color indicating the Python color name.  The 
Target.py program calls create_filled_circle three times to create three circles 
that alternate in color between red and white and progressively decrease in size.  The 
radius of the outer circle is given by the constant OUTER_RADIUS.  The two inner 
circles are two-thirds and one-third that size, respectively.  Running the Target.py 
program produces the following output: 
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 Summary 
This chapter introduced the Portable Graphics Library, which allows you to create 
simple pictures on the screen using lines, rectangles, ovals, and labels.  Along the 
way, you had a chance to practice using objects in Python. 
 

Important points introduced in the chapter include: 
 

• The graphical programs in this book use the Portable Graphics Library, which is 
a collection of graphical tools designed for use in introductory courses. 
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• Python supports a modern style of programming called the object-oriented 
paradigm, which focuses attention on data objects and their interactions. 

• In the object-oriented paradigm, an object is a conceptually integrated entity that 
combines the state of that object and the operations that affect its state.  Each 
object is a representative of a class, which is a template that defines the attributes 
and operations shared by all objects of a particular type.  A single class can give 
rise to many different objects; each such object is an instance of that class. 

• Objects communicate by sending messages.  In Python, those messages are 
implemented by calling methods, which are simply functions that belong to a 
particular class. 

• Method calls in Python use the receiver syntax, which looks like this: 
 

receiver.name(arguments) 
 

 The receiver is the object to which the message is sent, name indicates the name 
of the method that responds to the message, and arguments is a list of values that 
convey any additional information carried by the message. 

• Functions that create new objects are called constructors and conventionally have 
names that begin with an uppercase letter. 

• The first line in any Python program that uses the Portable Graphics Library 
creates a GWindow object using the following declaration: 

 

gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT) 
 

 The constants GWINDOW_WIDTH and GWINDOW_HEIGHT specify the dimensions of 
the graphics window in pixels, which are the tiny dots that cover the face of the 
display.  Once you have initialized the variable gw, you can then create graphical 
objects of various kinds and add them to the window. 

• This chapter introduces four classes of graphical objects—GRect, GOval, GLine, 
and GLabel—that represent rectangles, ovals, line segments, and text strings, 
respectively.  Other graphical objects are introduced in later chapters. 

• All graphical objects support the method set_color, which takes the name of the 
color as a string.  Python defines 140 standard colors whose names appear in 
Figure 4-4 on page 105. 

• The GRect and GOval classes use set_filled and set_fill_color to control 
whether the shape is filled and what color is used for the interior. 

• The GLabel class uses the set_font method to set the font in which the label 
appears.  The argument to set_font is the CSS specification of a font, which is 
described on page 107. 

• The GLabel class uses a geometric model that is different from the one used by 
the other graphical objects.  That model is illustrated in Figure 4-6 on page 109. 
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• One of the most effective strategies for managing the complexity of programs is 
decomposition, which is the process of breaking a large task down into smaller, 
more manageable subtasks. 

• In most cases, it makes sense to apply decomposition by starting at the level of the 
problem as a whole and then working your way downward to the details.  This 
strategy is called top-down design or stepwise refinement. 

• Graphical objects are data values in Python in the same way that numbers and 
strings are.  You can therefore assign graphical objects to variables, pass them as 
arguments to function calls, or have functions return them as results. 

• The Target.py program in Figure 4-14 defines a create_filled_circle 
function that illustrates the strategy of returning graphical objects from functions.  
This technique will be used in many programs throughout the remaining chapters. 

 

 Review questions 
1. What is the name of the Python library used in this chapter to implement 

programs that produce graphical output? 
 

2. In your own words, define the terms class, object, and method. 
 
3. What is a reference? 
 

4. The object-oriented paradigm uses the metaphor of sending messages to model 
communication between objects.  How does Python implement this idea? 

 

5. What is the receiver syntax? 
 

6. What is a constructor? 
 

7. What is the first line in every graphical program that appears in this book? 
 
8. What are the four classes of graphical objects introduced in this chapter? 
 
9. How do you change the color of a graphical object? 
 
10. What is the purpose of the set_filled and set_fill_color methods in the 

GRect and GOval classes? 
 
11. What is the format of the argument string passed to set_font? 
 
12. Define the following terms in the context of the GLabel class: baseline, origin, 

height, ascent, and descent. 
 
13. Explain the purpose of the following lines in the CenteredHelloWorld.py 

program: 
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x = (gw.get_width() - msg.get_width()) / 2 
y = (gw.get_height() + msg.get_ascent()) / 2 

 
Why is there a minus sign in the calculation of the x coordinate and a plus sign 
in the calculation of the y coordinate? 

 
14. When you center a GLabel vertically using the get_ascent method, why does 

the resulting text often appear to be a few pixels too low? 
 
15. What is the collage model? 
 
16. What is meant by the term stacking order?  What other term is often used for the 

same purpose? 
 
17. Explain in your own words the process of stepwise refinement. 
 
18. What two strategies does this chapter propose for conveying information 

between a program and the individual functions that result from decomposing 
that program into smaller pieces?  What are the advantages and disadvantages of 
each of these strategies? 

 

 Exercises 
1. Use your program editor to create the file GraphicsHelloWorld.py exactly as 

it appears in Figure 4-1.  Make a copy of the pgl.py library file and store it in 
the same folder.  Invoke Python on GraphicsHelloWorld.py to show that you 
can get execute a graphical program. 

 
2. Write a graphical program TicTacToeBoard.py that draws a Tic-Tac-Toe board 

centered in the graphics window, as shown in the following sample run: 
 

 
 

The size of the board should be specified as a constant, and the diagram should 
be centered in the window, both horizontally and vertically. 
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3. Draw a simplified version of Figure 4-6, which illustrates the geometry of the 
GLabel class.  In your implementation, you should display the two strings 
("The quick brown fox" and "jumped over the lazy dog") in red using a 
sans-serif font that is large enough to make the guidelines easy to see.  Then for 
each of the strings, you should draw a gray line along the baseline, the line that 
marks the font ascent, and the line that marks the font descent.  Finally, you 
should draw a small filled circle indicating the baseline origin of the first string.  
The graphics window will then look like this: 

 

 
 

This output is a little more honest than Figure 4-6 about the font ascent, which 
appears slightly above the top of the uppercase characters. 

 

4. Use the graphics library to draw a rainbow that looks something like this: 
 

 
 

Starting at the top, the seven bands in the rainbow are red, orange, yellow, green, 
blue, indigo, and violet, respectively; cyan makes a lovely color for the sky.  
Remember that this chapter defines only the GRect, GOval, GLine, and GLabel 
classes and does not include a graphical object that represents an arc.  It will help 
to think outside the box, in a more literal sense than usual. 

 
5. Use top-down design to design a program that creates the following picture of a 

more complex house than the one presented in Figure 4-11: 
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Think carefully about the decomposition to see whether it is possible to exploit 
common features of the design. 

 
6. If the house diagrams in Figure 4-11 and the preceding exercise seem a bit 

mundane, you might instead want to draw a diagram of the House of Usher, 
which Edgar Allan Poe describes as follows: 

 
With the first glimpse of the building, a sense of insufferable gloom 
pervaded my spirit. . . .  I looked upon the scene before me—upon the 
mere house, and the simple landscape features of the domain—upon 
the bleak walls—upon the vacant eye-like windows . . . upon a few 
white trunks of decayed trees—with an utter depression of soul. 

 

From Poe’s description, you might draw a house that looks something like this: 
 

 
 



 Exercises     131 

The figure on the left is the house with its “vacant eye-like windows” and the 
three figures on the right are a stylized rendition of the “few white trunks of 
decayed trees.” 

 
7. Write a program that displays a pyramid on the graphics window.  The pyramid 

consists of bricks in horizontal rows, arranged so that the number of bricks in 
each row decreases by one as you move upward, as follows: 

 

 
 

The pyramid should be centered in the window both horizontally and vertically 
and should use constants to define the dimensions of each brick and the height 
of the pyramid. 

 
8. Rewrite (and suitably rename) the DrawFiveCircles.py program shown in 

Figure 4-12 so that the number of circles is given by the constant N_CIRCLES. 
 
9. Enhance the Checkerboard.py program shown in Figure 4-13 so that the 

graphics window also displays the red and black checkers corresponding to the 
initial state of the game, which looks like this: 

 

 
 

The other change in this program is that the color of the dark squares has been 
changed from black to gray so that the black checkers are not lost against the 
background. 
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10. Rewrite the Target.py program from Figure 4-14 so that the number and radii 
of the circles are controlled by the following constants: 

 
N_CIRCLES = 7 
OUTER_RADIUS = 75 
INNER_RADIUS = 10 

 
Given those values, the program should generate the following display: 

 

 
 
11. Classical optical illusions offer a rich source of interesting graphical exercises.  

One of the simplest examples is the Müller-Lyer illusion, named after the 
German sociologist Franz Karl Müller-Lyer, who first described the effect in 
1889.  In one of its more common forms, the Müller-Lyer illusion asks the viewer 
which of the two horizontal lines is longer in the following figure: 

 

 
 

Most people are convinced that the bottom line is longer, but the two lines are in 
fact the same length. 

 

Write a program to produce the Müller-Lyer illusion as it appears in this 
example.  Make sure you use constants to define parameters like the lengths of 
the various lines. 

 
12. Another illusion that shows how context affects the perception of relative size is 

the Ebbinghaus illusion, which was discovered by the German psychologist 
Hermann Ebbinghaus and published in a 1901 book by the British psychologist 
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Edward Tichener.  This illusion, which appears in Figure 4-15, makes it seem as 
if the central circle on the left is smaller than the circle on the right, even though 
the two are the same size.  Write a program to produce this illusion. 

 
13. Write a program to produce the Zöllner illusion, which was discovered by the 

German astrophysicist Johann Karl Friedrich Zöllner in 1860.  In this illusion, 
the diagonal lines that run in opposite directions on every other line make it 
difficult to see that the horizontal lines are actually parallel: 

 

 
 

14. An even more exotic illusion is the kindergarten illusion (also called the café 
wall illusion), which was first described by the American psychologist Arthur 
Henry Pierce in 1898.  In this illusion, shifting the squares slightly on each row 
of a checkerboard pattern makes the horizontal lines of the checkerboard appear 
slanted instead of straight.  Starting with the Checkerboard program from 
Figure 4-13, make the changes necessary to produce the following image: 
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15. The scintillating grid illusion shown in Figure 4-16 was popularized by Elke 

Lingelbach in the 1990s and is based on an earlier illusion published by Ludimar 
Hermann in 1870.  In this illusion, the viewer sees black dots inside the white 
circles at the intersections of the grid.  Write a program that replicates this 
illusion. 

 
16. Our visual sense is powerfully affected by our assumptions about an image.  In 

1911, the Italian psychologist Mario Ponzo showed that people expect objects 
viewed at a distance in a perspective drawing to appear smaller.  If an object 
appears to violate the rules of perspective, our minds compensate by changing 
our perception of its size. 
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In one of its more popular forms, the Ponzo illusion illustrates this principle 
by superimposing two horizontal lines onto a stylized image of a railroad track 
receding into the distance.  Since our experience assures us that the rails are 
equally far apart all the way down the track, a line that crosses it must be larger 
than one that falls entirely inside it, as illustrated in the following example: 

 

 
 

Your mission is to reproduce this image using one-point perspective, which 
is a technique for representing a three-dimensional scene in a two-dimensional 
drawing.  In a drawing that uses one-point perspective, objects move toward a 
single vanishing point as they move farther from the viewer.  This technique was 
developed during the early Renaissance and was used by the Florentine artist and 
architect Filippo Brunelleschi in a 1415 painting.  Your challenge in creating the 
Ponzo illusion is to figure out where each of the crossties should go in the railroad 
track as it vanishes into the distance.  The mathematical formulae you need to 
perform these calculations appear in Figure 4-17. 
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17. Back in the early 1990s—long before Python existed—Julie Zelenski and Katie 
Capps Parlante developed a lovely graphics assignment that we used in 
Stanford’s introductory course for many years.  The goal of the assignment was 
to draw a sampler quilt, which is composed of several different block types that 
illustrate a variety of quilting styles. 

 

For this exercise, your job is to use the graphics library to create the sampler 
quilt shown in Figure 4-18.  This quilt is composed of a repeating pattern of the 
following four blocks, three of which are examples of previous work: 

 

 
 

The only new block is the fourth one, which is a classic quilting pattern called a 
log cabin block.  This block is composed of rectangles that spiral inward toward 
a square in the center.  The width of each rectangle and the width of the central 
square are all the same, which means that the dimensions are determined by the 
block size and the number of frames in the spiral. 

 



 

 

a 

C H A P T E R  5  
Functions 

 
Our module structure is based on the decomposition 
criteria known as information hiding.  According to this 
principle, system details that are likely to change 
independently should be the secrets of separate modules. 

— David Parnas, Paul Clements, and David Weiss, 
“The modular structure of complex systems,” 1984 

 
 
 
 

 
David Parnas (1941–) 

 
David Parnas is Professor of Software Engineering emeritus at the University of Limerick in Ireland, where 
he directed the Software Quality Research Laboratory, and has also taught at universities in Germany, 
Canada, and the United States. His most influential contribution to software engineering is his 
groundbreaking 1972 paper entitled “On the criteria to be used in decomposing systems into modules,” which 
provided much of the foundation for the strategy of decomposition described in this chapter.  Professor Parnas 
also attracted considerable public attention in 1985 when he resigned from a Department of Defense panel 
investigating the software requirements of the proposed Strategic Defense Initiative—more commonly 
known as “Star Wars”—on the grounds that the requirements of the system were impossible to achieve.  For 
his courageous stand in bringing these problems to light, Parnas received the 1987 Norbert Wiener Award 
from Computer Professionals for Social Responsibility. 
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This chapter examines in more detail the concept of a function, which was initially 
presented in Chapter 1.  A function is a set of statements that have been collected 
together and given a name.  Because functions allow the programmer to invoke the 
entire set of operations using a single name, programs become much shorter and much 
simpler.  Without functions, programs would become unmanageable as they 
increased in size and sophistication. 
 

In order to appreciate how functions reduce the complexity of programs, it helps 
to examine the role of functions from two distinct philosophical perspectives, 
reductionism and holism.  Reductionism is the philosophical principle that the whole 
of an object can best be understood by understanding the parts that make it up.  Its 
antithesis is holism, which recognizes that the whole is often more than the sum of 
its parts.  As you try to master the discipline of dividing large programs into functions, 
you must learn to see the process from each of these perspectives.  If you concentrate 
only on the big picture, you will end up not understanding the tools you need for 
solving problems.  However, if you focus exclusively on details, you will invariably 
miss the forest for the trees. 
 

When you are first learning about programming, the best approach is usually to 
alternate between these two perspectives.  Taking the holistic view helps sharpen your 
intuition about the programming process and enables you to stand back from a 
program and say, “I understand what this function does.”  Taking the reductionistic 
view allows you to say, “I understand how this function works.”  Both perspectives 
are essential.  You need to understand how functions work so that you can code them 
correctly.  At the same time, you must be able to take a step backward and look at 
functions holistically, so that you also understand why they are important and how to 
use them effectively. 
 

 5.1 A quick review of functions 
Although you have been working with functions ever since you wrote your first 
programs in Chapter 1, you have so far seen only a part of the computational power 
that functions provide.  Before delving more deeply into the details of how functions 
work, it helps to review some basic terminology.  First of all, a function consists of a 
set of statements that have been collected together and given a name.  The act of 
executing the set of statements associated with a function is known as calling that 
function.  To indicate a function call in Python, you write the name of the function, 
followed by a list of expressions enclosed in parentheses.  These expressions, which 
are called arguments, allow the caller to pass information to the function. 
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The syntax of a function definition 
A typical function definition has the form shown in the syntax box on the right. The 
name component of this pattern indicates the function name, parameters is the list of 
parameter names that receive the values of the arguments, and statements represents 
the body of the function.  Functions that return a value to the caller must contain at 
least one return statement that specifies the value of the function, as illustrated in 
the second syntax box. 
 

These syntactic patterns are illustrated in the definition of the max function from 
Chapter 2, which looks like this: 
 

def max(x, y): 
   if x > y: 
      return x 
   else: 
      return y 

 
This function has the name max and takes two parameters, x and y.  The statements 
in the body decide which of these two values is larger and then return that value. 
 

Functions, however, are often called simply for their effect and need not return a 
value.  For example, the Python functions that implement complete programs don’t 
include a return statement.  Some languages distinguish a function that returns a 
value from one that doesn’t by calling the latter a procedure.  Python uses the term 
function for both types.  This terminology is technically accurate because Python 
functions always return a value, which is the Python constant None if no return 
statement appears. 
 
Parameter passing 
In the function calls you have seen so far, the arguments supplied by the caller are 
copied to the parameter variables in the order in which they appear.  The first 
argument is assigned to the first parameter variable, the second argument to the 
second parameter variable, and so on.  Parameters passed by their order in the 
argument list are called positional parameters. 
 

When you use positional parameters, the variable names in the caller and the called 
function are completely irrelevant to the process by which parameter values are 
assigned.  There may well be a variable named x in both the calling function and in 
the parameter list for the function being called.  That reuse of the same name, 
however, is merely a coincidence.  Local variable names and parameter names are 
visible only inside the function in which their declarations appear. 
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Python allows a function to specify a value for a parameter that the caller fails to 
supply.  Such parameters are called default parameters.  Default parameters appear 
in the function header line with an equal sign and a default value.  For example, the 
following function displays n consecutive integers, beginning with the value start 
if two arguments are supplied and with the value 1 if the second argument is missing: 
 

def count(n, start=1): 
    for i in range(n): 
        print(start + i) 

 
The following IDLE session illustrates the operation of count, both when it is given 
a second argument and when it is not: 
 

 
 

Python also allows callers to pass arguments by including the parameter name and 
an equal sign in the function call.  For example, if you cannot remember the order of 
parameters for the count function, you can write the arguments in either order by 
including the parameter names, as follows: 
 

 
 
Parameters identified by name are called keyword parameters, even though the 
names are not in any way related to Python keywords like def or while. 
 

Default and keyword parameters are useful in designing library functions that are 
easy to use.  The section entitled “Designing your own libraries” later in this chapter 
includes several examples of each of these styles. 
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 5.2 The mechanics of function calls 
Although you can certainly get by with an intuitive understanding of how the 
function-calling process works, it helps to understand precisely what happens when 
one function calls another in Python.  The sections that follow describe the process in 
detail and then walk you through a simple example. 
 
The steps in calling a function 
Whenever a function call occurs, Python executes the following operations: 
 
1. The calling function computes values for each argument using the bindings of 

local variables in its own context.  Because the arguments are expressions, this 
computation can involve operators and other functions; the calling function 
evaluates these expressions before execution of the new function begins. 

2. The system creates new space for all the local variables required by the new 
function, including the variables in the parameter list.  These variables are 
allocated together in a block, which is called a stack frame. 

3. Each positional argument is copied into the corresponding parameter variable. 
4. All keyword arguments are copied to the parameter with the same name. 
5. For parameters that include default values, Python assigns those values to any 

arguments that are still unspecified.  If any parameters are still unassigned after 
this step, Python reports an error. 

6. The statements in the function body are executed until the program encounters a 
return statement or there are no more statements to execute. 

7. The value of the return expression, if any, is evaluated and returned as the value 
of the function. 

8. The stack frame created for this function call is discarded.  In the process, all 
local variables disappear. 

9. The calling program continues, with the returned value substituted in place of the 
call.  The point to which the function returns is called the return address. 

 
Although this process may seem to make at least some sense, you probably need 

to work through an example or two before you understand it fully.  Reading through 
the example in the next section will give you some insight into the process, but it will 
be even more helpful to take one of your own programs and walk through it at the 
same level of detail.  And while you can trace through a program on paper or a 
whiteboard, it may be best to get yourself a supply of 3´5 index cards and then use a 
card to represent each stack frame.  The advantage of the index-card model is that 
you can create a stack of index cards that closely models the operation of the 
computer.  Calling a function adds a card; returning from the function removes it. 
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The combinations function 
The function-calling process is most easily illustrated in the context of a specific 
example.  Suppose that you have a collection of six coins, which in the United States 
might be a penny, a nickel, a dime, a quarter, a half-dollar, and a dollar.  Given those 
six coins, how many ways are there to choose two of them?  As you can see from the 
full enumeration of the possibilities in Figure 5-1, the answer is 15.  However, as a 
computer scientist, you should immediately think about the more general question: 
given a set containing n distinct elements, how many ways can you choose a subset 
with k elements?  The answer to that question is computed by the 
combinations function C(n, k), which is defined as 
 

C(n, k)  =  
 

 

where the exclamation point indicates the factorial function, which you saw in 
Chapter 2.  The code to compute the combinations function in Python appears in 
Figure 5-2. 
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As you can see from Figure 5-2, the combinations.py file contains two 
functions.  The combinations function computes the value of C(n, k), and the 
now-familiar fact function computes factorials.  An IDLE session just before 
making the call to combinations(6, 2) might look like this: 
 

 
 
Tracing the combinations function 
While the combinations function is interesting in its own right, the purpose of the 
current example is to illustrate the steps involved in calling functions.  When the user 
enters a function call in the IDLE window, the Python interpreter invokes the standard 
steps in the function-calling process. 
 

As always, the first step is to evaluate the arguments in the current context.  In this 
example, the arguments are the numbers 6 and 2, so the evaluation process simply 
keeps track of these two values. 
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The second step is to create a frame for the combinations function that contains 
space for the variables that are stored as part of that frame, which are the parameters 
and any variables that appear in declarations within the function.  The combinations 
function has two positional parameters and no local variables, so the frame only 
requires enough space for the parameter variables n and k.  After the Python 
interpreter creates the frame, it copies the argument values into these variables in 
order.  Thus, the parameter variable n is initialized to 6, and the parameter variable k 
is initialized to 2. 
 

In the diagrams in this book, each stack frame appears as a rectangle surrounded 
by a double line.  Each stack-frame diagram shows the code for the function along 
with a pointing-hand icon that makes it easy to keep track of the current execution 
point.  The frame also contains labeled boxes for each of the local variables.  The 
stack frame for the combinations function therefore looks like this after the 
parameters have been initialized but before execution of the function begins: 
 

 
 

To compute the value of the combinations function, the program must make 
three calls to the function fact.  In Python, function calls are evaluated from left to 
right, so the first call is the one to fact(n), as follows: 
 

 
 

To evaluate this function, the system must create yet another stack frame, this time 
for the function fact with an argument value of 6.  The frame for fact has both 
parameters and local variables.  The parameter n is initialized to the value of the 
calling argument and therefore has the value 6.  The two local variables, i and 
result, have not yet been initialized, which is indicated in stack diagrams using an 
empty box.  The new frame for fact gets stacked on top of the old one, which allows 
the Python interpreter to remember the values in the earlier stack frame, even though 
they are not currently visible.  The situation after creating the new frame and 
initializing the parameters looks like this: 
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The system then executes the statements in the function fact.  In this instance, 
the body of the for loop is executed six times.  On each cycle, the value of result 
is multiplied by the loop index i, which means that it will eventually hold the value 
720 (1´2´3´4´5´6 or 6!).  When the program reaches the return statement, the 
stack frame looks like this: 
 

 
 

Returning from a function involves copying the value of the return expression 
(in this case the local variable result), to the point at which the call occurred.  The 
frame for fact is then discarded, which leads to the following configuration: 
 

 
 

The next step in the process is to make a second call to fact, this time with the 
argument k.  In the calling frame, k has the value 2.  That value is then used to 
initialize the parameter n in the new stack frame, as follows: 
 

 
 

The computation of fact(2) is easier to perform in one’s head than the earlier 
call to fact(6).  This time around, the value of result will be 2, which is then 
returned to the calling frame, like this: 
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The code for combinations makes one more call to fact, this time with the 
argument n - k.  Evaluating this call therefore creates a new stack frame with n equal 
to 4: 
 

 
 

The value of fact(4) is 1´2´3´4, or 24.  When this call returns, the system is 
able to fill in the last of the missing values in the calculation, as follows: 
 

 
 
The computer then divides 720 by the product of 2 and 24 to get the answer 15.  This 
value is returned to the Python interpreter running in the IDLE console window.  The 
interpreter prints that value on the console, like this: 
 

 
 

 5.3 Libraries and interfaces 
Writing a program to solve a large or difficult problem inevitably forces you to 
manage at least some amount of complexity.  There are algorithms to design, special 
cases to consider, user requirements to meet, and innumerable details to get right.  To 
make programming manageable, you must reduce the complexity of the programming 
process as much as possible.  Functions reduce some of the complexity; libraries offer 
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a similar reduction in programming complexity but at a higher level of detail.  A 
function gives its caller access to a set of steps that implements a single operation.  A 
library provides a collection of tools that share a common model.  That model and its 
conceptual foundation constitute a programming abstraction. 
 
Clients and implementers 
One of the goals of any programming abstraction is to hide the complexity involved 
in the underlying implementation.  By exporting the sqrt function, the Python math 
library hides away the complexities involved in calculating a square root.  When you 
call math.sqrt, you don’t need to have any idea how the implementation works.  
Although it almost certainly uses a more modern algorithm that computes the result 
more quickly, the implementation might use the 3800-year-old Babylonian method 
described in Chapter 3. The caller doesn’t need to know.  The details of how the 
computation proceeds are relevant only to the programmers responsible for 
implementing the math library. 
 

Knowing how to call the math.sqrt function and knowing how to implement it 
are both important skills.  It is useful to keep in mind, however, that those two skills—
calling a function and implementing one—are to a large extent independent.  
Successful programmers often use functions that they wouldn’t have a clue how to 
write.  Conversely, programmers who implement a library function can never 
anticipate all the potential uses for that function. 
 

To emphasize the difference in perspective between programmers who implement 
a library and those who use it, computer scientists have assigned names to 
programmers working in each of these roles.  Naturally enough, a programmer who 
implements a library is called an implementer.  Conversely, a programmer who calls 
functions provided by a library is called a client of that library. 
 

Both functions and libraries offer a tool for hiding lower-level implementation 
details so that clients need not worry about them.  In computer science, this technique 
is called information hiding.  The fundamental idea, championed by David Parnas in 
the early 1970s, is that the complexity of programming systems is best managed by 
making sure that details are visible only at those levels of the program at which they 
are relevant.  For example, only the programmers who implement math.sqrt need 
to know the details of its operation.  Clients who merely use math.sqrt can remain 
blissfully unaware of the underlying details. 
 
The concept of an interface 
In computer science, the understanding shared between a client and an implementer 
is called an interface.  Conceptually, an interface contains the information that clients 
need to know about a library—and no more.  For clients, getting too much information 
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can be as bad as getting too little, because additional detail is likely to make the 
interface more difficult to understand.  Often, the real value of an interface lies not in 
the information it reveals but rather in the information it hides. 
 

When you design an interface for a library, you should try to protect the client 
from as many of the complicating details of the implementation as possible.  In doing 
so, it is perhaps best to think of an interface not as a communication channel between 
the client and the implementation, but instead as a wall that divides them. 
 

 
 

Like the wall that divided the lovers Pyramus and Thisbe in Greek mythology, the 
wall representing an interface contains an opening or chink that allows the two sides 
to communicate.  In programming, that chink exposes the function definitions so that 
the client and implementation can share essential information.  The main purpose of 
the wall, however, is to keep the two sides apart.  Ideally, all the complexity involved 
in the realization of a library lies on the implementation side of the wall.  An interface 
is successful if it supports the principle of information hiding by keeping as much 
complexity as possible away from the client side. 
 

 5.4 The random library 
Before turning to the problem of creating new libraries, it makes sense to explore 
another Python library so that you have more examples than the math library you 
have already seen.  The random library exports a set of functions that allow you to 
write programs that make seemingly random choices.  Being able to simulate random 
behavior is necessary, for example, if you want to write a computer game that 
involves flipping a coin or rolling a die, but is also useful in more practical contexts.  
Programs that simulate random processes are said to be nondeterministic. 
 

As with the math library, you need to import the random library before you use it 
in a module.  To do so, all you need is the statement 
 

import random 
 

at the beginning of your file.  Including this statement gives you access to all the 
functions in the random library but requires you to refer to those functions using their 
fully qualified name, which includes the source module name and a dot, as in 
random.randint. 
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Functions in the random library 
A subset of the functions exported by the random library appears in Figure 5-3.  These 
functions are subdivided into categories depending on the type of value on which they 
operate.  The first section offers a set of functions for working with random integers.  
The easiest function to use is randint(min, max), which returns an integer between 
min and max, inclusive.  You can, for example, use this function to generate a die roll 
like this: 
 

die = random.randint(1, 6) 
 

Similarly, you could generate the outcome of spinning a European roulette wheel 
(unlike American roulette wheels, which have both a 0 and a 00 slot, European 
roulette wheels have slots numbered from 0 to 36) with the following statement: 
 

spin = random.randint(0, 36) 
 

You can also generate random integers using the function randrange, which takes 
the same argument forms as the range function used in conjunction with the for 
loop.  Thus, you could also simulate the die roll like this: 
 

die = random.randrange(1, 7) 
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Figure 5-3 includes two functions for generating random floating-point numbers, 
although the random library implements a much larger set of functions that are useful 
in statistical applications.  The random function itself generates a number uniformly 
distributed over the range from 0 to 1.  More generally, the function 
uniform(min, max) returns a floating-point value between min and max.  For 
example, the function call 
 

random.uniform(-1, 1) 
 
generates a random floating-point number between –1 and 1. 
 

You can use the random function to simulate random events that occur with some 
probability.  The predicate function 
 

def random_chance(p=0.5): 
    return random.random() < p 

 
returns True with probability p, where the argument is a statistical probability value 
between 0.0, which means that the event never happens, and 1.0, which means that 
the event always happens.  If p is omitted, the random_chance function uses the 
default value 0.5, which signifies an event that happens with probability 0.5, or 50 
percent of the time.  Thus, you can simulate the process of flipping a coin using the 
following statements, which set the variable flip to "Heads" or "Tails" with equal 
probability: 
 

if random_chance(): 
    flip = "Heads" 
else: 
    flip = "Tails" 

 
The functions random.choice, random.sample, and random.shuffle are 

designed for use with lists, which are introduced in Chapter 8.  As a preview of these 
coming attractions, you can use random.choice to choose a random character from 
a string.  For example, you can use the following line to set the variable letter to a 
randomly chosen lowercase letter: 
 

letter = random.choice("abcdefghijklmnopqrstuvwxyz") 
 
Initializing the random number generator 
The seed function in the last section of Figure 5-3 requires a little more explanation.  
Because computers are deterministic machines, random numbers are usually 
computed by going through a deterministic calculation that nonetheless appears 
random to the user.  Random numbers computed in this way are called pseudorandom 
numbers.  By default, modern versions of Python automatically call seed to initialize 
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the generator, but it is still common practice to include an explicit call to 
random.seed() at the beginning of each program that uses the random library.  The 
effect of this statement is to initialize the internal state of Python’s random number 
generator to an unpredictable value based on the system clock.  As Figure 5-3 shows, 
you can also call seed with an integer argument, which is used to set the internal 
state.  If you initialize the random number generator to a particular value, it will 
always generate the same values every time the program is run. 
 

At first, it may seem hard to understand why a random number package should 
return the same values on each run.  After all, deterministic behavior of this sort seems 
to defeat the whole purpose of the package.  There is, however, a good reason behind 
this behavior: programs that behave deterministically are easier to debug.  To 
illustrate this fact, suppose you have just written a program to play an intricate game, 
such as Monopoly.  As is always the case with newly written programs, the odds are 
good that your program has a few bugs. In a complex program, bugs can be relatively 
obscure, in the sense that they only occur in rare situations.  Suppose you are playing 
the game and discover that the program is starting to behave in a bizarre way.  As you 
begin to debug the program, it would be very convenient if you could regenerate the 
same state and take a closer look at what is going on.  Unfortunately, if the program 
is running in a nondeterministic way, a second run of the program will behave 
differently from the first.  Bugs that showed up the first time may not occur on the 
second pass. 
 

In general, it is difficult to reproduce the conditions that cause a program to fail if 
the program is behaving in a truly random fashion.  If, on the other hand, the program 
is operating deterministically, it will do the same thing each time.  This behavior 
makes it possible for you to recreate the conditions under which the problem 
occurred.  When you write a program that works with random numbers, it is usually 
best to call random.seed with an argument during the debugging phase.  When the 
program seems to be working well, you can remove that argument to ensure that its 
behavior changes from one run to the next. 
 
Using the random library 
As an illustration of how clients might use the random library, the Craps program in 
Figure 5-4 plays the casino game called craps.  The rules for craps appear in the 
comments at the beginning of the program.  The code itself follows the outline 
imposed by the rules of the game.  In particular, it rolls the dice initially and then 
chooses how to proceed according to the result of that first roll.  Moreover, because 
the task of rolling two dice and determining their sum appears at different points in 
the program, it makes sense to make rolling two dice a separate function.  The startup 
code at end of the Craps.py file runs the Craps function repeatedly, asking the user 
at the end of each game whether to play again. 
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Although the Craps function is nondeterministic and will therefore produce 
different results each time, the following console log shows two possible outcomes: 
 

 
 

As a second example of a program that uses the random library, the 
RandomCircles.py program in Figure 5-5 on the next page displays circles of 
various random sizes, random colors, and random positions.  The display will be 
different each time, but the code makes sure that the individual circles always fit 
inside the graphics window.  A sample run of this program might look like this: 
 

 
 
Because Python’s random number generator produces different values each time, 
running the program again produces an image with different circles, as follows: 
 

 
 

It is worth paying attention to the implementation of the random_color function 
in Figure 5-5, which uses the random.choice function to select one of the sixteen 
hexadecimal digits.  The effect is to create a hexadecimal color value in the form 
"#dddddd", as described on page 106. 
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 5.5 Creating your own libraries 
One of the most important advantages of creating a library is that doing so allows you 
to reuse functions and definitions in new programs without having to copy the actual 
code.  For example, you may have noticed that the RandomCircles program in Figure 
5-5 included the function create_filled_circle, which first appeared in the 
Target.py program in Figure 4-14.  If you discover that you are using a function 
several times in different applications, you should consider defining that function in 
a library module and then importing that module when you need it. 
 

Python makes it extremely easy to import definitions from other modules.  You 
could, for example, import create_filled_circle directly from the Target 
module by including the line 
 

from Target import create_filled_circle 
 
at the top of your program.  Doing so, however, is likely to confuse clients who are 
not familiar with the Target application.  In most cases, it makes sense to collect 
several similar functions together into a module that is used only as a library and not 
as an application.  Client applications can then import the functions they need from a 
common source. 
 

When you create a new library module from existing functions, it is usually wise 
to think about those functions carefully to see whether they meet the needs of as many 
clients as possible.  While the create_filled_circle function does exactly what 
both the Target.py and RandomCircles.py programs need, other applications may 
want to control the color used for the border of the circle separately from the color 
used to fill it.  If you decide that feature would be useful, you should redefine 
create_filled_circle so that it takes two arguments specifying color, one for the 
fill color and one for the border color, both of which are optional.  If only one color 
argument appears, that argument should be used to set the color of the entire circle, 
just as it has in the existing applications.  Clients that need to control the fill and 
border colors independently should two color names, ideally specified as keyword 
parameters under the names fill and border so that their order is unimportant. 
 

The extended version of create_filled_circle appears in Figure 5-6 along 
with a similar function for rectangles called create_filled_rect and a useful 
function called create_centered_label that creates a GLabel centered at a 
specified point.  Clients who need any of these functions can then import them from 
the gtools module.  You can, moreover, go back and rewrite the Target.py and 
RandomCircles.py programs to import the create_filled_circle function from 
gtools because the new definition is compatible with the old one. 
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The code in Figure 5-6 introduces one new feature of Python, which is important 
to understand if you are trying to write functions that take different argument patterns.  
To detect whether an argument is missing from the call, all three functions specify 
the Python constant None as a default value for the last parameter in the list.  The new 
feature appears later in the function body when the code checks to see whether that 
argument was specified.  Although the == and != operators also work for this purpose, 
the approved way to check for None is to use the Python operators is and is not, 
which test for exact identity rather than equality.  The distinction is subtle and beyond 
the scope of this chapter, but you will have a chance later in this book to see examples 
where the differences between these operators matter. 
 

 5.6 Inner functions 
In Python, you can define one function inside another function simply by nesting the 
definitions just as you would nest any control structure.  A function defined inside 
another one is called an inner function.  The following admittedly artificial example 
defines a function g inside a function f: 
 

def f(x, y): 
    def g(n): 
        return x ** n 
    return g(y) 

 
The function g is an inner function and is defined only inside the function f.  It takes 
a single argument n and returns the value of the variable x raised to the nth power.  
Although that idea initially seems straightforward, it is important to ask yourself how 
the function g determines the value of x. 
 

The answer is that x is defined in the enclosing context.  The variable x is one of 
the parameters for the function f, which encloses the definition of g.  If g cannot find 
a variable in its own collection of variables, it looks to see if that variable is defined 
in the enclosing function.  When Python evaluates the expression x ** n, if find the 
value on n in its own stack frame and the value of x in the frame of the enclosing 
function f.  Calling f(2, 3), for example, creates a frame for the function f, which 
looks like this when execution reaches the return statement: 
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Executing the return statement requires Python to evaluate the function g(y) in 
the current frame.  Since g is an inner function, its frame is conceptually nested inside 
the frame for f and has access to its variables.  The frame diagram after invoking g 
therefore looks like this: 
 

 
 
Inside the frame for g, the variable n is in the local frame and has the value 3.  The 
variable x appears in the enclosing frame and has the value 2.  The result of the 
function call is therefore 23 or 8. 
 

When Python needs to find the value of an identifier, it searches for the name in 
the following four contexts: 
 
1. Local.  The local context consists of all names defined within the current 

function.  A name is defined in the function if it appears as a parameter, as the 
target of an assignment, as the index variable in a for loop, or as the name of a 
nested function definition. 

2. Enclosing.  The enclosing context consists of the names defined in a function 
that encloses the current one, as illustrated by the diagram showing the frame for 
g nested within the frame for f. 

3. Global.  The global context consists of names defined outside of any function or 
imported into the current module using the from-import statement. 

4. Built-in.  The last place that Python looks for a name is in the list of built-in 
functions like abs, str, and print. 

 
Python searches each of these contexts in order, so that a local definition takes 
precedence over a definition in any of the other contexts.  Names defined at one level 
can therefore hide names defined at lower levels of this hierarchy.  For example, it is 
perfectly legal in Python to use str as the name of a local variable, but doing so 
means that it is impossible to call the built-in function str inside the function that 
defines the local variable.  Hiding an existing identifier by defining its name in a more 
local context is called shadowing. 
 

The region of a program in which an identifier is defined is called its scope.  The 
rules for determining the scope of an identifier in Python are a little more complicated 
than this section suggests, but these rules are sufficient in most cases. 
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One of the advantages of defining nested functions is that doing so allows a set of 
related functions to share local data without having to pass all of the information as 
arguments.  For example, the DrawHouse.py program in Figure 4-11 can be 
simplified by defining the functions draw_house_at, draw_frame, draw_door, and 
draw_window as inner functions nested within the draw_house definition.  Doing so 
makes it unnecessary to pass gw as an explicit parameter to each of these functions 
because those functions can see this variable in the enclosing scope.  You will have a 
chance to implement this strategy in exercise 6. 
 

 5.7 Introduction to recursion 
Most algorithmic strategies used to solve programming problems have counterparts 
outside the domain of computing.  When you perform a task repeatedly, you are using 
iteration.  When you make a decision, you exercise conditional control.  Because 
these operations are familiar, most people learn to use the control statements for, 
while, and if with relatively little trouble. 
 

Before you can solve certain more sophisticated programming tasks, you will need 
to master a powerful problem-solving strategy that has few direct counterparts in the 
real world.  That strategy, called recursion, is defined as any solution technique in 
which large problems are solved by reducing them to smaller problems of the same 
form.  The italicized phrase is crucial to the definition, which otherwise describes the 
basic strategy of stepwise refinement.  Both strategies involve decomposition.  What 
makes recursion special is that the subproblems in a recursive solution have the same 
form as the original problem. 
 

If you are like most beginning programmers, the idea of breaking a problem down 
into subproblems of the same form does not make much sense when you first hear it.  
Unlike repetition or conditional testing, recursion is not a concept that comes up in 
day-to-day life.  Because it is unfamiliar, learning how to use recursion can be 
difficult.  To do so, you must develop the intuition necessary to make recursion seem 
as natural as all the other control structures.  For most students of programming, 
reaching that level of understanding takes considerable time and practice.  Even so, 
learning to use recursion is definitely worth the effort.  As a problem-solving tool, 
recursion is so powerful that it at times seems almost magical.  In addition, using 
recursion often makes it possible to write complex programs in simple and profoundly 
elegant ways. 
 
A simple example of recursion 
To gain a better sense of what recursion is, let’s imagine that you have been appointed 
as the funding coordinator for a political campaign, which is long on volunteers but 
short on cash.  Your job is to raise $1,000,000 in contributions. 
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If you know someone who is willing to write a check for the entire $1,000,000, 
your job is easy.  On the other hand, you may not be lucky enough to have friends 
who are generous millionaires.  In that case, you must raise the $1,000,000 in smaller 
amounts.  If the average contribution is $100, you might choose a different tack: call 
10,000 friends and ask each of them for $100.  But then again, you probably don’t 
have 10,000 friends.  So what can you do? 
 

As is often the case when you are faced with a task that exceeds your own capacity, 
the answer lies in delegating part of the work to others.  Your organization has a ready 
supply of volunteers.  If you could find 10 dedicated supporters in different parts of 
the country and appoint them as regional coordinators, each of those 10 people could 
then take responsibility for raising $100,000. 
 

Raising $100,000 is simpler than raising $1,000,000, but it hardly qualifies as 
easy.  What should your regional coordinators do?  If they adopt the same strategy, 
they will in turn delegate parts of the job.  If they each recruit 10 fundraising 
volunteers, those people will only have to raise $10,000 each.  The delegation process 
can continue until the volunteers are able to raise the money on their own; because 
the average contribution is $100, the volunteer fundraisers can probably raise $100 
from a single donor, which eliminates the need for further delegation.  If you express 
this fundraising strategy in pseudocode, it has the following structure: 
 

def collect_contributions(n): 
    if n <= 100: 
        Collect the money from a single donor. 
    else: 
        Find 10 volunteers. 
        Get each volunteer to collect n/10 dollars. 
        Combine the money raised by the volunteers. 

 
The most important thing to notice about this pseudocode function is that the line 

 
Get each volunteer to collect n/10 dollars. 

 
is simply the original problem reproduced at a smaller scale.  The basic character of 
the task—raise n dollars—remains exactly the same; the only difference is that n has 
a smaller value.  Moreover, because the problem is the same, you can solve it by 
calling the original function.  Thus, the preceding line of pseudocode would 
eventually be replaced with the following line: 
 

collect_contributions(n / 10) 
 
It’s important to note that the collect_contributions function ends up calling 
itself if the contribution level is greater than $100.  In the context of programming, 
having a function call itself is the defining characteristic of recursion. 
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The structure of the collect_contributions function is typical of recursive 
functions.  In general, the body of a recursive function has the following form: 
 

if test for simple case: 
    Compute a simple solution without using recursion. 
else: 
    Break the problem down into subproblems of the same form. 
    Solve each of the subproblems by calling this function recursively. 
    Reassemble the subproblem solutions into a solution for the whole. 

 
This structure provides a template for writing recursive functions and is therefore 
called the recursive paradigm.  You can apply this technique to programming 
problems as long as they meet the following conditions: 
 
1. You must be able to identify simple cases for which the answer is easily 

determined. 

2. You must be able to identify a recursive decomposition that lets you break any 
complex instance of the problem into simpler problems of the same form. 

 

The collect_contributions example illustrates the power of recursion.  As 
with any recursive technique, the original problem is solved by breaking it down into 
smaller subproblems that differ from the original only in their scale.  Here, the original 
problem is to raise $1,000,000.  At the first level of decomposition, each subproblem 
is to raise $100,000.  These problems are then subdivided to create smaller problems 
until the problems are simple enough to be solved immediately without recourse to 
further subdivision. 
 
A recursive formulation of the factorial function 
The combinations module in Figure 5-2 includes a simple implementation of a 
function to compute factorials, which looks like this: 
 

def fact(n): 
    result = 1 
    for i in range(1, n + 1): 
        result *= i 
    return result 

 

This implementation uses a for loop to cycle through the integers between 1 and n.  
Strategies based on looping are said to be iterative. 
 

You can, however, also implement the fact function recursively by taking 
advantage of an important mathematical property of factorials.  Each factorial is 
related to the factorial of the next smaller integer in the following way: 
 

n!  =  n × (n – 1)! 
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Thus, 4! is 4 × 3!, 3! is 3 × 2!, and so on.  To make sure that this process stops at some 
point, mathematicians define 0! to be 1.  Thus, the conventional mathematical 
definition of the factorial function looks like this: 
 

n!  = 

 

1 if n = 0 

n × (n – 1)! otherwise 
 

This definition is recursive, because it defines the factorial of n in terms of a simpler 
instance of the factorial function: finding the factorial of n – 1.  The new problem has 
the same form as the original, which is the fundamental characteristic of recursion.  
You can then use the same process to define (n – 1)! in terms of (n – 2)!.  Moreover, 
you can carry this process forward step by step until the solution is expressed in terms 
of 0!, which is equal to 1 by definition. 
 

From your perspective as a programmer, the most important consequence of the 
definition from mathematics is that it provides a template for a recursive solution.  In 
Python, you can implement a function fact that computes the factorial of its 
argument as follows: 
 

def fact(n): 
    if n == 0: 
        return 1 
    else: 
        return n * fact(n - 1) 

 
If n is 0, the result of fact is 1.  If not, the implementation computes the result by 
calling fact(n - 1) and then multiplying the result by n.  This implementation 
follows directly from the mathematical definition of the factorial function and has 
precisely the same recursive structure. 
 
Tracing the recursive process 
If you work from the mathematical definition, writing the recursive implementation 
of fact is straightforward.  On the other hand, even though the definition is easy to 
write, the brevity of the solution may seem suspicious.  When you are learning about 
recursion for the first time, the recursive implementation of fact seems to leave 
something out.  Even though it clearly reflects the mathematical definition, the 
recursive formulation makes it hard to identify where the actual computational steps 
occur.  When you call fact, for example, you want the computer to give you the 
answer.  In the recursive implementation, all you see is a formula that transforms one 
call to fact into another one.  Because the steps in that calculation are not explicit, it 
seems somewhat magical when the computer gets the right answer.  If you trace 
through the logic the computer uses to evaluate any function call, however, you 
discover that no magic is involved.  When the computer evaluates a call to the 
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recursive fact function, it goes through the same process it uses to evaluate any other 
function call. 
 

To visualize the process, suppose that you have executed the statement 
 

print("fact(4) =", fact(4)) 
 
in the IDLE interpreter.  When this statement calls fact, Python creates a new stack 
frame and copies the argument value into the formal parameter n.  The frame for fact 
temporarily supersedes the frame executing the print call as shown in the following 
diagram: 
 

 
 

The computer now begins to evaluate the body of the function, starting with the 
if statement.  Because n is not equal to 0, control proceeds to the else clause, where 
the program must evaluate and return the value of the expression 
 

n * fact(n - 1) 
 
Evaluating this expression requires computing the value of fact(n - 1), which 
introduces a recursive call.  When that call returns, all the program has to do is to 
multiply the result by n.  The current state of the computation can therefore be 
diagrammed as follows: 
 

 
 
As soon as the call to fact(n - 1) returns, the result is substituted for the expression 
underlined in the diagram, which allows computation to proceed. 
 

The next step in the computation is to evaluate the call to fact(n - 1), beginning 
with the argument expression.  Because the current value of n is 4, the argument 
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expression n - 1 has the value 3.  The computer then creates a new frame for fact in 
which n is initialized to this value.  Thus, the next frame looks like this: 
 

 
 
There are now two frames labeled fact.  In the most recent one, the computer is just 
starting to calculate fact(3).  This new frame hides the previous frame for fact(4), 
which will not reappear until the fact(3) computation is complete. 
 

Computing fact(3) again begins by testing the value of n.  Since n is still not 0, 
the else clause evaluates fact(n - 1), which creates another stack frame: 
 

 
 
Following the same logic, the program must now call fact(1), which in turn calls 
fact(0), creating two new stack frames, as follows: 
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At this point, however, the situation changes.  Because the value of n is 0, the 
function can return its result immediately. The value 1 is returned to the calling frame, 
which resumes its position on top of the stack, as shown: 
 

 
 

From this point, the computation proceeds back through each of the recursive 
calls, completing the calculation of the return value at each level.  In this frame, for 
example, the call to fact(n - 1) can be replaced by the value 1, as shown in the stack 
frame.  The code then computes the result by multiplying the current value of n by 1 
and then returns that result to its caller, like this: 
 

 
 
Because n is now 2, evaluating the return statement causes the value 2 to be passed 
back to the previous level, as follows: 
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At this stage, the program returns 3 × 2 to the previous level, so that the frame for the 
initial call to fact looks like this: 
 

 
 
The final step in the calculation process consists of calculating 4 × 6 and returning 
the value 24 to the call to print in the IDLE interpreter. 
 
The recursive leap of faith 
The point of including the complete trace of the fact(4) computation is to convince 
you that the computer treats recursive functions just like all other functions.  When 
you are faced with a recursive function, you can—at least in theory—mimic the 
operation of the computer and figure out what it will do.  By drawing all the frames 
and keeping track of all the variables, you can duplicate the entire operation and come 
up with the answer.  If you do so, however, you will usually find that the complexity 
of the process ends up making the computation much harder to follow. 
 

Whenever you try to understand a recursive program, it is useful to put the 
underlying details aside and focus instead on a single level of the operation.  At that 
level, you are allowed to assume that any recursive call automatically gets the right 
answer as long as the arguments to that call are in some sense simpler than the original 
arguments.  This psychological strategy—assuming that any simpler recursive call 
will work correctly—is called the recursive leap of faith.  Learning to apply this 
strategy is essential to using recursion in practical applications. 
 

As an example, consider what happens when this implementation is used to 
compute fact(n) with n equal to 4.  To do so, the recursive implementation must 
compute the value of the expression 
 

n * fact(n - 1) 
 
By substituting the current value of n into the expression, you know that the result is 
 

4 * fact(3) 
 
Stop right there.  Computing fact(3) is simpler than computing fact(4).  Because 
it is simpler, the recursive leap of faith allows you to assume that it works.  Thus, you 
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should assume that the call to fact(3) correctly computes the value of 3!, which is 
3 × 2 × 1, or 6.  The result of calling fact(4) is therefore 4 × 6, or 24. 
 

Whenever you try to understand a recursive function, it is better to focus on the 
big picture instead of the details.  Once you have made the recursive decomposition 
and identified the simple cases, be satisfied that the computer can handle the rest. 
 
The Fibonacci function 
In a mathematical treatise entitled Liber Abbaci published in 1202, the Italian 
mathematician Leonardo Fibonacci proposed a problem that has had a wide influence 
on many fields, including computer science.  The problem was phrased as an exercise 
in population biology—a field that has become increasingly important in recent years.  
Fibonacci’s problem concerns how the population of rabbits would grow from 
generation to generation if the rabbits reproduced according to the following, 
admittedly fanciful, rules: 
 
• Each pair of fertile rabbits produces a new pair of offspring each month. 
• Rabbits become fertile in their second month of life. 
• Old rabbits never die. 
 
If a pair of newborn rabbits is introduced in January, how many pairs of rabbits are 
there at the end of the year? 
 

You can solve Fibonacci’s problem by keeping a count of the rabbits at each 
month during the year.  At the beginning of January, there are no rabbits, since the 
first pair is introduced sometime in that month, which leaves one pair of rabbits on 
February 1st.  Because the initial pair of rabbits is newborn, they are not yet fertile in 
February, which means that the only rabbits on March 1st are the original pair of 
rabbits.  In March, however, the original pair is now of reproductive age, which means 
that a new pair of rabbits is born.  The new pair increases the colony’s population—
counting by pairs—to two on April 1st.  In April, the original pair goes right on 
reproducing, but the rabbits born in March are as yet too young.  Thus, there are three 
pairs of rabbits at the beginning of May.  From here on, with more rabbits becoming 
fertile each month, the rabbit population begins to explode. 
 

At this point, it is useful to record the population data so far as a sequence of terms, 
indicated by the subscripted value ti , each of which shows the number of rabbit pairs 
at the beginning of the i th month from the start of the experiment on January 1st.  The 
sequence itself is called the Fibonacci sequence and begins with the following terms, 
which represent the results of our calculation so far: 
 

 t0 t1 t2 t3 t4 
 0 1 1 2 3 
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You can simplify the computation of further terms in this sequence by making an 
important observation.  Because in this problem pairs of rabbits never die, all the 
rabbits that were around in the previous month are still around.  Moreover, every pair 
of fertile rabbits has produced a new pair.  The number of fertile rabbit pairs capable 
of reproduction is simply the number of rabbits that were alive in the month before 
the previous one.  The net effect is that each new term in the sequence must simply 
be the sum of the preceding two.  Thus, the next several terms in the Fibonacci 
sequence look like this: 
 

 t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 
 0 1 1 2 3 5 8 13 21 34 55 89 144 

 

The number of rabbit pairs at the end of the year is therefore 144. 
 

From a programming perspective, it helps to express the rule for generating new 
terms in the following more mathematical form: 
 

tn  =  tn-1  +  tn-2 
 

An expression of this type, in which each element of a sequence is defined in terms 
of earlier elements, is called a recurrence relation. 
 

The recurrence relation alone is not sufficient to define the Fibonacci sequence.  
Although the formula makes it easy to calculate new terms in the sequence, the 
process has to start somewhere.  In order to apply the formula, you need to have at 
least two terms already available, which means that the first two terms in the 
sequence—t0 and t1—must be defined explicitly.  The complete specification of the 
terms in the Fibonacci sequence is therefore 
 

tn  = 

 

n if n is 0 or 1 

tn-1 + tn-2 otherwise 
 

This mathematical formulation is an ideal model for a recursive implementation 
of a function fib(n) that computes the n th term in the Fibonacci sequence.  All you 
need to do is plug the simple cases and the recurrence relation into the standard 
recursive paradigm.  The recursive implementation of fib(n) looks like this: 
 

def fib(n): 
    if n == 0 or n == 1: 
        return n 
    else: 
        return fib(n - 1) + fib(n - 2) 

 
Now that you have a recursive implementation of the function fib, how can you 

go about convincing yourself that it works?  You can always begin by tracing through 
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the logic.  Consider, for example, what happens if you call fib(5).  Because this is 
not one of the simple cases enumerated in the if statement, the implementation 
computes the result by evaluating the line 
 

return fib(n - 1) + fib(n - 2) 
 
which in this case is equivalent to 
 

return fib(4) + fib(3) 
 
At this point, the computer calculates the result of fib(4), adds that to the result of 
calling fib(3), and returns the sum as the value of fib(5). 
 

But how does the computer evaluate fib(4) and fib(3)?  The answer, of course, 
is that it uses precisely the same strategy it did to calculate fib(5).  The essence of 
recursion is to break problems down into simpler ones that can be solved by calls to 
exactly the same function.  Those calls get broken down into simpler ones, which in 
turn get broken down into even simpler ones, until at last the simple cases are reached. 
 

Although you could certainly work through the necessary steps, it is best to regard 
this entire mechanism as irrelevant detail.  Instead, all you need to do is remember 
the recursive leap of faith.  Your job at this level is to understand how the call to 
fib(5) works.  In the course of walking though the execution of that function, you 
have managed to transform the problem into computing the sum of fib(4) and 
fib(3).  Because the argument values are smaller, each of these calls represents a 
simpler case.  Applying the recursive leap of faith, you can assume that the program 
correctly computes each of these values, without going through all the steps yourself. 
 

 Summary 
In this chapter, you learned about functions, which enable you to refer to an entire set 
of operations with a single name.  More importantly, by allowing the programmer to 
ignore the internal details and concentrate only on the effect of a function as a whole, 
functions provide a critical tool for reducing the conceptual complexity of programs. 
 

The important points introduced in this chapter include: 
 
• A function consists of a set of program statements that have been collected 

together and given a name.  Other parts of the program can then call that function, 
possibly passing it information in the form of arguments and receiving a result 
returned by that function. 

• A function that returns a value must have a return statement that specifies the 
result.  Functions may return values of any type. 
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• Variables declared within a function are local to that function and cannot be used 
outside it.  Internally, all the variables declared within a function are stored 
together in a stack frame. 

• Parameters are local variables that act as placeholders for the argument values. 

• Parameters in Python come in two types: positional and keyword.  Python 
initializes positional parameter variables by copying the argument values in the 
order in which they appear.  Arguments specified by keyword are copied into the 
parameter variable with the same name. 

• Python allows a function to specify a default values for each parameter, which is 
used if the caller fails to supply a value. 

• If any parameters remain uninitialized after positional, keyword, and default 
processing is complete, Python reports an error. 

• When a function returns, it continues from precisely the point at which the call 
was made.  Computer scientists refer to this point as the return address. 

• You can create your own libraries by collecting the necessary code in a module 
whose name ends with the standard .py file type.  You can then use the entries 
exported by this library by importing them into your application. 

• In understanding the concept of a library, it is useful to differentiate the roles of 
the client, who uses the library, and the implementer, who writes the necessary 
code.  The shared understanding between the client and the implementer is called 
the interface. 

• Figure 5-3 lists some of the functions available in Python’s random library. These 
functions enable you to write applications that simulate random behavior. 

• In Python, function definitions can be nested inside other functions.  The nested 
functions are called inner functions. 

• An inner function has access to the local variables in the function that encloses it. 

• Python determines the value associated with an identifier by looking at the 
following contexts in order: local, enclosing, global, and built-in. 

• The portion of a program in which an identifier is defined is called its scope. 

• Python’s implementation of function calls makes it possible for a function to call 
itself, because the local variables for each call are stored in different stack frames.  
Functions that call themselves are said to be recursive. 

• Before you can use recursion effectively, you must learn to limit your analysis to 
a single level of the recursive decomposition and to rely on the correctness of all 
simpler recursive calls without tracing through the entire computation.  Trusting 
these simpler calls to work correctly is often called the recursive leap of faith. 
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 Review questions 
1. Define the following terms as they apply to functions: call, argument, return. 
 
2. How do you specify the result of a function in Python? 
 
3. Can there be more than one return statement in the body of a function? 
 
4. Variables declared within a function are called local variables.  What is the 

significance of the word local in this context? 
 
5. What is a stack frame? 
 
6. What do computer scientists mean by the term return address? 
 
7. In your own words, describe the process by which Python uses the arguments in 

a function call to initialize the parameters variables.  Be sure that your 
explanation covers positional, keyword, and default parameters 

 
8. Describe the differences between the roles of client and implementer. 
 
9. What is an interface? 
 
10. How would you use the random.randint function to generate a randomly 

chosen integer between 1 and 100?  How would you accomplish the same result 
using random.randrange? 

 
11. If you run the RandomCircles.py program shown in Figure 5-5, you expect to 

see 10 circles on the graphics window because N_CIRCLES has the value 10.  In 
fact, you sometimes see fewer circles.  Why might this be? 

 
12. What are the three functions exported by the gtools library in Figure 5-6? 
 
13. What is an inner function? 
 
14. True or false: An inner function has access to the local variables in the enclosing 

function. 
 
15. What is meant by the term scope as it applies to variable names? 
 
16. List the order in which Python searches contexts for the value on an identifier. 
 
17. Describe the difference between the strategies of iteration and recursion. 
 
18. What is meant by the phrase recursive leap of faith?  Why is this concept 

important for you as a programmer? 
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19. In the section entitled “Tracing the recursive process,” the text goes through a 
long analysis of what happens internally when fact(4) is called.  Using this 
section as a model, trace the execution of fib(3), sketching out each stack frame 
created in the process. 

 

 Exercises 
1. Write a function random_average(n) that generates n random real numbers 

between 0 and 1 and then returns the average of those n values.  Statistically, 
calling random_average(n) will produce results that become closer to 0.5 as the 
value of n increases.  Write a main program that displays the result of calling 
random_average on 1, 10, 100, 1000, 10000, 100000, and 1000000. 

 
2. Heads. . . . 

Heads. . . . 
Heads. . . . 
A weaker man might be moved to re-examine his faith, if in 
nothing else at least in the law of probability. 

—Tom Stoppard, Rosencrantz and Guildenstern Are Dead, 1967 
 

Write a function consecutive_heads(number_needed) that simulates tossing 
a coin repeatedly until the specified number of heads appear consecutively.  At 
that point, your program should display a line on the console that indicates how 
many coin tosses were needed to complete the process.  The following console 
log shows one possible execution of the program: 

 

 
 
3. I shall never believe that God plays dice with the world. 

—Albert Einstein, 1947 
 

Despite Einstein’s metaphysical objections, the current models of physics, and 
particularly of quantum theory, strongly suggest that nature does indeed involve 
random processes.  A radioactive atom, for example, does not decay for any 
specific reason that we mortals understand.  Instead, that atom has a probability 
of decaying randomly within a particular period of time. 
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Because physicists consider radioactive decay a random process, it is not 
surprising that random numbers can be used to simulate it.  Suppose you start 
with a collection of atoms, each of which has a certain probability of decaying in 
any unit of time.  You can then approximate the decay process by taking each 
atom in turn and deciding randomly whether it decays. 

 

Write a function simulate_radioactive_decay that models the process of 
radioactive decay.  The first parameter is the initial population of atoms; the 
second is the probability that any of those atoms will decay within a year.  For 
example, calling 

 

simulate_radioactive_decay(10000, 0.5) 
 

simulates what happens over time to a sample that contains 10,000 atoms of some 
radioactive material, where each atom has a 50 percent chance of decaying in a 
year.  Your function should produce a trace on the console showing how many 
atoms remain at the end of each year until all of the atoms have decayed.  For 
example, the output of your function might look like this: 

 

 
 

As the numbers indicate, roughly half the atoms in the sample decay each year.  
In physics, the conventional way to express this observation is to say that the 
sample has a half-life of one year. 

 
4. Random numbers offer an interesting strategy for approximating the value of p.  

Imagine that you have a green dartboard hanging on your wall that consists of a 
circle painted on a square backdrop, as in the following diagram: 
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What happens if you throw a sequence of darts completely randomly, ignoring 
any darts that miss the board altogether?  Some of the darts will fall inside the 
green circle, but some will be outside the circle in the white corners of the square.  
If the throws are random, the ratio of the number of darts landing inside the circle 
to the total number of darts hitting the square should be approximately equal to 
the ratio between the two areas.  The ratio of the areas is independent of the actual 
size of the dartboard, as illustrated by the formula 

 

   @      =      =   
 

 
To simulate this process in a program, imagine that the dartboard is drawn on 

the standard Cartesian coordinate plane with its center at the origin and a radius 
of 1 unit.  The process of throwing a dart randomly at the square can be modeled 
by generating two random numbers, x and y, each of which lies between –1 and 
+1.  This (x, y) point always lies somewhere inside the square.  The point (x, y) 
lies inside the circle if 

 

  <   1 
 

This condition, however, can be simplified considerably by squaring each side 
of the inequality, which yields the following more efficient test: 

 

x2 + y2  <  1 
 

If you perform this simulation many times and compute what fraction of the darts 
falls inside the circle, the result will be an approximation of p/4. 

 

Write a program that simulates throwing 10,000 darts and then uses the results 
to display an approximate value of p.  Don’t worry if your answer is correct only 
in the first few digits.  The strategy used in this problem is not particularly 
accurate, even though it often provides useful approximations.  In mathematics, 
this technique is called Monte Carlo integration, after the capital city of Monaco, 
famous for its casinos. 

 
5. The combinations function C(n, k) determines the number of ways you can 

choose k values from a set of n elements, ignoring the order of the elements.  If 
the order of the value matters—so that, in the case of the coin example, choosing 
a penny and then a dime is seen as distinct from choosing a dime and then a 
penny—you need to use a different function, which computes the number of 
permutations, which are all the ways of ordering k elements taken from a 
collection of size n.  This function is denoted as P(n, k), and has the following 
mathematical formulation: 

 

P(n, k)  = 
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Although this definition is mathematically correct, it is not well suited to 
implementation in practice because the factorials involved quickly get very large.  
For example, if you use this formula to calculate the number of ways to select 
two cards from a standard 52-card deck (assuming that the order matters), you 
would end up trying to evaluate the following fraction: 

 

 
 

even though the answer is the much more manageable 2652 (52 ´ 51). 
 

Write a function permutations(n, k) that computes the P(n, k) function 
without calling the fact function.  Part of your job in this problem is to figure 
out how to compute this value efficiently.  To do so, you will probably find it 
useful to play around with some relatively small values to get a sense of how the 
factorials in the numerator and denominator of the formula behave. 

 
6. Rewrite the DrawHouse.py program from Figure 4-11 so that the helper 

functions are defined as inner functions that share access to the gw variable. 
 
7. Create a library file called alignment.py that exports the align_right function 

from Chapter 1 along with the similar functions align_left and align_center 
that perform left and center alignment, respectively.  In writing align_center, 
you will have to make some decision as to where it add the extra space if the 
number of spaces required is odd.  The comments associated with the function 
should document your decision. 

 
8. The values of the combinations function C(n, k) described in this chapter are 

often displayed using a triangular arrangement that begins 
 

 
 

and then continues for as many rows as desired.  This figure is called Pascal’s 
Triangle after its inventor, the seventeenth-century French mathematician Blaise 
Pascal.  Pascal’s Triangle has the interesting property that every interior entry is 
the sum of the two entries above it. 

 

Write a function display_pascal_triangle(n) that displays Pascal’s 
Triangle from row 0 up to row n, as shown in the following IDLE session: 
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The interesting challenge in this assignment is aligning the output, for which the 
library module you wrote for the preceding exercise will come in handy. 

 
9. The fact that every entry in Pascal’s Triangle is the sum of the two entries above 

it makes it possible to calculate C(n, k) recursively.  Use this insight to write a 
recursive implementation of the combinations function without using any loops 
or calls to fact. 

 
10. Spherical objects, such as cannonballs, can be stacked to form a pyramid with 

one cannonball at the top, sitting on top of a square composed of four 
cannonballs, sitting on top of a square composed of nine cannonballs, and so 
forth.  Write a recursive function cannonball that takes as its argument the 
height of the pyramid and returns the number of cannonballs it contains.  Your 
function must operate recursively and must not use any iterative constructs, such 
as while or for. 

 
11. Rewrite the fib function so that it operates iteratively rather than recursively. 
 
12. Rewrite the digit_sum function from page 45 so that it operates recursively 

instead of iteratively.  To do so, you need to identify both the simple cases and 
the necessary recursive insight. 

 
13. Rewrite the gcd function that uses Euclid’s algorithm shown on page 72 so that 

it computes the greatest common divisor recursively using the following rules: 
 

• If y is zero, then x is the greatest common divisor. 

• Otherwise, the greatest common divisor of x and y is always equal to the 
greatest common divisor of y and the remainder of x divided by y. 

 



 

C H A P T E R  6  
Writing Interactive Programs 

 
 

Quit worrying about failure.  Failure’s easy.  Worry about 
if you’re successful, because then you have to deal with it. 

— Adele Goldberg, interview with John Mashey, 2010 
 
 
 
 
 

 
Adele Goldberg (1945–) 

 
Adele Goldberg received her Ph.D. in Information Science from the University of Chicago and took a 
research position at the Xerox Palo Alto Research Center (PARC), which introduced the graphical user 
interface—an idea that has since become central to modern computing.  Together with others in the Learning 
Research Group at PARC, Goldberg designed and implemented the programming language Smalltalk, which 
took the ideas of object-oriented programming developed in Scandinavia and integrated them into a 
programming environment designed to support constructivist learning in which students build knowledge 
from their experiences.  Drawing on the state-of-the-art technology invented at PARC, Smalltalk was among 
the first programming environments designed for use with graphical displays.  Along with her colleagues 
Alan Kay and Dan Ingalls, Goldberg received the Software Systems Award from the Association for 
Computing Machinery, the leading professional society for computer science, in 1987. 
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So far, the only interactions you have had with Python programs have taken place in 
the context of the IDLE interpreter.  When you enter an expression on the IDLE 
console, the Python interpreter evaluates that expression and displays the result.  
When you run a program from the command line, your experience so far is that the 
program runs to completion with no further interaction with the user. 
 

This style of interaction, whether executed in IDLE or from the console, is called 
synchronous, because user actions are synchronized with the program operation.  A 
graphical user interface (often shortened to the acronym GUI, which is pronounced 
like gooey), by contrast, is asynchronous, in that it allows the user to intercede at any 
point, typically by using the mouse or the keyboard to trigger an action.  Actions that 
occur asynchronously with respect to the program operation, such as clicking the 
mouse or typing on the keyboard, are generically referred to as events.  Interactive 
programs that operate by responding to these events are said to be event-driven.  The 
primary goal of this chapter is to teach you how to write simple event-driven 
programs. 
 

Historically, the development of the graphical user interface has been closely 
associated with the object-oriented paradigm, which is itself commonly abbreviated 
as OOP.  There are at least two reasons that the GUI and OOP have worked well 
together (beyond the fact that they have both become popular three-letter buzzwords 
in the computing industry).  First, graphical displays are characterized by having 
many independent objects that form a hierarchical relationship that fits easily into the 
object-oriented paradigm.  Second, it is easy to think of events as messages, which 
are a central foundation of the object-oriented model.  Clicking the mouse, for 
example, sends a message to the application, which then responds in an appropriate 
way. 
 

 6.1 First-class functions 
Before looking at the details of how event-driven programs are implemented in 
Python, it is useful to spend a little more time considering the question of how Python 
implements the idea of a function.  In the programs you have seen so far in this book, 
the ideas of functions and data have remained separate.  Functions provide the means 
for representing an algorithm.  Those functions then operate on data values, which 
act as the raw material on which computation is performed.  Functions have been part 
of the algorithmic structure, not part of the data structure.  Being able to use functions 
as data values, however, often makes it much easier to design effective interfaces, 
because this facility allows clients to specify operations as well as data. 
 

In Python, functions are values that are simultaneously part of both the algorithmic 
structure and the data structure of a program.  Given a functional value, you can assign 
it to a variable, pass it as a parameter, or return it as a result.  When a programming 
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language allows functions to behave just like any other data value, computer scientists 
say that the language supports first-class functions. 
 

As noted in Chapter 1, a data type is defined as a combination of a domain and a 
set of operations.  For the function data type, the domain is the vast spectrum of 
functions that you can to define in Python.  The operation that is particular to the 
function data type is application, which is the process of calling that function with a 
list of arguments. 
 
Assigning functions to variables 
As a starting point in understanding the concept of treating functions as data objects, 
it makes sense to look at the process of assigning a function value to a variable.  The 
function abs for example is one of Python’s built-in functions.  You could assign that 
function value to a variable using the assignment statement 
 

fn = abs 
 
Like any assignment statement, this line creates a variable named fn and assigns it a 
value, which is the built-in function abs.  You can diagram the resulting situation like 
this: 
 

 
 
Since the variable fn contains a function as its value, you can call fn, just as you call 
the built-in function abs.  Calling fn(-3), for example, returns the integer 3. 
 

As with any variable, you can also change the value that fn contains.  If you have 
imported the math library, you could execute the assignment 
 

fn = math.sqrt 
 
which would change the value stored in the variable as follows: 
 

 
 
Calling fn(25) at this point would return 5.0 as a floating-point value. 
 

Although the idea of assigning functions to variable may initially seem rather 
esoteric, you have already seen it done.  The Python statement 
 

from math import sqrt 
 
is equivalent to the statements 
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import math 
sqrt = math.sqrt 

 
The assignment stores the function value math.sqrt in the global variable sqrt, 
which is then available in the current module. 
 
Closures 
For functions defined in a library or at the top level of a module, assigning that 
function to a variable corresponds to storing its name in a variable, as the box 
diagrams in the previous section suggest.  The situation is more interesting if you 
assign an inner function, as described in section 5-6, to a variable.  Inner functions 
have access to the local variables declared in the enclosing function.  In Python, that 
access is part of the function value, which combines the code that implements it with 
the variables in its scope.  This combination of code and variables is called a closure.  
Closures are an amazingly powerful feature of languages like Python and will prove 
essential to writing interactive programs. 
 
Passing functions as parameters 
Since functions in Python are first-class values, they can be passed as parameters.  
One example of an application in which doing so makes intuitive sense is the 
following function: 
 

def print_function_table(fn, min, max): 
    for i in range(min, max + 1): 
        print("fn(" + str(i) + ") = " + str(fn(i))) 

 

The first parameter is a function that takes a number and returns a result.  The effect 
of print_function_table is to count from min to max, generating a line of output 
that shows the value of the function at each of those values.  For example, if this 
definition of print_function_table is stored in the Python module fntable, you 
could generate the following IDLE session: 
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The first argument to print_function_table can be any function.  For example, 
using math.sqrt as the argument generates the following IDLE session: 
 

 
 

 6.2 A simple interactive example 
Before becoming immersed in the details, it helps to consider a simple example that 
illustrates the graphics library’s model for user interaction.  The DrawDots.py 
program in Figure 6-1 draws a small dot whenever the user clicks the mouse button.  
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For example, if you click the mouse near the upper left corner of the window, the 
program will draw a dot in that position, as shown in the following diagram: 
 

 
 
If you then go on to click the mouse in other positions, dots will appear there as well.  
You could, for example, draw a picture of the constellation Ursa Major, which is more 
commonly known as the Big Dipper.  All you would have to do is click the mouse 
once in the position of each star, as follows: 
 

 
 

Although the code in Figure 6-1 is extremely short, the program is different 
enough from the ones that you’ve seen so far that it makes sense to go through it in 
detail.  The function begins by defining the function click_action, which specifies 
what happens when the user clicks the mouse.  The next statement creates the graphics 
window, precisely as you always have. The final statement in the DrawDots.py 
program establishes the link between the graphics window and the behavior specified 
by click_action.  Executing the line 
 

gw.add_event_listener("click", click_action) 
 
tells the graphics window that it wants to respond to mouse clicks.  Moreover, the 
response to that mouse click is specified by click_action, which is called 
automatically whenever a click occurs. 
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It is useful to note that the code in Figure 6-1 never calls click_action explicitly.  
The call, when it happens, comes from the code that implements the graphics library.  
Functions that the program does not call directly but that instead occur in response to 
some event are referred to as callback functions.  The name reflects the relationship 
between the client program and the libraries it uses.  As a client, your program calls 
add_event_listener to register interest in a particular event.  As part of that 
process, you provide the library with a function that it can call when the event occurs.  
It is, in a way, analogous to providing a callback number.  When the library 
implementation needs to call you back, you’ve given it the means to do so. 
 

Now that you have a sense of how callback functions work in general, you are in 
a better position to understand the click_action function, which looks like this: 
 

def click_action(e): 
    gw.add(create_filled_circle(e.get_x(), e.get_y(), 
                                DOT_SIZE / 2)) 

 
The function takes a parameter e, which provides the function with data about the 
details of the event.  In this case, e is a mouse event, which keeps track of the location 
of the mouse along with other data.  Callback functions that respond to mouse events 
can determine the location of the mouse by invoking the methods e.get_x() and 
e.get_y().  Each of these methods returns a coordinate in pixels measured relative 
to the origin in the upper left corner of the window. 
 

The click_action function calls create_filled_circle to create the dot and 
then adds it to the window so that its center appears as the current mouse position.  
The variable gw, which is a local variable inside draw_dots, is accessible to the 
click_action code because its definition appears in the enclosing function. 
 

 6.3 Controlling properties of objects 
Before moving on to look at more sophisticated examples of interactivity, it is 
important to have a more complete understanding of how to manipulate graphical 
objects that have already been placed on the screen.  So far, the objects that you’ve 
added to the graphics window retain their initial location and dimensions.  When you 
build interactive programs, you need to be able to change these properties. 
 

The classes in the graphics library export a richer set of methods than you have 
had a chance to use so far.  Figure 6-2 lists the complete set of methods supported by 
every graphical object and a few that apply only to specific classes.  Each of the 
method descriptions consists of a single line that offers an overview of what the 
method does.  For more details, you can look up the documentation on the web. 
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GraphicsLibraryMethods.png 
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Instead of going through each of these methods in detail, this chapter presents 
several programming examples that introduce new methods only as they are needed. 
As a result, you have a chance to learn about each of the new methods in the context 
of an application that makes use of it. 
 

 6.4 Responding to mouse events 
The "click" event used in the DrawDots.py program is only one of several mouse 
events that Python allows you to detect.  The mouse events implemented by the 
GWindow class are shown in Figure 6-3.  Each of these event names allows you to 
respond to a specific type of action with the mouse, most of which will seem familiar 
from using your computer.  The "mousemove" event, for example, is generated when 
you move the mouse in the window without pressing the mouse button.  The "drag" 
event occurs when you move the mouse while holding the button down.  The name 
of the event comes from the fact that the interaction model of moving the mouse with 
the button down is often used to drag objects around on the window.  You press the 
mouse button over an object to grab it and then drag it to the desired position. 
 

The sections that follow offer several examples that illustrate conventional styles 
of using the mouse to create and reposition objects in the graphics window. 
 
A simple line-drawing program 
In all likelihood, you have already used some application that allows you to draw 
lines on the screen by dragging the mouse.  To create a line, you press the mouse 
button at the point at which you’d like the line to start and then drag the mouse with 
the button down until you reach the point at which you want the line to end.  As you 
drag the mouse, the application typically updates the line so that you can see what 
you have drawn so far.  When you release the mouse button, the line stays in that 
position, and you can repeat the process to create as many new lines as you wish. 
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Suppose, for example, that you press the mouse button somewhere on the screen 
and then drag the mouse rightward an inch, holding the button down.  What you’d 
like to see is the following picture: 
 

 
 

If you then move the mouse downward without releasing the button, the displayed 
line will track the mouse, so that you might see the following picture: 
 

 
 

As you drag the mouse, the application repeatedly updates the line, making it 
appear to stretch as the mouse moves.  Because the effect is precisely what you would 
expect if you joined the starting point and the mouse cursor with a stretchy elastic 
line, this technique is called rubber-banding. 
 

When you release the mouse, the line stays where it is.  If you then press the mouse 
button again on that same point, you can go ahead and draw an additional line segment 
by dragging the mouse to the end point of the new line, as follows: 
 

 
 

At least in terms of the conceptual strategy, this problem doesn’t initially seem 
that different from the one used earlier in the DrawDots.py program.  When the user 
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presses the mouse button, the program creates a zero-length line that starts and ends 
at the current mouse position.  As the user drags the mouse to a new position, all the 
program needs to do is change the endpoint of that line to the new mouse coordinates.  
The program therefore needs to listen for both the "mousedown" and "drag" events 
and then implement the necessary operations on a GLine object that is shared 
throughout the entire program. 
 

Unfortunately, writing the code for the DrawLines.py program is not quite as 
simple as the preceding paragraph suggests.  If you try to solve this program by 
storing the shared GLine object in the closure, you would be tempted to write a 
program that looks something like this: 
 

def draw_lines(): 
  

    def mousedown_action(e): 
        line = GLine(e.get_x(), e.get_y(), 
                     e.get_x(), e.get_y()) 
        gw.add(line) 

 

 
 

 

    def drag_action(e): 
        line.set_end_point(e.get_x(), e.get_y()) 

 
    gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT) 
    line = None 
    gw.add_event_listener("mousedown", mousedown_action) 
    gw.add_event_listener("drag", drag_action) 

 
As the bug symbol indicates, however, this strategy fails because of the way Python 
treats local variables. 
 

Most modern programming languages require you to indicate what variables are 
local to a function using a specification called a declaration.  Python doesn’t.  To 
make the language easier for novices, Python looks through the code for a function 
for all variables that appear on the left side of an assignment and then automatically 
declares those variables as local.  Because the variable line appears on the left side 
of an assignment in mousedown_action, Python treats it as a new local variable with 
no connection to the line variable that appears in the enclosing draw_lines 
function.  As a result, the line variable in mousedown_action is entirely separate 
from the line variable in draw_lines and drag_action. 
 

Although Python now includes a mechanism for indicating that a function should 
use an enclosing definition instead of creating a new local variable, the syntax for 
doing so is confusing to new students and makes programs that use it more difficult 
to read and maintain.  A better strategy—and certainly the one more likely to be 
adopted by professional programmers—is to collect the variables that need to be 
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shared into a single object and then rely on closures to ensure that all the inner 
functions have access to those values.  The only problem with adopting that strategy 
at this point in the text is that the process of creating objects and assigning to their 
components is not covered in detail until Chapter 10. 
 

Fortunately, the fact that this problem usually arises in graphical programs makes 
it possible to implement a simple workaround.  Every program that uses the Portable 
Graphics Library defines a GWindow object that is stored by convention in a variable 
named gw.  Assuming that you define gw in the main program, any callback functions 
you define will have access to this variable.  That fact means that you can store any 
data you need to share inside the GWindow object. 
 

For example, instead of defining a variable named line as in the buggy version 
of DrawLines.py, you define a new component of the gw object called gw.line.  The 
revised code appears in Figure 6-4. 
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The only differences between the code in Figure 6-4 and the earlier buggy version 
of DrawLines.py is that all occurrences of the variable line in the original program 
have been replaced by gw.line in place of the earlier variable line.  Because no 
assignments are made to the gw variable itself outside of the main program, that 
variable is shared through the closure.  Functions like mousedown_action and 
drag_action can refer to the individual components of gw without breaking the 
sharing arrangement that allows these programs to work. 
 

Most of the graphical programs in this text use this strategy of storing shared state 
inside the gw variable.  You will have a chance to learn more about objects and their 
uses in Chapter 10. 
 
Dragging objects on the canvas 
The DragObjects.py program in Figure 6-5 on the next page offers a slightly more 
sophisticated example of an event-driven program that uses the mouse to reposition 
objects on the display.  This program begins by adding a blue rectangle and a red oval 
to the window, just as in the GRectPlusGOval.py program from Chapter 4.  The rest 
of the program represents the code pattern for dragging objects. 
 

As in the DrawLines.py program in Figure 6-4, the callback functions in the 
DragObjects.py program need to assign new values to shared state variables.  The 
main function therefore must store the following information in components of the 
GWindow object so that the inner functions can manipulate those values: 
 
1. gw.last_x, which is the x coordinate at which the last mouse event occurred 

2.  gw.last_y, which is the corresponding y coordinate 

3. gw.gobj, which is the object being dragged 
 
The mousedown_action function consists of the following code: 
 

def mousedown_action(e): 
    gw.last_x = e.get_x() 
    gw.last_y = e.get_y() 
    gw.gobj = gw.get_element_at(gw.last_x, gw.last_y) 

 
The first two statements in simply record the x and y coordinates of the mouse in the 
state variables gw.last_x and gw.last_y.  The third statement records the object 
being moved through the use of an important new method in the GWindow class called 
get_element_at, which takes an x and a y coordinate and then checks to see what 
object displayed on the window contains that location.  Here, it is important to 
recognize that there are two possibilities.  First, you could be pressing the mouse button 
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DragObjects.py 
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on top of an object, which means that you want to start dragging it.  Second, you 
could be pressing the mouse button somewhere else on the canvas at which there is 
no object to drag.  If just one object exists at the specified location, get_element_at 
returns that object.  If more than one object covers that space, get_element_at 
chooses the one in front of the others in the stacking order.  If no objects exist at that 
location, get_element_at returns the special value None.  In any of those cases, the 
mousedown_action function assigns that value to the state variable gw.gobj. 
 

The drag_action function consists of the following code: 
 

def drag_action(e): 
    if gw.gobj is not None: 
        gw.gobj.move(e.get_x() - gw.last_x, 
                     e.get_y() - gw.last_y) 
        gw.last_x = e.get_x() 
        gw.last_y = e.get_y() 

 
The if statement checks to see whether there is an object to drag.  If the value of 
gobj is None, there is nothing to drag, so the rest of the function can just be skipped.  
If there is an object, you need to move it by some distance in each direction.  That 
distance does not depend on the current coordinates of the mouse but rather on how 
far it has moved from where it was when you last noted its position.  Thus, the 
arguments to the move method are—for both the x and y components—the location 
where the mouse is now minus where the mouse was at the time of the last event.  
Those coordinates are stored in the variables gw.last_x and gw.last_y.  Once you 
have moved the object, you must then update these values to ensure that they are 
correct for the next call to mouse_dragged. 
 

The DragObjects.py program also registers its interest in "click" events, which 
trigger a call to the following function: 
 

def click_action(e): 
    if gw.gobj is not None: 
        gw.gobj.send_to_front() 

 
The point of adding this function is to allow the user to change the stacking order, 
which, as noted in Chapter 4, is the order in which objects are layered on the screen. 
 

In the DragObjects.py program, clicking on an object has the effect of moving 
it to the front of the stacking order.  Implementing this behavior correctly, however, 
requires understanding the rules that the Portable Graphics Library uses for mouse 
events.  A "click" event occurs when a "mousedown" event is followed within a 
relatively short amount of time by a "mouseup" event.  By the time Python processes 
the "click" event, the "mousedown" and "mouseup" events have already occurred.  
Although DragObjects.py does not specify any action for "mouseup", it responds 



192     Writing Interactive Programs 

to the "mousedown" event by calling mousedown_action.  Thus, by the time the call 
to click_action occurs, the mousedown_action function will already have set the 
value of gw.gobj. 
 

 6.5 Timer-based animation 
Interactive programs change their behavior not only in response to user events, but 
also over time.  In a computer game, for example, objects on the screen typically 
move in real time.  Updating the contents of the graphics window so that they change 
over time is called animation. 
 

The GWindow class in the Portable Graphics Library exports two methods that 
support animation by allowing the application to invoke a callback function after a 
specified delay.  The method 
 

gw.set_timeout(function, delay) 
 
creates a one-shot timer that calls function after delay milliseconds.  The method 
 

gw.set_interval(function, delay) 
 
creates an interval timer that calls function repeatedly every delay milliseconds. Each 
of these methods returns an object called a timer that makes it possible to control the 
animation process. 
 

As an example, executing 
 

timer = gw.set_interval(step, 20) 
 
creates an interval timer and stores the resulting timer object in the variable timer.  
The interval timer then begins generating calls to the function step once every 20 
milliseconds, or every fiftieth of a second.  The name step is chosen here to suggest 
that each call represents a single step in the animation, which is called a time step.  
The step function takes no arguments, so any information it needs must be 
communicated through the closure of the function in which step is defined. 
 

Timers that initiate events every 20 milliseconds allow you to change the state of 
the graphics window quickly enough so that the changes appear smooth to the human 
eye.  You can therefore move an object on the screen by creating an interval timer 
that executes its callback function every 20 milliseconds and then having the callback 
function make an incremental change to the position of that object. 
 

The reason for storing the timer object is that doing so allows you to invoke its 
stop method, which turns off the timing process and prevents any subsequent 
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invocations of the callback function.  In the context of an animation, for example, you 
can call timer.stop()when the animated object reaches its final location. 
 
A simple example of animation 
A simple example of timer-based of animation appears in Figure Error! Reference 
source not found.-6, which moves a square diagonally across the screen from its 
initial position in the upper left corner to its final position in the lower right, moving 
one pixel in each dimension on every time step. 
 

The code for the callback function looks like this: 
 

def step(): 
    square.move(dx, dy) 
    if square.get_x() + SQUARE_SIZE > gw.get_width(): 
        timer.stop() 
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The first line adjusts the position of the square by the values dx and dy.  The rest of 
the function tests whether the square is still inside the window and stops the timer if 
it has moved beyond the boundary. 
 
Tracking the state of an animation 
As animations become more complex, keeping track of the state of the animation 
becomes a bit tricky.  Suppose, for example, that you want to add animation to the 
RandomCircles.py program in Figure 5-5 on page 154.  Instead of having the circles 
all show up at once, what you want is for the circles to appear slowly, one at a time.  
Each circle begins as a single point and then grows until it reaches its desired size.  
The program should then creates the next circle and lets it grow, continuing in this 
fashion until all ten circles are displayed on the screen. 
 

It is, of course, tempting to start this program by building on the earlier example.  
That strategy would suggest adopting the following pseudocode structure: 
 

for i in range(N_CIRCLES): 
   Create a circle. 
   Animate that circle so that it grows to full size. 
   Wait for that animation to complete.  

 

Unfortunately, that strategy doesn’t work well if you use the Portable Graphics 
Library, which expects all interactions to be event-driven, in the sense that all actions 
take place in response to events that occur asynchronously. This event model rules 
out the earlier pseudocode approach and requires a different strategy, in which all 
aspects of the animation are implemented inside the step function.  The step 
function therefore has the following pseudocode form: 
 

def step(): 
    if the current circle is still growing: 
        Increase the size of the current circle. 
    elif there are more circles to create: 
        Create another circle. 
    else: 
        timer.stop() 

 
The code for GrowingCircles.py appears in Figure 6-7 on the next page.  The 

code for the create_new_circle function is largely the same as the code for 
create_random_circle in Figure 5-5.  The only differences are that 
 
1. The create_new_circle function creates circles whose initial size is 0. 

2. The create_new_circle function records the eventual and current size of the 
circle in the state components gw.desired_size and gw.current_size. 
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GrowingCircles.py 
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The code for the step function follows the pseudocode outline shown earlier on this 
page.  The only new feature is the call to set_bounds, which resets the location and 
size of the current circle so that it grows by one pixel in each time step. 
 

It is worth noting that the main program explicitly initializes the state variables 
gw.desired_size and gw.current_size to 0.  Setting these two variables to the 
same value ensures that create_new_circle is called on the first time step 
 

 6.6 Expanding the graphics library 
Ever since Chapter 4, you’ve been using classes from the Portable Graphics Library 
to create simple drawings on the screen.  So far, however, you have seen only a small 
part of what the graphics library has to offer.  Now that you know how to write 
programs that involve animation and interactivity, it makes sense to learn more about 
the graphics library and how to use it.  This section introduces three new classes—
GArc, GPolygon, and GCompound—that allow you to create more interesting 
graphical displays. 
 
The GArc class 
The GArc class is used to display an arc formed by selecting part of the perimeter of 
an oval.  The GArc function itself takes six parameters—x, y, width, height, start, 
and sweep—which are illustrated in Figure 6-8. The first four parameters specify the 
location and size of the rectangle that encloses the arc and therefore have precisely 



 6.6 Expanding the graphics library     197 

the same interpretation as those parameters in calls to GRect or GOval.  The next two 
parameters specify the start angle, which is the angle at which the arc begins, and the 
sweep angle, which is the number of degrees through which the arc extends.  In 
keeping with mathematical convention, angles in the graphics library are measured 
in degrees counterclockwise from the +x axis, as follows: 
 

 
 

The effect of these parameters is most easily demonstrated by example.  The four 
sample runs in Figure 6-9 show the effect of the code below each diagram.  The code 
fragments create arcs using different values for start and sweep.  Each of the arcs 
has a radius of r pixels and is centered at the point (cx, cy). 
 

The GArc class implements the methods shown in Figure 6-10 on the next page.  
As you can see, these methods include set_filled and set_fill_color, just as 
GRect and GOval do.  It is not immediately apparent, however, exactly what filling 
an arc means.  In the interpretation of arc-filling used in the Portable Graphics 
Library, the unfilled version of a GArc is not simply the boundary of its filled 
counterpart.  If you display an unfilled GArc, only the arc itself is shown.  If you call 
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set_filled(True) on that arc, the graphics library connects the end points of the 
arc to the center from which the arc was drawn and then fills the interior of that region.  
The following sample run illustrates the difference by showing both unfilled and 
filled versions of the same 60-degree arc: 
 

 
 

The important lesson to take from this example is that the geometric boundary of 
a GArc changes if you set it to be filled.  A filled arc is a wedge-shaped region that 
has a well-defined interior.  An unfilled arc is simply a section taken from the 
boundary of an ellipse.  If you want to display the outline of the wedge that calling 
set_filled would generate, the simplest strategy is to call set_filled(True) and 
then use set_fill_color("White") to set the interior of the region to white. 
 
The GPolygon class 
The GPolygon class makes it possible to display a polygon, which is simply the 
mathematical name for a closed shape whose boundary consists of straight lines. The 
line segments that form the outline of a polygon are called edges.  The point at which 
a pair of edges meets is called a vertex.  Many polygonal shapes are familiar from the 
real world.  Each cell in a honeycomb is a hexagon, which is the common name for a 
polygon with six sides.  A stop sign is an octagon with eight identical sides.  Polygons, 
however, are not required to have equal sides and angles.  The figures in the left 
margin, for example, illustrate four polygons that fit the general definition. 
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The GPolygon class is easy to use if you keep the following points in mind: 
 
• Unlike the functions that create the other shapes, the GPolygon function does not 

create the entire figure.  What happens instead is that calling GPolygon creates an 
empty polygon.  Once you have created an empty polygon, you then add vertices 
to it by calling various other methods described later in this section. 

• The origin of a GPolygon is not defined to be its upper left corner.  Many 
polygons, after all, don’t have an upper left corner.  What happens instead is that 
you—as the programmer who is creating the specific polygon—choose a 
reference point that defines the location of the polygon as a whole.  You then 
specify the coordinates for each vertex in terms of where they lie in relation to the 
reference point.  This approach makes it easier to move the polygon as a unit. 

 
The creation of a GPolygon is easiest to illustrate by example.  Suppose that you 

want to create a GPolygon representing the diamond-shaped figure shown in the 
margin.  Your first design decision consists of choosing where to put the reference 
point.  For most polygons, the most convenient point is the geometric center of the 
figure.  If you adopt that model, you then need to create an empty GPolygon and add 
four vertices to it, specifying the coordinates of each vertex relative to the coordinates 
of the center.  Assuming that the width and height of the diamond are stored in the 
constants DIAMOND_WIDTH and DIAMOND_HEIGHT, you can create the diamond-shaped 
GPolygon using the following code: 
 

diamond = GPolygon() 
diamond.add_vertex(-DIAMOND_WIDTH / 2, 0) 
diamond.add_vertex(0, DIAMOND_HEIGHT / 2) 
diamond.add_vertex(DIAMOND_WIDTH / 2, 0) 
diamond.add_vertex(0, -DIAMOND_HEIGHT / 2) 

 

When you use the add_vertex method to construct a polygon, the coordinates of 
each vertex are expressed relative to the reference point.  In some cases, it is easier to 
specify the coordinates of each vertex in terms of the preceding one.  To enable this 
approach, the GPolygon class offers an add_edge method, which is similar to 
add_vertex except that the parameters specify the displacement from the previous 
vertex to the current one.  You can therefore create exactly the same GPolygon by 
making the following sequence of calls: 
 

diamond = GPolygon() 
diamond.add_vertex(-DIAMOND_WIDTH / 2, 0) 
diamond.add_edge(DIAMOND_WIDTH / 2, DIAMOND_HEIGHT / 2) 
diamond.add_edge(DIAMOND_WIDTH / 2, -DIAMOND_HEIGHT / 2) 
diamond.add_edge(-DIAMOND_WIDTH / 2, -DIAMOND_HEIGHT / 2) 
diamond.add_edge(-DIAMOND_WIDTH / 2, DIAMOND_HEIGHT / 2) 
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Note that the first vertex must still be added using add_vertex, but that subsequent 
ones can be defined by specifying the edge displacements. 
 

Once you have defined the diamond shape by either of these methods, you can add 
the diamond at the center of the window using the following statement: 
 

gw.add(diamond, gw.get_width() / 2, gw.get_height() / 2) 
 
The graphics window then looks like this: 
 

 
 

For many polygonal figures, it is easier to specify the edges using the method 
add_polar_edge.  This method is identical to add_edge except that its arguments are 
the length of the edge and its direction, expressed in degrees counterclockwise from 
the +x axis. 
 

The add_polar_edge method makes it easy to create figures in which you know 
the angles of the edges but would need trigonometry to calculate the vertices.  The 
following function, for example, uses add_polar_edge to create a regular hexagon 
in which the length of each edge is determined by the parameter side: 
 

def create_hexagon(side): 
    hex = GPolygon() 
    hex.add_vertex(-side, 0) 
    angle = 60 
    for i in range(6): 
        hex.add_polar_edge(side, angle) 
        angle -= 60 
    return hex 

 
As always, the first vertex is added using add_vertex.  Here, the initial vertex is the 
one at the left edge of the hexagon.  The first edge then extends from that point at an 
angle of 60 degrees.  Each subsequent edge has the same length, but sets off at an 
angle 60 degrees to the right of the preceding one.  When all six edges have been 
added, the final edge ends up at the original vertex, thereby closing the polygon. 
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Once you have defined this method, executing the statement 
 

gw.add(create_hexagon(50), gw.get_width() / 2, 
                           gw.get_height() / 2) 

 

produces the following display: 
 

 
 

Figure 6-11 lists the methods that apply to the GPolygon class.  As with the other 
bounded figures, GPolygon implements set_filled and set_fill_color. 
 

As another example of using the GPolygon class, the create_star function in 
Figure 6-12 at the top of the next page creates a GPolygon whose edges form a 
five-pointed star, as follows: 
 

 
 

Although the star is more complicated mathematically than the earlier examples, 
the most difficult part is determining the coordinates of the starting point at the left 
edge of the star.  Calculating the x coordinate is easy because the starting point is 
simply half the width of the star to the left of its center.  Calculating the distance in 
the y direction requires a bit of trigonometry, which can be illustrated as follows: 
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Each of the points around the periphery of a five-pointed star forms an angle that is a 
tenth of a complete circle, which is 36 degrees.  If you draw a line that bisects that 
angle—leaving 18 degrees on either side—that line will hit the geometric center of 
the star, forming the right triangle shown in the diagram.  The value of dy is therefore 
equal to dx multiplied by the tangent of 18 degrees, as shown in the code. 
 

The other tricky calculation is that of the edge length, which is illustrated in the 
following diagram: 
 

 
 
To determine the value of edge, you need to subtract the dotted portion of the 
horizontal line from its entire length, which is given by dx.  The length of the dotted 
portion is easily computed using trigonometry as dy multiplied by the tangent of 36 
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degrees.  Once you have computed these values, the rest of the create_star function 
follows much the same pattern as the code for create_hexagon. 
 
The GCompound class 
The GCompound class makes it easy to assemble a collection of graphical objects into 
a single unit.  As with GPolygon, calling GCompound creates an empty structure that 
you then have to fill by calling add, just as if you were adding those objects to the 
graphics window.  Once you have assembled the objects, you can add the whole 
GCompound to the window, at which point it functions as a single object. 
 

As a simple example, the function create_crossed_box shown in Figure 6-13 
creates a GCompound consisting of a rectangle and the two diagonal lines that cross it.  
For example, the declaration 
 

box = create_crossed_box(BOX_WIDTH, BOX_HEIGHT) 
 
sets the variable box so that it holds a new GCompound object that looks like this: 
 

 
 

Like the GPolygon class, the GCompound class defines its own coordinate system 
in which all coordinate values are expressed relative to a reference point.  This design 
has two advantages.  First, separating the process of defining the shape and setting its 
coordinates means that you can define a GCompound without having to know exactly 
where it will appear.  That property is particularly useful if the location of an object 
in the graphics window depends on its size.  Second, there are often more appropriate 
choices to use as a reference point than the conventional upper left corner.  The 



204     Writing Interactive Programs 

create_crossed_box function, for example, returns a GCompound in which the 
reference point is at the center, which is often a more convenient choice.  You can 
then place the crossed box at the center of the window using the following code: 
 

cx = gw.get_width() / 2 
cy = gw.get_height() / 2 
gw.add(box, cx, cy) 

 
Executing these statements creates the following image on the graphics window: 
 

 
 

 Summary 
In this chapter, you learned how to create interactive programs.  The important points 
introduced in this chapter include: 
 
• The Portable Graphics Library uses an event-driven model in which the user’s 

actions generate events that occur asynchronously with respect to the operation of 
the program.  Each event triggers a function call that responds to that event. 

• Functions in Python are first-class values in the sense that they can be used in all 
the ways that any other value can.  Functions can be assigned to variables, passed 
as parameters to other functions, and returned as a function result. 

• The graphics library exports a large collection of methods that apply to every 
graphical object.  A list of these methods appears in Figure 6-2 on page 184. 

• Programs indicate their interest in responding to mouse events by calling the 
add_event_listener method on the graphics window. 

• Mouse events are associated with an event type indicated by a string.  The names 
of the different event types appear in Figure 6-3 on page 185. 

• Each call to add_event_listener specifies the function that should respond to 
that type of event.  These functions are generically known as callback functions. 

• Callback functions used to respond to mouse events take a single parameter that 
includes information about the event.  The only mouse-event properties used in 
this text are the methods get_x and get_y, which return the position in the window 
at which the mouse event occurred. 
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• Callback functions are conventionally declared within the body of an enclosing 
function so that the callback function has access to the local variables of the 
function in which the callback function is declared. 

• A callback function can examine local variables in the enclosing context without 
taking any special action.  If a callback function wants to change the value of a 
variable in the enclosing context, it cannot do so using an assignment statement, 
because Python would interpret the assignment as an implicit declaration of a new 
local variable.  This text avoids that problem by embedding any shared variables 
that need to change inside the GWindow object. 

• The GWindow class includes a method get_element_at(x, y) that returns the 
graphical object at that location in the window.  If there is no object at that 
location, get_element_at returns the special value None. 

• The usual strategy for implementing animation in the Portable Graphics Library 
is to use a timer, which executes a callback function after a specified delay.  If the 
delay is 20 milliseconds or less, motion on the screen appears continuous. 

• The GWindow class in the Portable Graphics Library exports two methods that 
support animation.  The set_timeout method creates a one-shot timer that 
invokes a callback function after a specified delay.  The set_interval method 
creates an interval timer that invokes the callback function repeatedly every time 
the delay time expires. 

• The set_timeout and set_interval methods return a timer object, which is 
typically stored in a variable called timer.  Invoking the stop method on the timer 
object turns off the timer and terminates the animation process. 

• The GArc class makes it possible to display elliptical arcs defined by a bounding 
rectangle and two angles: a start angle that indicates where the arc starts and a 
sweep angle that indicates how far the arc extends.  Filled arcs appear as wedges 
in which the endpoints of the arc are connected to the center. 

• The GPolygon class makes it possible to display an arbitrary polygon.  The 
GPolygon function itself creates an empty polygon; you create the actual polygon 
by calling some combination of the methods add_vertex, add_edge, and 
add_polar_edge. 

• The GCompound class represents a graphical object that contains other graphical 
objects.  Creating a GCompound allows the collection to be treated as a unit. 

• Both the GPolygon and GCompound classes use an internal coordinate system 
relative to the object itself.  This strategy makes it possible to create the object 
without knowing where it will appear in the window. 
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 Review questions 
1. In the context of the Portable Graphics Library, what is an event? 
 
2. Are events in the Portable Graphics Library synchronous or asynchronous? 
 
3. What reasons are offered in this chapter for the close association of graphical 

user interfaces and object-oriented programming? 
 
4. Why are functions in Python said to be first-class functions? 
 
5. True or false: In Python, you can pass a function as a parameter to some other 

function. 
 
6. What are the two parameters to the add_event_listener method? 
 
7. What event type do you use to respond to a mouse click? 
 
8. What are the two methods used in this chapter to get more specific information 

about a mouse event? 
 
9. What is a callback function? 
 
10. How does a callback function usually share information with the function that 

defines it? 
 
11. How does Python’s reliance on implicit declarations complicate the definition of 

callback functions? 
 
12. What strategy does this chapter recommend for ensuring that callback functions 

can change data values shared with other functions? 
 
13. What is meant by the term rubber-banding? 
 
14. What value does the get_element_at method return if no object exists at the 

specified location? 
 
15. How does the get_element_at method decide which object to return if more 

than one object covers the specified location? 
 
16. Describe in your own words the strategy for implementing animation in the 

Portable Graphics Library. 
 
17. What is the difference between a one-shot timer and an interval timer?  How do 

you specify which type you are creating? 
 
18. How do you stop a timer? 
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19. Describe the significance of the start and sweep parameters in the call to the GArc 
function. 

 

20. What does it mean if the sweep argument to the GArc function is negative? 
 

21. Describe the arcs produced by each of the following calls to GArc, where cx and 
cy are the coordinates of the center of the window and r has the value 100: 

 

a) GArc(cx, cy, 2 * r, 2 * r, 0, 270) 
b) GArc(cx, cy, 2 * r, 2 * r, 135, -90) 
c) GArc(cx, cy, 2 * r, 2 * r, 180, -45) 
d) GArc(cx, cy, 3 * r, r, -90, 180) 

 
22. How does the GArc class interpret the notion of a filled arc? 
 

23. Describe the differences between the methods add_vertex, add_edge, and 
add_polar_edge in the GPolygon class. 

 

24. Which of the three methods listed in the preceding question is conventionally 
used to add the first vertex to a GPolygon? 

 

25. In your own words, describe the purpose of the GCompound class. 
 

26. What advantages does the text cite for having the GPolygon and GCompound 
classes define their own reference point? 

 

 Exercises 
1. Drawing on the print_function_table function for inspiration, implement a 

function 
 

def plot(gw, fn, x_min, x_max, y_min, y_max) 
 

that plots the function fn on the graphics window by creating small GLine 
segments and adding them to the graphics window.  The parameters x_min, 
x_max, y_min, and y_max specify a translation between data values and window 
coordinates.  The left edge of the window, for example, should correspond to the 
value x_min in the domain of the function. 

 

For example, calling 
 

plot(gw, math.sin, -2 * math.pi, 2 * math.pi, -1, 1) 
 

should generate a plot of the trigonometric sine function for values of x ranging 
from -2π to +2π and displayed so that the vertical space in the window runs from 
-1 at the bottom to +1 at the top (note that this interpretation requires you to flip 
Python’s coordinate system so that it matches the traditional Cartesian model in 
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which y values increase as you move upward).  After you make this call, the 
graphics window should look like this: 

 

 
 

Similarly, calling 
 

plot(gw, math.sqrt, 0, 4, 0, 2) 
 

should plot the math.sqrt function on a graph that extends from 0 to 4 along 
the x-axis and from 0 to 2 along the y-axis, like this: 

 

 
 
2. Modify the DrawDots.py program so that clicking the mouse draws a small ´ 

every time you click the mouse.  The ´, which consists of two GLine objects, 
should be positioned so that the intersection appears at the point where the mouse 
was clicked. 

 
3. In addition to line drawings of the sort generated by the DrawLines.py program, 

interactive drawing programs allow you to add other shapes to the canvas.  In a 
typical drawing application, you create a rectangle by pressing the mouse at one 
corner and then dragging it to the opposite corner.  For example, if you press the 
mouse at the location in the left diagram and then drag it to the position where 
you see the cursor in the right diagram, the program creates the rectangle shown: 
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The rectangle grows as you drag the mouse.  When you release the mouse button, 
the rectangle is complete and stays where it is.  You can then go back and add 
more rectangles in the same way. 

 
4. Use the GOval, GLine, and GRect classes to create a cartoon drawing of a face 

that looks like this: 
 

 
 

Once you have this picture, add a callback function for the "mousemove" event 
so that the pupils in the eyes follow the cursor position.  For example, if you 
move the cursor to the lower right side of the screen, the pupils should shift so 
that they appear to be looking at that point, as follows: 

 

 
 

Although it doesn’t matter much when the cursor is outside the face, it is 
important to compute the position of the pupil independently for each eye.  If you 
move the mouse between the eyes, for example, the pupils should point in 
opposite directions so that the face appears cross-eyed. 
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5. Write a program that draws a filled black square in the center of the canvas.  Once 
you have that part of the program working, animate your program so that the 
color of the square changes once a second to a new, randomly chosen color.  Your 
program should run for a minute and then stop. 

 
6. Using the AnimatedSquare.py program as a model, write a program 

BouncingBall.py that bounces a ball inside the boundaries of the graphics 
window.  Your program should begin by placing a GOval in the center of the 
window to represent the ball.  On each time step, your program should shift the 
position of the ball by dx and dy pixels, where both dx and dy initially have the 
value 1.  Whenever the leading edge of the ball touches one of the boundaries of 
the window, your program should make the ball bounce by negating the value of 
dx or dy, as appropriate.  Don’t worry about getting your program to stop; just 
let it run until the user decides to terminate the program. 

 

Keep in mind that the values of dx and dy must be reassigned whenever a 
bounce occurs, which your program must detect inside the step function that 
runs each time the interval timer ticks.  These variables must therefore be defined 
as components of the GWindow variable. 

 
7. Rewrite the BouncingBall.py program from exercise 6 so that clicking the 

mouse starts and stops the motion of the ball.  Although it is possible to 
implement this behavior by starting and stopping the timer, it is simpler to keep 
the timer running and use a Boolean flag variable called ball_is_moving to 
indicate whether the step function should update the position of the ball.  Using 
this design, all you have to do in the click_action function is reverse the sense 
of this flag, changing False to True and vice versa. 

 
8. Rewrite the BouncingBall.py program from exercise 7 so that the ball is 

implemented as a GCompound containing a GOval shifted by the radius of the ball 
in both the x and y directions.  The advantage of making this change is that the 
coordinates of the GCompound now refer to the center of the ball, which makes 
the code to see whether the ball is bouncing more symmetrical and therefore 
easier to understand. 

 
9. Write a program that draws a picture of a pumpkin pie divided into equal wedge-

shaped pieces where the number of pieces is indicated by the constant N_PIECES.  
Each wedge should be a separate GArc, filled in orange and outlined in black.  
The following screen image, for example, shows the diagram when N_PIECES is 
6. 
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Once you have this display, add event processing to your application so that 
clicking on any of the wedges removes that wedge from the display.  For 
example, if you click on the wedge in the upper right, the screen image should 
look like this: 

 

 
 
10. The title character in the PacMan series of games is easy to draw in Python using 

a filled GArc.  As a first step, write a program that adds a PacMan figure at the 
left edge of the window, as follows: 

 

 
 

Once you have this part working, add the code to make the PacMan figure move 
rightward until it reaches the right edge of the graphics window.  As PacMan 
moves, your program should change the start and sweep angles so that the mouth 
appears to open and close as shown in the following image sequence: 
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11. The PacMan shape appears in an optical illusion called a subjective contour, 

popularized in an article by the Italian psychologist Gaetano Kanizsa in the April 
1976 issue of Scientific American, which includes this image: 

 

 
 

Although the simplest way to produce this picture is to draw a white rectangle 
on top of four complete circles, a skeptic might claim that the color of the 
rectangle is brighter than its background.  Make it impossible to defend this claim 
by drawing this figure using only the four filled arcs. 

 
12. Another illusion that uses filled arcs is the Wundt illusion, first described by 

Wilhelm Max Wundt in 1898. 
 

 
 

In this illusion, the lower curve looks longer than the upper curve, although the 
two are in fact the same size.  Write a program that draws these segments using 
the graphics library.  To do so, you need to draw a filled arc, overlay it with a 
smaller arc filled in white, and then complete the border with an unfilled arc. 
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13. Write a program that draws the following optical illusion on the graphics 
window: 

 

 
 

The illusion arises from the fact that it is possible to see the white surfaces as 
either the tops or the bottoms of cubes stacked to form a pyramid. 

 

Each of the individual cubes is composed of three diamond-shaped polygons 
whose sides have different fill colors, as follows: 

 

 
 

In writing this exercise, you should create a function that returns one of these 
cubes as a GCompound and then assemble the pyramid from those compounds. 

 
14. In J. K. Rowling’s Harry Potter and the Deathly Hallows, those who believe in 

the legend named in the title recognize one another through a symbol that 
combines three elements—a triangle representing the cloak of invisibility, a 
circle representing the stone of resurrection, and a line representing the elder 
wand—superimposed as follows: 

 

 
 

Write a function create_deathly_hallows_symbol that takes the width and 
height of the figure and returns a GCompound that includes all three of these 
elements.  The triangle should be a GPolygon, the circle should be a GOval, and 
the line should be a GLine.  The geometry is straightforward for both the line and 
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the triangle, but rather complicated for the circle, which must exactly touch the 
edges of the triangle.  Although you could figure out the necessary relationships 
by using the Pythagorean theorem, you can instead simply use the following 
formula for the radius r as a function of the width w and the height h: 

 

 
 

Use the create_deathly_hallows_symbol function to write a program that 
displays the symbol in the center of the window.  Once you’ve done that, add the 
code needed to let the user drag the symbol around the window. 

 
15. In New York’s Times Square, you can get the news of the day by watching 

headlines on large display screens that show a single line of text.  The headline 
initially begins to appear at the right edge of the screen and then moves quickly 
from right to left.  Your job in this exercise is to write a program that simulates 
this type of headline display by moving a GLabel across the screen. 

 

Suppose, for example, that you want to use your program to display the 
famous Chicago Tribune headline from when the paper incorrectly called the 
result of the 1948 presidential election: 

 
DEWEY DEFEATS TRUMAN 

 
Your program should create a GLabel containing the headline and then position 
it so that the entire text of the label is clipped beyond the right edge of the screen.  
Your program should then implement a timer-based graphical animation that 
moves the GLabel a few pixels to the left on each time step.  After a few time 
steps, the display will show the first letter of the headline, as follows: 

 

 
 

The headline continues to scroll across the screen, so that a few seconds later the 
entire first word is visible: 
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As the label continues to scroll, letters will disappear off the left edge of the 
screen as new letters appear on the right. Your program should continue to scroll 
letters toward the left until the entire GLabel disappears from view. 

 
16. Write a program to play the classic arcade game of Breakout, which was 

developed in 1976 by Steve Wozniak, who would later become one of the 
founders of Apple.  In Breakout, your goal is to clear a collection of bricks by 
hitting each of them with a bouncing ball. 

 

The initial configuration of the Breakout game appears in the leftmost 
diagram in Figure 5-14.  The colored rectangles in the top part of the screen are 
bricks, two rows each of red, orange, yellow, green, and blue.  The slightly larger 
rectangle at the bottom is the paddle.  The paddle is in a fixed position in the 
vertical dimension, but moves back and forth across the screen along with the 
mouse until it reaches the edge of its space. 

 

A complete Breakout game consists of three turns.  On each turn, a ball is 
launched from the center of the window toward the bottom of the screen at a 
random angle.  That ball bounces off the paddle and the walls of the world.  Thus, 
after two bounces—one off the paddle and one off the right wall—the ball might 
have the trajectory shown in the middle diagram. 
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As you can see from the middle diagram, the ball is about to collide with one 
of the bricks on the bottom row.  When that happens, the ball bounces just as it 
does on any other collision, but the brick disappears. 

 

The play continues in this way until one of the following conditions occurs: 
 

• The ball hits the lower wall, which means that you must have missed it with 
the paddle.  In this case, the turn ends and the next ball is served. After three 
turns, the game is over, and the player loses. 

• The last brick is eliminated, in which case the player wins. 
 

After all the bricks in a particular column have been cleared, a path will open 
to the top wall, as shown in the rightmost diagram in Figure 6-14.  When this 
delightful situation occurs, the ball will often bounce back and forth several times 
between the top wall and the upper line of bricks without the user ever having to 
worry about hitting the ball with the paddle.  This condition is called “breaking 
out.”  It is important to note that, even though breaking out is a very exciting part 
of the player’s experience, you don’t have to do anything special in your program 
to make it happen.  The game operates the same as always: balls bounce off walls, 
collide with bricks, and obey the laws of physics. 

 



 

C H A P T E R  7  
Strings 

 
The work [of conducting the census should] be done so far 
as possible by mechanical means.  In order to accomplish 
this the records must be put in such shape that a machine 
could read them.  This is most readily done by punching 
holes in cards. 

— Herman Hollerith, An Electric Tabulating 
System, 1889 

 
 

 
Herman Hollerith (1860–1929) 

 

The idea of encoding text in machine-readable form dates back to the nineteenth century and the work of the 
American inventor Herman Hollerith.  After studying engineering at City College of New York and the 
Columbia School of Mines, Hollerith spent a couple of years working as a statistician for the U.S. Census 
Bureau before accepting a teaching position at MIT.  While at the Census Bureau, Hollerith had become 
convinced that the data produced by the census could be counted more quickly and accurately by machine.  
In the late 1880s, he designed and built a tabulating machine that was used to conduct the 1890 census in 
record time.  The company he founded to commercialize his invention, originally called the Tabulating 
Machine Company, changed its name in 1924 to International Business Machines (IBM).  Hollerith’s 
card-based tabulating system pioneered the technique of textual encoding described in this chapter—a 
contribution that was reflected in the fact that early versions of the FORTRAN language used the letter H (for 
Hollerith) to indicate text data.
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Although you have been using strings ever since Chapter 1, you have only scratched 
the surface of what you can do with string data.  This chapter introduces the features 
available in Python’s built-in string type, which provides a convenient abstraction for 
working with strings of characters.  Understanding how to work with strings will 
make it much easier to write interesting applications.  Before considering the details 
of how strings work, however, it helps to take a step back and look at how computers 
store data in the first place. 
 

 7.1 Binary representation 
Today’s computers represent information in a simple but powerful form that allows 
information—no matter how complex—to be stored as a sequence of primitive values 
that can exist in only one of two possible states.  Each of those primitive values is 
called a bit. 
 

The interpretation of the values for each bit depends on how you choose to view 
the underlying information.  If you think of the bits that form the internal circuitry of 
the machine as tiny light switches, you might label those states as off and on.  If you 
think of each bit as a logical value, you might instead use the Boolean labels false and 
true.  However, because the word bit comes from a contraction of the term binary 
digit, it is more common to label those states as 0 and 1, which are the digits of the 
binary number system on which computer arithmetic is based. 
 
Binary notation 
The idea of writing numbers in binary notation predates the development of the 
electronic computer by thousands of years.  The Chinese I Ching from ... uses binary 
notation to number the 32 different symbols.  The German mathematician Gottfried 
Wilhelm von Leibniz (1646–1716) offered a detailed account of the binary system in 
a paper published by the French Royal Academy of Science in 1703.  In that paper 
(which cites the I Ching as an earlier source), Leibniz writes: 
 

Ordinary arithmetic calculation is performed following a progression by 
tens.  One uses the ten characters 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, which signify 
zero, one, and the following numbers up to nine, inclusive.  On going up 
to ten, one starts again, and writes ten as 10; ten times ten, or one hundred, 
as 100; ten times one hundred, or one thousand, as 1000; and ten times a 
thousand as 10000.  And so on. 

But instead of the progression by tens, I have used for several years the 
simplest progression of all, which goes by twos, which I find to be the 
perfection of the science of numbers.  I therefore do not use any characters 
other than 0 and 1, and on going up to two, I start again.  That is why two 
is written here as 10; and two times two or four as 100; and two times four 
or eight as 1000 . . . 

 

 
Leibniz 
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Leibniz’s second paragraph describes the binary system as “the simplest 
progression of all.”  Each digit in a binary number counts for twice as much as its 
neighbor on the right.  That rule makes it easy to translate a number written in binary 
back to its decimal equivalent: all you need to do is add the place values of each digit 
in the number.  For example, if Leibniz were to use binary notation to represent the 
year of his birth, he would write the number like this: 
 

 
 
The following diagram shows that this value indeed corresponds to the value 1646: 
 

 
 

For the most part, numeric representations in this book use decimal notation for 
readability.  If the base is not clear from the context, the text follows the usual 
convention of using a subscript to denote the base.  For example, the equivalence of 
the binary value 11001101110 and the decimal value 1646 can be made explicit by 
writing the numbers like this: 
 

110011011102   =  164610 
 

Storing integers as sequences of bits 
The binary representation described by Leibniz makes it easy to store integers as a 
sequence of individual bits.  In modern computer hardware, individual bits are 
collected together into larger units that are then treated as integral units of storage.  
The smallest such combined unit is called a byte, which consists of eight bits.  Bytes 
are then assembled into larger structures called words, where a word is usually 
defined to be the size required to hold an integer value of the type most appropriate 
for the hardware.  Today, machines typically organize their memory into words that 
are either four or eight bytes long (32 or 64 bits). 
 

To get a sense of how computers can store integers internally, consider the byte 
containing the following binary digits: 
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That sequence of bits represents the number forty-two, which you can verify—just as 
Leibniz would have done—by calculating the contribution for each of the individual 
bits, as follows: 
 

 
 
Bytes can store integers between 0 and 255, which is 28 - 1.  Numbers outside this 
range must be stored in larger units that use more bits of memory. 
 
Hexadecimal notation 
Although the bit diagrams make it clear how computers store integer values 
internally, these diagrams also demonstrate the fact that writing numbers in binary 
form is terribly inconvenient.  Binary numbers are cumbersome, mostly because they 
tend to be so long.  Decimal representations are intuitive and familiar but make it 
harder to understand how the number translates into bits. 
 

For applications in which it is useful to understand how a number translates into 
its binary representation without having to work with binary numbers that stretch all 
the way across the page, computer scientists use hexadecimal (base 16) notation 
instead.  In hexadecimal notation, there are sixteen digits that represent the values 
from 0 to 15.  Although the decimal digits 0 through 9 are perfectly adequate for the 
first ten digits, classical arithmetic does not define the extra symbols you need to 
represent the remaining six.  Computer science traditionally uses the letters A through 
F for this purpose, as follows: 
 

A = 10 
B = 11 
C = 12 
D = 13 
E = 14 
F = 15 

 
What makes hexadecimal notation useful is the fact that you can easily convert 

between hexadecimal values and the underlying binary representation.  All you need 
to do is combine the bits into groups of four.  For example, the number forty-two can 
be converted from binary to hexadecimal like this: 
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The first four bits represent the number 2, and the next four represent the number 10.  
Converting each of these to the corresponding hexadecimal digit gives 2A as the 
hexadecimal form.  You can then verify that this number still has the value 42 by 
adding up the digit values, as follows: 
 

 
 

As noted earlier, the text follows the convention of using a subscript to denote the 
base if it is not clear from context.  Thus, the number forty-two can be written down 
like this in decimal, binary, octal, and hexadecimal: 
 

4210  =  001010102  =  528  =  2A16 
 
Python allows you to write integer constants in any of these bases.  Decimal numbers 
require no special marker, but you can specify a number in binary, octal, or 
hexadecimal by adding the prefix 0b, 0o, or 0x at the beginning of a string of digits. 
Thus, you can represent the integer forty-two in Python in any of these ways: 
 

42    0b00101010    0o52     0x2A 
 

The most important thing to remember is that the number itself is always the same; 
the numeric base affects only the representation.  Forty-two has an intrinsic meaning 
that is independent of the base, which is perhaps easiest to see in the representation 
an elementary school student might use: 
 

 
 
The number of tick marks in this representation is forty-two.  The fact that a number 
is written in binary, decimal, or any other base is a property of the representation, not 
of the number itself.  Numbers do not have bases; representations do. 
 
Representing nonnumeric data 
Although the discussion so far has focused on how computers store numbers, this 
chapter is about strings, which are an important example of nonnumeric data.  The 
challenge in having computers represent nonnumeric data lies in finding a way to 
store that information inside the computer. 
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The simplest strategy for representing nonnumeric data is to assign numbers to the 
individual data values you need to represent.  For example, the conventional way to 
represent the months of the year—even without a computer—is to give each month a 
number: January has the value 1, February has the value 2, and so on, up to December, 
which has the value 12.  This strategy is called enumeration. 
 

Once you have enumerated a set of values, you can represent those values in 
memory by using the appropriate numeric code.  For example, the numeric value 12 
corresponds to the month of December.  Internally, that value is stored as an integer 
expressed—as you saw in the preceding sections—as a sequence of binary digits.  
There is no indication in the hardware as to whether that value represents the integer 
12 or the numeric representation for the month of December.  The meaning of a 
particular value depends on how it is used.  If the program uses the value 
arithmetically, it is interpreted as the integer 12.  If it instead uses that value to select 
from a list of month names, that value indicates December.  In either case, the number 
stored inside the computer is exactly the same. 
 

The strategy of using numbers to represent nonnumeric data is one of the most 
important ideas in the history of computation.  One of the clearest and earliest 
expositions of that idea comes from Ada Lovelace, daughter of the poet Lord Byron 
and his wife Anna Isabella Byron.  In the 1840s, Lady Lovelace collaborated with the 
English mathematician and inventor Charles Babbage on the design of his Analytical 
Engine, a calculating machine that anticipated several essential features of modern 
computers, including the ability to solve different tasks by changing its programming.  
Indeed, much of what we know about the Analytical Engine—which sadly was never 
completed—comes from Lovelace’s translation of a detailed description of 
Babbage’s work by the Italian engineer Luigi Menabrea.  Her translation, entitled 
Sketch of the Analytical Engine Invented by Charles Babbage, Esq., was published in 
1843, along with her explanatory notes that were almost three times as long as the 
original paper.  Lovelace recognized that the algebraic patterns for which the 
Analytical Engine was designed could be extended to include concepts beyond simple 
numbers.  Her notes envision a world of possibilities for the Analytical Engine that 
someday “might compose elaborate and scientific pieces of music of any degree of 
complexity or extent.” 
 

In an interview for a film about Ada Lovelace’s life and work, Doron Swade, who 
led the effort to rebuild Babbage’s earlier Difference Engine for the Science Museum 
in London, offers the following description of Ada’s contribution: 
 

Ada saw something that, in some sense, Babbage failed to see.  In Babbage’s 
world, his engines were bound by number. . . .  What Lovelace saw—what Ada 
Byron saw—was that number could represent entities other than quantity.  So, 
once you had a machine for manipulating numbers, if those numbers 
represented other things—letters, musical notes—then the machine could 
manipulate symbols of which number was one instance.” 

 

 
Ada Lovelace 

 

 
Charles Babbage 
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Representing characters 
The primitive elements of string data are individual characters.  Like the months of 
the year, characters can be represented inside the computer by assigning each 
character a numeric code.  You could, for example, assign successive integers to 
represent each of the letters in the alphabet, using 0 for the letter A, 1 for letter B, and 
so on.  In 1605, the English philosopher and scientist Francis Bacon did precisely that 
when he devised a technique for encoding messages that is now known as Bacon’s 
cipher.  What is, however, even more astonishing is that Bacon based his cipher on 
the binary representation of these numbers, almost a century before Leibniz published 
his paper on binary arithmetic.  Bacon’s cipher, however, was not used in practice 
and had little or no influence on the later development of computation. 
 

The first binary encoding scheme for characters used extensively in practice was 
the Baudot code, which was invented in 1870 by the French engineer Émile Baudot, 
one of the pioneers of the telegraph.  In Baudot’s scheme, each of the 26 letters was 
assigned a numeric code.  The encoding also included a few special characters to 
represent the space character, the two characters that telegraph printers used to 
designate the end of a line, and transitions to an alternate character set used for digits 
and punctuation. The letters of the alphabet did not appear in order, but were instead 
chosen so that the most common letters, such as E and T, would require pressing just 
one of the five keys on the input device that Baudot designed. 
 

The fact that the letters do not appear consecutively in the Baudot code does not 
make the encoding scheme any less effective.  The only essential characteristic of an 
encoding system is that the sender and receiver agree on how to convert letters to 
numeric codes.  The need for a common encoding shared by senders and receivers 
increases the importance of standardization.  As long as all telegraph operators used 
the same code, they were able to communicate with one another. 
 

In the early years of the computing industry, standardization was complicated by 
the existence of incompatible character encodings.  The American Standards 
Association (now known as the American National Standards Institute or ANSI) 
began work on a standardized character encoding in 1960, which was formalized in 
1963 as the American Standard Code for Information Interchange or ASCII.  Early 
IBM machines used a different character set derived from the coding system used for 
punched cards.  That early character set evolved into a competing standard called the 
Extended Binary Coded Decimal Interchange Code or EBCDIC.  Over time, ASCII 
and its successors have become the dominant standard in the industry. 
 

In its original design, ASCII contained 128 characters, which is enough to store 
the uppercase and lowercase letters of the Latin alphabet, the standard decimal digits, 
a variety of punctuation symbols, and a set of nonprinting characters called control 
characters.  The characters in the original ASCII set appear in Figure 7-1.  The gray 

 
Francis Bacon 

 
Émile Baudot 
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boxes in the table correspond to control characters that have lost their significance 
over time.  The few remaining control characters recognized by Python are indicated 
using a backslash (\) followed by a letter that suggests that character’s function.  For 
example, the character \n represents the newline character, which marks the end of 
a line.  None of the other control characters are used in this book. 
 

The characters in Figure 7-1 are arranged according to their internal values, which 
are expressed in hexadecimal.  The character A, for example, appears in the row 
labeled 4x and the column labeled 1, so its internal representation is 4116, which is 
the decimal number 65.  There is no need to learn these values, although certain 
patterns are important. This text, for example, relies on the following properties: 
 
• The digit characters are consecutive. 

• The uppercase and lowercase letters form two consecutive sequences. 
 

The ASCII coding system quickly proved to be inadequate as computing expanded 
into the global environment.  With the advent of the World Wide Web in the 1990s, 
it became necessary to expand the encoding system to embrace a broader collection 
of languages.  The result of that expansion was a new standard called Unicode, which 
supports a much larger set of characters.  The version of Unicode implemented in 
Python allows for 1,114,111 (11000016) characters. 
 
Converting between numeric codes and characters 
Python makes it easy to convert back and forth between characters and their 
underlying numeric representation in Unicode.  The built-in function chr takes an 
integer value and returns a one-character string that contains the character with that 
code.  For example, you can see from Figure 7-1 that calling chr(0x41)—or, 
equivalently, chr(65)—returns the string "A".  The built-in function ord applies the 
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same conversion in the opposite direction.  It takes a one-character string and returns 
the corresponding Unicode value.  Thus, calling ord("A") returns the integer 65. 
 

As a modern-day programmer, you should never have to know any of the Unicode 
values and should certainly not write programs that use numeric values to represent 
characters.  At the same time, it is important to know that characters have a numeric 
representation and that you can use the ord function to obtain it.  Later examples in 
this chapter, for example, will need to use the character code for "A".  Those programs 
will not, however, use the explicit value 65, which would make the code difficult to 
read.  Those programs will instead use ord("A") to indicate this value. 
 

 7.2 String functions and operators 
From the brief discussion of strings in Chapter 1, you already know that Python uses 
the + operator to signify concatenation, which consists of joining the strings together 
end to end.  You also know that you can determine the length of a string by calling 
the built-in function len.  For example, if ALPHABET is defined as 
 

ALPHABET = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" 
 
calling len(ALPHABET) returns the value 26.  Similarly, if you define a variable 
empty using the declaration 
 

empty = "" 
 
the expression len(empty) has the value 0.  The string containing no characters at 
all, which comes up frequently in programming, is called the empty string. 
 

In addition to the these operations, you have also used the relational operators (==, 
!=, <, <=, >, and >=) to compare string values.  For example, the programs in Chapter 
7 that used a blank line to signal the end of the input used the == operator to test 
whether the variable line was equal to the empty string.  The relational operators 
compare strings using lexicographic order, which is similar to traditional 
alphabetical order but which uses the underlying Unicode values of each character to 
make the comparison.  Lexicographic order means that case is significant, so "a" is 
not equal to "A".  In lexicographic order, "a" is greater than "A" because the Unicode 
value for a lowercase a (6116 or 97) is greater than the Unicode value for an uppercase 
A (4116 or 65). 
 

Beyond these operations you have already seen, Python defines several other tools 
for working with strings.  The sections that follow describe the built-in operators and 
functions organized into logically related groups.  The methods that apply to string 
objects are introduced in section 7.4. 
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Repeating a string 
In Python, you can use the * operator to specify a string composed by concatenating 
multiple copies of a shorter string.  For example, the expression 
 

"ab" * 3 
 
returns the six-character string "ababab".  Python’s use of the * operator seems 
appropriate, not only because it suggests multiplicity but also because it corresponds 
to the mathematical definition of multiplication as repeated addition, as follows: 
 

"ab" * 3  is the same as  "ab" + "ab" + "ab" 
 

As it does in arithmetic expressions, the * operator takes precedence over the + 
operator, so that the expression 
 

"Rose" + " is a rose" * 3 + "." 
 
performs the * operator first and therefore returns the string 
 

"Rose is a rose is a rose is a rose." 
 
This sentence appears in Gertrude Stein’s poem “Sacred Emily” from 1913. 
 
Selecting an individual character 
You can select an individual character from a Python string by enclosing its index in 
square brackets.  Character positions in a string are numbered starting from 0.  For 
example, the characters in the constant ALPHABET defined on the previous page are 
numbered as in the following diagram: 
 

 
 
The expression ALPHABET[10], for example, is the one-character string "K". 
 

It is often useful, however, to specify a character by indicating how far that 
character is from the end of the string. Python allows a string index to be negative, in 
which case the position is determined by counting backwards from the end.  The 
characters in ALPHABET can therefore also be numbered like this: 
 

 
 
Using this numbering scheme, the expression ALPHABET[-3] selects the third 
character from the end, or "X". 
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Negative index numbers are never necessary but in some cases turn out to be 
convenient.  In particular, it is more concise to select the last character in the string s 
by writing s[-1] than the longer and less evocative s[len(s) - 1]. 
 
Slicing 
While concatenation makes longer strings from shorter pieces, you often need to do 
the reverse: separate a string into the shorter pieces it contains.  A string that is part 
of a longer string is called a substring.  Python makes it easy and convenient to extract 
substrings by extending the square-bracket notation for character selection so that you 
can specify not only a single index position but also a range of index positions 
marking the boundaries of a substring.  In Python, using square brackets to select a 
range of characters is called slicing. 
 

In its simplest form, a slice in Python is written using two indices separated by a 
colon inside the square brackets, like this: 
 

str[start:limit] 
 
As with the range function defined in Chapter 2, the index expressions inside the 
square brackets specify a half-open interval in the sense that the index range includes 
start but stops just before limit.  Thus, the expression 
 

ALPHABET[1:4] 
 
returns the three-character substring "BCD", which starts at index position 1 and ends 
just before index position 4.  Similarly, the expression 
 

ALPHABET[1:-1] 
 
returns the 24-character substring "BCDEFGHIJKLMNOPQRSTUVWXY", which stops just 
short of the index position indicated by –1, which uses negative indexing to specify 
the last character in the string. 
 

Python allows you to leave out the index expressions on either side of the colon.  
If the first index is missing, it is assumed to be the beginning of the string, so that 
 

ALPHABET[:5] 
 
selects the substring "ABCDE" consisting of the first five characters in ALPHABET.  If 
the second expression is missing, it is taken to be the length of the string.  Thus, 
 

ALPHABET[13:] 
 
selects the substring "NOPQRSTUVWXYZ", which contains the characters from index 
position 13 up to the end of the string. 
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The square-bracket syntax also accepts an optional third component, as follows: 
 

str[start:limit:stride] 
 
When the stride component appears, it indicates the distance between characters 
chosen for inclusion in the substring.  For example, the expression 
 

ALPHABET[9:20:5] 
 
selects characters from ALPHABET starting at position 9, ending before position 20, 
and moving ahead five characters on each stride.  This expression therefore selects 
the characters in index positions 9, 14, and 19 to produce the string "JOT".  The 
expression 
 

ALPHABET[::2] 
 
uses the default values for start and limit but uses a stride of 2 to select every other 
character from ALPHABET, which produces the string "ACEGIKMOQSUWY". 
 

As with the built-in range function, the stride component can be negative, in 
which case the characters are selected by counting backwards through the string.  
When the stride value is negative, the start component defaults to the last character 
in the string, and the limit component defaults to the beginning of the string.  For 
example, the expression 
 

ALPHABET[::-1] 
 
returns the characters in ALPHABET, chosen from back to front to produce the 
26-character string "ZYXWVUTSRQPONMLKJIHGFEDCBA". 
 

Programmers entranced by Python’s particularly succinct style of expression are 
often tempted to use this form of slicing to reverse a string.  Doing so, however, makes 
the resulting program difficult to follow for programmers unfamiliar with this 
Python-specific idiom.  One way to restore the desired readability is to embed this 
operation in a function whose name makes the effect of the operation clear, like this: 
 

def reverse_string(s): 
    return s[::-1] 

 
Although some readers may be mystified as to how this implementation achieves the 
desired effect, those readers can use the name of the function to understand the 
program on a more holistic level. 
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 7.3 Common string patterns 
Although section 7.2 gives you a sense of what string operators Python offers, the 
discussion gives you little guidance as to how you can use these operators most 
effectively.  When you are learning to program, it is often easier to ignore as many 
details as possible and instead write your programs by relying on code patterns that 
implement common operations.  The two most important string patterns are iterating 
through the characters in a string and growing a string by concatenation.  The sections 
that follow describe these patterns. 
 
Iterating through the characters in a string 
When you work with strings, one of the most important patterns involves iterating 
through the characters in a string.  In its simplest form, which you have already seen 
in Chapter 1, iterating through the characters in a string requires the following code: 
 

for ch in s: 
    . . . body of loop that uses the character ch . . . 

 
On each loop cycle, the variable ch is bound to a one-character string chosen from 
successive index positions of the string s.  The body of the loop then uses that 
character to perform some computation.  You can, for example, count the number of 
spaces in a string using the following function: 
 

def count_spaces(s): 
    ns = 0 
    for ch in s: 
        if ch == " ": 
            ns += 1 
    return ns 

 
Growing a string through concatenation 
The other string pattern that is important to memorize involves creating a new string 
one character at a time.  The details of the loop depend on the application, but the 
general pattern for creating a string by concatenation looks like this: 
 

result = "" 
for whatever loop header line fits the application: 
    result += the next piece of the result 

 

For example, the n_copies function returns a string consisting of n copies of s, 
achieving the effect of the expression s * n without using the * operator: 
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def n_copies(n, s): 
    result = "" 
    for i in range(n): 
        result += s 
    return result 

 
Combining the iteration and concatenation patterns 
Many string-processing functions use the iteration and concatenation patterns 
together.  For example, the following function returns a copy of the string s with all 
spaces removed: 
 

def remove_spaces(s): 
    result = "" 
    for ch in s: 
        if ch != " ": 
            result += ch 
    return result 

 
As a second example, the following function offers another strategy—arguably 

more readable but certainly less efficient—for implementing the reverse_string 
function first defined on page 228: 
 

def reverse_string(s): 
    result = "" 
    for ch in s: 
        result = ch + result 
    return result 

 
This implementation builds up the reversed string by concatenating each character 
onto the front of the existing result.  For example, calling reverse("stressed") 
assigns the following values to result as it goes through the for loop: 
 

"" 
"s" 
"ts" 
"rts" 
"erts" 
"serts" 
"sserts" 
"esserts" 
"desserts" 
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 7.4 String methods 
Strings in Python support a range of operations beyond those you have seen so far in 
this chapter.  Those operations, however, are implemented in a slightly different style.  
In Python, the built-in string type is implemented as a class similar to those in the 
Portable Graphics Library.  Like all classes in an object-oriented language, the string 
class implements most of its operations in the form of methods that are applied to 
string objects. 
 

As with the methods you’ve used in the graphics library, method calls on the string 
class are written using the receiver syntax: 
 

receiver.name(arguments) 
 
Figure 7-2 lists the most common methods that Python defines as part of its built-in 
string class.  These methods under the first four subheadings in Figure 7-2 are 
explored in detail in the sections that follow.  The methods under the subheading 
“Splitting and joining strings” are discussed in Chapter 8. 
 
Finding patterns 
From time to time, you will find it useful to search a string to see whether it contains 
a particular substring.  To support such search operations, Python’s string class 
exports a method called find, which comes in two forms.  The simplest form of the 
call is 
 

s.find(pattern) 
 
where pattern is the substring you’re looking for.  When called, the find method 
searches through s looking for the first occurrence of the pattern.  If the search value 
is found, find returns the index position at which the match begins.  If the character 
does not appear before the end of the string, find returns -1. 
 

The find method takes optional start and end arguments that limit the range of 
the search.  These arguments are illustrated by the following examples, where s 
contains the string "hello, world": 
 

s.find("o")     ® 4 
s.find("o", 5)  ® 8 
s.find("o", 5, 7)  ® -1 

 
The Python string class also includes an rfind method that works like find, except 
that it searches backward from the end of the specified range for the last instance of 
the pattern. 
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The startswith method returns True if the receiver string begins with the 
specified prefix.  For example, the expression 
 

answer.startswith("y") or answer.startswith("Y") 
 
is True if answer begins with either "y" or "Y".  The endswith method is symmetric 
and returns True if the string ends with the specified suffix. 
 
Creating transformed strings 
Python’s string class exports several methods for changing the case of characters 
within a string.  The method upper, for example, returns a string in which all 
lowercase characters in the original string have been converted to their uppercase 
equivalents.  Thus, if s contains the string "hello, world", calling s.upper() 
returns "HELLO, WORLD".  The lower method performs the case conversion in the 
opposite direction. If the constant ALPHABET is defined as shown on page 225, calling 
ALPHABET.lower() returns "abcdefghijklmnopqrstuvwxyz".  The capitalize 
method returns a string in which the first character is capitalized and all other letters 
are converted to their lowercase forms. 
 

The “Creating transformed strings” subheading of Figure 7-2 lists several other 
methods that often come in handy.  The lstrip, rstrip, and strip methods return 
a copy of the receiver string after removing all whitespace characters (“invisible” 
characters such as spaces or tabs) from one or both ends of the string.  The replace 
method returns a copy of the receiver string after replacing all instances of the first 
argument with the second.  This function makes it possible to simplify the definition 
of remove_spaces from page 230 as follows: 
 

def remove_spaces(s): 
    return s.replace(" ", "") 

 
It is important to remember that the methods in Python’s string class do not change 

the value of the receiver but instead return an entirely new string.  Thus, calling 
s.upper() doesn’t change the value of the variable s.  If you want to change the 
value of s to its uppercase equivalent, you need to use an assignment statement to 
store the value back into the variable, as in 
 

s = s.upper() 
 

The upper method makes it easy to write a predicate function called 
equals_ignore_case that checks whether two strings are equal if the comparison 
ignores the distinction between uppercase and lowercase characters, as follows: 
 

def equals_ignore_case(s1, s2): 
    return s1.upper() == s2.upper() 
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Testing for character properties 
When you work with individual characters in a string, it is often useful to determine 
whether those characters fall into particular categories, such as letters or digits.  The 
string class in Python includes methods that check to see whether the receiver string 
fits one of the specified categories.  For example, the expression ch.isdigit() has 
the value True if ch contains a digit character and the value False if ch contains any 
other type of character.  Similarly, ch.isspace() returns True if ch is one of the 
whitespace characters, as defined on page 233. 
 

In most cases, the methods that fall under the “Testing for character properties” 
subheading are applied to a single character.  These methods, however, can also be 
applied to longer strings.  For example, if line contains the string "1729", calling 
line.isdigit() returns True because every character in line is a digit.  The rules 
for applying these methods to multicharacter strings are summarized in the short 
descriptions provided in Figure 7-2. 
 
Formatting methods 
The first three methods under the “Formatting methods” subheading in Figure 7-2 
implement left, right, and center padding for strings.  The ljust, rjust, and center 
methods in the string class therefore serve as library counterparts to the align_left, 
align_right, and align_center functions you implemented in Chapter 5, exercise 
7.  That exercise suggests that these functions are important enough to include in a 
library, and Python has done just that.  The f-string model offers a sophisticated 
facility for specifying how numbers and other types are formatted for display on the 
console or other output devices.  That method and other strategies for controlling how 
strings appear are described in more detail in the section on “Formatting strings” later 
in this chapter. 
 

 7.5 Building string applications 
The easiest way to improve your understanding of strings is to look at several sample 
applications.  The sections that follow walk you through four applications that use 
strings in different ways. 
 
Checking for palindromes 
A palindrome is a word that reads identically backward and forward, such as level or 
noon.  The goal of this section is to write a predicate function is_palindrome that 
checks whether a string is a palindrome.  Calling is_palindrome("level") should 
return True; calling is_palindrome("xyz") should return False. 
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As with most programming problems, there is more than one strategy for solving 
this problem.  The following code illustrates one strategy: 
 

def is_palindrome(s): 
    for i in range(len(s) // 2): 
        if s[i] != s[-(i + 1)]: 
            return False 
    return True 

 
This implementation uses a for loop to run through each index position in the first 
half of the string, checking whether the character in that position matches the one in 
the symmetric position relative to the end of the string. 
 

If, however, you make use of the functions you already have, you can code 
is_palindrome in a much simpler form, as follows: 
 

def is_palindrome(s): 
   return s == reverse_string(s) 

 

Although both implementations of is_palindrome return the correct result, there 
are various tradeoffs that may lead you to choose one over the other.  The first 
implementation is likely to be more efficient because it doesn’t require creating any 
new strings.  Despite the difference in efficiency, the second version has many 
advantages, particularly as an example for new programmers.  For one thing, it takes 
advantage of existing code by making use of the reverse_string function.  For 
another, it hides the complexity involved in calculating the index positions required 
by the first version.  It takes at least a minute or two for most students to figure out 
why the code includes the selection expression s[-(i + 1)] or why the upper limit 
of the for range is len(s) // 2.  By contrast, the line 
 

return s == reverse_string(s) 
 
reads as fluidly as English: a string is a palindrome if it is equal to the same string 
when you reverse it.  That, after all, is precisely the definition of a palindrome. 
 

Particularly as you are learning about programming, it is better to work toward the 
clarity shown in the second implementation of is_palindrome than to try and match 
the efficiency of the first.  Given the speed of modern computers, it is almost always 
worth sacrificing some efficiency to make a program easier to understand. 
 
Generating acronyms 
An acronym is a new word formed by combining, in order, the initial letters of a 
series of words.  For example, NATO is an acronym formed from the first letters in 
North Atlantic Treaty Organization.  The goal of this section is to write a function 
called acronym that takes a string and returns its acronym.  For example, calling 
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acronym("North Atlantic Treaty Organization") 
 

should return the string "NATO".  Similarly, calling 
 

acronym("port out starboard home") 
 

should return the acronym "posh". 
 

When you first look at the problem, it might seem that the obvious approach is to 
start with the first character and then search for spaces in a while loop.  Each time 
the function finds a space, it can concatenate the next character onto the end of the 
string variable used to hold the result.  When no more spaces appear in the string, the 
acronym is complete.  This strategy can be translated into a Python implementation 
as follows: 
 

def acronym(s): 
    result = s[0] 
    sp = s.find(" ") 
    while sp != -1: 
        result += s[sp + 1] 
        sp = s.find(" ", sp + 1) 
    return result 

 

 
Although this implementation works for some strings, it fails for others.  For 

example, it produces the correct algorithm only if each pair of words is separated by 
exactly one space.  If some of the words are separated using hyphens—as in "self-
contained underwater breathing apparatus", which produces the acronym 
"scuba"—this implementation will fail to return the correct result.  Worse still, the 
function will generate an error condition if the word ends with a space, because the 
selection expression s[sp + 1] will try to select the character after the end of the 
string, which doesn’t exist. 
 

Although the following implementation is not as easy to follow, it correctly 
handles the special cases in which the earlier version fails: 
 

def acronym(s): 
    result = "" 
    in_word = False 
    for ch in s: 
        if ch.isalpha(): 
            if not in_word: 
                result += ch 
            in_word = True 
        else: 
            in_word = False 
    return result 
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This implementation uses the standard idiom to go through the string character by 
character, looking at each one.  It determines the word boundaries by using the 
variable in_word, which is True if the process is scanning letters and False if it is 
scanning nonletters.  New letters get added to the acronym only if the code sees a 
letter when in_word was previously False. 
 
Translating English to Pig Latin 
To give you more of a sense of how to implement string-processing applications, this 
section describes a Python function that takes a line of text and translates each word 
in that line from English to Pig Latin, a made-up language familiar to most children 
in the English-speaking world.  In Pig Latin, words are formed from their English 
counterparts by applying the following rules: 
 
1. If the word contains no vowels, no translation is done, which means that the Pig 

Latin word is the same as the original. 

2. If the word begins with a vowel, the Pig Latin translation consists of the original 
word followed by the suffix way. 

3. If the word begins with a consonant, the Pig Latin translation is formed by 
extracting the string of consonants up to the first vowel, moving that collection 
of consonants to the end of the word, and then adding the suffix ay. 

 
As an example, suppose that the English word is scram.  Because the word begins 
with a consonant, you divide it into two parts: one consisting of the letters before the 
first vowel and one consisting of that vowel and the remaining letters: 
 

 
 
You then interchange these two parts and add ay at the end, as follows: 
 

 
 
Thus the Pig Latin word for scram is amscray.  For a word that begins with a vowel, 
such as apple, you simply add way to the end, which leaves you with appleway. 
 

The code for the PigLatin.py program appears in Figure 7-3.  The file exports 
two functions for clients to use.  The word_to_pig_latin function converts a word 
to its Pig Latin equivalent.  The to_pig_latin function takes a line of text and 
converts the entire line to Pig Latin by divides the line into words and then converting 
each word.  Characters that are not part of a word are copied directly to the output 
line so that punctuation and spacing remain unaffected.  The following IDLE session 
shows a few calls to the function to_pig_latin, which also works for single words: 
 



238     Strings 

 

PigLatin-py-p1.png 
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It is worth taking a careful look at the implementations of to_pig_latin and 
word_to_pig_latin in Figure 7-3.  The to_pig_latin function finds the word 
boundaries in the input, which provides a useful pattern for separating a string into 
individual words.  The word_to_pig_latin function uses slicing to extract pieces of 
the English word and then uses concatenation to put them back together in their Pig 
Latin form. 
 

Implementing simple ciphers 
Codes and ciphers have been around in some form or another for most of recorded 
history.  There is evidence to suggest that coded messages were used in ancient Egypt, 
China, and India, possibly as early as the third millennium BCE, although few details 
of the cryptographic systems have survived.  In Book 6 of the Iliad, Homer suggests 
the existence of a coded message when King Proitos, seeking to have the young 
Bellerophontes killed, 
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sent him to Lykia, and handed him murderous symbols, which 
he inscribed on a folding tablet, enough to destroy life . . . 

 
Shakespeare’s Hamlet, of course, has Rosencrantz and Guildenstern carry a similarly 
dangerous missive, but Hamlet’s message is secured under a royal seal.  In the Iliad, 
nothing in the text suggests that the message is sealed, which implies that the meaning 
of the “murderous symbols” must somehow be disguised. 
 

One of the first encryption systems whose details survive is the Polybius square, 
developed by the Greek historian Polybius in the second century BCE.  In this system, 
the letters of the alphabet are arranged to form a 5´5 grid in which each letter is 
represented by its row and column number.  Suppose, for instance, that you want to 
transmit following English version of Pheidippides’s message to Sparta: 
 

THE ATHENIANS BESEECH YOU TO HASTEN TO THEIR AID 
 

This message can be transmitted as a series of numeric pairs, as follows: 
 

44 23 15 11 44 23 15 33 24 11 33 43 12 15 43 15 15 13 23 54 
34 45 44 34 23 11 43 44 15 33 44 34 44 23 15 24 42 11 24 14 

 
The real advantage of the Polybius square is not that it allows for secret messages, 

but that it simplifies the problem of transmission.  Each letter in the message can be 
represented by holding between one and five torches in each hand, which allows a 
message to be communicated visually over a great distance.  By reducing the alphabet 
to an easily transmittable code, the Polybius square anticipates such later 
developments as Morse code and semaphore, not to mention modern digital 
encodings such as ASCII or Unicode. 
 

In De Vita Caesarum, written sometime around 110 CE, the Roman historian 
Suetonius describes an encryption system used by Julius Caesar, as follows: 
 

If he had anything confidential to say, he wrote it in cipher, that 
is, by so changing the order of the letters of the alphabet, that not 
a word could be made out.  If anyone wishes to decipher these, 
and get at their meaning, he must substitute the fourth letter of 
the alphabet, namely D, for A, and so with the others. 

 
Even today, the technique of encoding a message by shifting letters a certain distance 
in the alphabet is called a Caesar cipher.  According to the passage from Suetonius, 
each letter is shifted three positions ahead in the alphabet.  For example, if Caesar had 
had time to translate his final words according to his coding system, ET TU BRUTE 
would have come out as HW WX EUXWH, because E gets moved three letters ahead 
to H, T gets moved three to W, and so on.  Letters that get advanced past the end of 
the alphabet wrap around back to the beginning, so that X becomes A, Y becomes B, 
and Z becomes C. 
 

 
Polybius square 
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The caesar_cipher function in Figure 7-4 translates the letters in a string 
according to the rules for constructing a Caesar cipher.  The code uses ord to convert 
characters into their Unicode values and then uses the remainder operator to 
implement the cyclical shift that wraps around to the beginning of the alphabet.  Once 
the caesar_cipher function has computed the new character code, it uses chr to 
convert the Unicode value back into a string.  The code makes sure that the operands 
to % are positive to avoid relying on Python’s mathematical assumptions. 
 

The following IDLE session demonstrates the operation of caesar_cipher: 
 

 
 

Cryptography played an important role in the early history of computing.  During 
World War II, a team of mathematicians and engineers at Bletchley Park in England 
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used electromechanical devices to break the German Enigma code.  That 
accomplishment, in which the pioneering computer scientist Alan Turing played a 
major role, proved vital to the Allied war effort.  Although this work was kept secret 
for many years after the war, it has recently been popularized in a series of films 
including Breaking the Code, Enigma, and The Imitation Game. 
 

 7.6 Formatting strings 
Modern computing has its roots in machines designed for processing and tabulating 
data.  As noted in the introduction to this chapter, Hermann Hollerith designed a 
tabulating machine that was used to process the 1890 census in the United States, 
thereby making it possible to complete the process in substantially less time.  The 
company that Hollerith founded went on to become International Business Machines 
(IBM), which dominated the computing industry for most of the 20th century. 
 

The early IBM machines were used primarily to automate such record-keeping 
operations as accounting, inventory control, and payroll processing.  Those 
applications produced printed reports designed for human readers, which required 
arranging the output in a tabular format with fixed-width columns.  The need to 
produce easily readable output meant that programming languages designed to 
support data processing included features that allowed programmers to specify the 
exact format in which the various output values should appear. 
 

Although precisely formatted output is no longer as important as it was in the past, 
modern languages typically offer some strategy for controlling output format.  Python 
is particularly generous in this regard.  Over its history, Python has embraced three 
different strategies for controlling output formatting: 
 
1. Percent-sign formatting.  Early versions of Python redefined the remainder 

operator (%) for the string class, turning it into a general tool for substituting 
values into an existing string.  Because the Python style guidelines now 
discourage this approach, it does not make sense to cover it in detail. 

2. The format method in the string class.  Beginning with Python version 2.0, the 
string class includes a method called format that allows callers to create new 
strings by replacing placeholders with formatted values. 

3. Formatted string literals.  In December 2016, Python version 3.6 introduced 
formatting at the language level.  The model is similar to the format method, but 
more concise and easier to use, as you saw in Chapter 1. 

 
Formatted string literals (or f-strings for short) are so much easier to use that they 

have rendered the earlier models largely obsolete.  You may at some point find that 
you need to read programs that use the older styles, but it doesn’t make sense to use 
those models in the programs you write. 
 

 
Alan Turing 
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Suppose that you have two variables, n1 and n2, each of which contains an integer.  
What you would like to do is produce an output line of the form 
 

___ times ___ equals ___. 
 
in which the underscored components are replaced by n1, n2, and their product.  For 
example, if n1 and n2 contain 6 and 7, the output should look like this: 
 

 
 

Although you can solve this problem by concatenating the components of the 
output line in a call to the print function, you’ve known since Chapter 1 that the 
simplest way to produce this output line is to use the following line: 
 

print(f"{n1} times {n2} equals {n1 * n2}.") 
 
The expressions inside the curly braces are called placeholders.  When Python 
evaluates an f-string, it replaces the text inside the braces with the value of the 
expression evaluated at that point in the execution of the program, automatically 
converting the result to a string if necessary. 
 

So far, the examples of the f-string model have done nothing more than substitute 
values for placeholders.  The real power of these the placeholder model lies in the 
ability to control how the inserted values are formatted.  In addition to the expression 
that indicates what value should be inserted, Python allows programmers to specify a 
format specification consisting of a colon and a sequence of format-control options 
just before the closing brace.  The complete list of options is long, but the following 
are among the most useful: 
 
• Fill.  If the converted value is shorter than the minimum field width described later 

in this list, the output needs to be padded to reach the required width.  By default, 
the value is padded with spaces, but you can change this behavior by starting the 
options specification with some other character. 

• Alignment.  The most common values for the alignment option are <, ^, >, which 
specify left, center, and right alignment, respectively.  By default, Python  uses 
right alignment for numeric values and left alignment for other values. 

• Sign.  The sign option is usually omitted, in which case negative numbers are 
preceded by a minus sign.  Specifying + as the sign option ensures that all numbers 
include either a plus or a minus sign.  Using a space ensures that positive numbers 
are preceded by a space, which helps to maintain alignment. 

• Grouping.  The most common grouping option is the comma, which indicates that 
commas should be used to separate numeric output at three-digit boundaries. 
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• Width.  The width option is an integer that indicates the minimum width of the 
field in terms of the numbers of characters.  If the converted value is shorter than 
the width, it will be padded as specified by the alignment option. 

• Precision.  The precision option appears after the width option, preceded by a 
period so that the pair look like a floating-point number.  The interpretation of the 
precision option depends on the conversion type but usually controls the number 
of digits after the decimal point. 

• Type.  The last character in the format specification indicates the type of 
conversion.  The most common conversion types appear in Figure 7-5.  Uppercase 
format codes force uppercase letters in the conversion. 

 
The number of possible combinations of the various formatting options is so large 

that it is impossible to cover them all.  The easiest way to familiarize yourself with 
the available formatting options is through experimentation.  Look through the 
descriptions for a feature that sounds like something you might want to use and then 
give it a try.  Even so, it helps to offer a couple of simple examples. 
 

The following function takes an integer and then prints the representation of that 
integer in decimal, binary, octal, and hexadecimal notation: 
 

def base_representations(v): 
    print(f"{v:d} dec = {v:b} bin = {v:o} oct = {v:X} hex") 

 
Calling base_representations(42) produces the following output: 
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As a second example, the function 
 

def trig_table(step): 
    print("   x     sin(x)     cos(x)") 
    for x in range(0, 360, step): 
        r = math.radians(x) 
        sinr = math.sin(r) 
        cosr = math.cos(r) 
        print(f" {x:3d}   {sinr: 7.5f}   {cosr: 7.5f}") 

 
produces a table of sines and cosines for angles ranging from 0 to 360 degrees in 
increments specified by the step parameter.  The results of each mathematical 
function are displayed in a fixed-point format that is seven characters wide, with five 
digits after the decimal point, allowing extra space for a negative sign.  Calling 
trig_table(30), for example, produces the following table: 
 

 
 

Python’s f-strings are useful in writing test programs for the code you write.  By 
reducing the amount of code you need to write, f-strings make the process less 
onerous, which in turn makes it more likely that programmers will write those tests.  
Here, for example, is a test program for the acronym function: 
 

def test_acronym(): 
 
    def test(s, expected): 
        result = acronym(s) 
        print(f"acronym(\"{s}\") -> \"{result}\"" + 
              f" (should be \"{expected}\")") 
 
    test("self-contained underwater breathing apparatus", 
         "scuba") 
    test("port out starboard home", "posh") 
    test("North Atlantic Treaty Organization", "NATO") 
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 Summary 
In this chapter, you have learned how to use Python’s built-in string type, which 
makes it easy to write string-processing applications without worrying about the 
details of the underlying representation.  Important points in this chapter include: 
 
• The fundamental unit of information in a modern computer is a bit, which can be 

in one of two possible states. The state of a bit is usually represented in memory 
diagrams using the binary digits 0 and 1, but it is equally appropriate to think of 
these values as off and on or false and true, depending on the application. 

• Sequences of bits are combined inside the hardware to form larger structures, 
including bytes, which are eight bits long, and words, which are large enough to 
contain a standard integer. 

• Computer scientists tend to record the values of bit sequences in hexadecimal 
(base 16), which allows binary values to be represented in a more compact form. 

• Numbers don’t have bases; representations do. 

• Nonnumeric data values are represented by numbering the elements in the domain 
and then using those numbers as codes for the original values. 

• Characters are represented internally using a coding scheme called Unicode, 
which assigns numeric values to characters from a wide range of languages. 

• Python allows you to convert between Unicode values and strings using the 
built-in functions ord and chr. 

• The string class represents a type that is conceptually a sequence of characters.  
The character positions in a string are assigned index numbers that start at 0 and 
extend up to one less than the length of the string. 

• Python allows negative index numbers for strings, which count backward from the 
end of the string. 

• Python allows you to concatenate n copies of a string s using the notation s * n. 

• You can extract a substring in Python using slicing, which ordinarily appears in 
the form str[start:limit].  This form of slicing produces a substring that begins at 
index position start and continues up to but not including index position limit.  If 
start is missing, it defaults to 0.  If limit is missing, it defaults to the end of the 
string. 

• The square-bracket syntax for slicing also accepts a third component called the 
stride, which specifies how many characters to move ahead while composing the 
substring. 

• The stride component can be negative, in which case the selection of characters 
occurs backward from the end of the string. 
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• The idiomatic pattern for iterating through the elements of a string is 
 

for ch in s: 
    . . . body of loop that manipulates ch . . . 

 

• The standard pattern for growing a string by concatenation is 
 

result = "" 
for whatever loop header line fits the application: 
    result += the next piece of the result 

 

• Python implements several strategies that support inserting formatted values into 
a string.  This chapter describes the use of formatted string literals or f-strings, 
which were added to Python’s version 3.6 release in December 2016 and quickly 
became the most popular model for format control. 

• When you use the f-string model, you add the letter f before the initial quotation 
mark and then include placeholders enclosed in curly braces.  Evaluation of the 
f-string triggers replacement of those placeholders with the values of the 
expressions enclosed within the braces.  The f-string model allows the user to 
specify additional formatting options such as the conversion type, alignment, field 
width, and precision. 

 

 Review questions 
1. Define the following terms: bit, byte, and word. 
 
2. What is the etymology of the word bit? 
 
3. Convert each of the following decimal numbers to its hexadecimal equivalent: 
 

a. 17 c. 1729 
b. 256 d. 2766 

 
4. Convert each of the following hexadecimal numbers to decimal: 
 

a. 17 c. CC 
b. 64 d. FAD 

 
5. In his “New Math” song mentioned on page 4, Tom Lehrer notes that “the book 

I got this problem out of wants you to do it in base 8.”  What is 3428  - 1738? 
 
6. What Python functions allow you to convert back and forth between an integer 

and the corresponding Unicode character? 
 
7. What does ASCII stand for? 
 
8. What is the relationship between ASCII and Unicode? 
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9. By consulting Figure 7-1, determine the Unicode values of the characters "$", 
"@", "0", and "x". 

 
10. True or false: In Python, you can determine the length of the string stored in the 

variable s by calling len(s). 
 
11. True or false: The index positions in a string begin at 1 and extend up to the 

length of the string. 
 
12. How do you extract the character at position k in a string? 
 
13. What are the three components of the square-bracket notation used to indicate 

slicing?  What are the default values of each component? 
 
14. What is lexicographic ordering? 
 
15. What value does find return if the pattern string does not appear? 
 
16. What is the significance of the optional second argument to find? 
 
17. Suppose that you have declared and initialized the variable s as follows: 
 

s = "hello, world" 
 

Given that declaration, what value is produced by each of the following calls: 
 

a. len(s) f. s.replace("h", "j") 
b. s[5] g. s[3:5] 
c. s[-3] h. s[7:] 
d. s.find("l") i. s[3:3] 
e. s.find("l", 5) j. s[::-2] 

 
18. What is the pattern for iterating through each character in a string? 
 
19. What is the pattern for growing a string through concatenation? 
 
20. What value is produced by each of the following f-strings: 
 

a. f"{17} + {25} = {17 + 25}" 
b. f"{127:X}" 
c. f"{2.7182818:6.4f}" 
d. f"{'L':<3s}{'C':^3s}{'R':>3s}" 

 
21. To 16 significant digits, the constant math.pi is 3.141592653589793.  What 

f-string conversion would you use to produce each line in the following sample 
run: 
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 Exercises 
1. In exercise 10 from Chapter 3, you wrote a program to find perfect numbers.  

Rewrite that program so that it also displays the binary form of these numbers.  
As you can see if you run this program, the first few perfect numbers follow an 
interesting pattern when you write them out in binary.  Euclid discovered this 
pattern more than 2000 years ago, and the 18th-century Swiss mathematician 
Leonhard Euler proved that all even perfect numbers follow this pattern.  The 
question of whether any odd perfect numbers exist remains unresolved in 
mathematics. 

 
2. Suppose that the startswith and endswith methods were not defined in 

Python.  Implement the same functionality by defining the more readably named 
functions starts_with(s, prefix) and ends_with(s, suffix). 

 
3. Implement the function is_english_consonant(ch), which returns True if ch 

is a consonant in English, that is, any alphabetic character except one of the five 
vowels: "a", "e", "i", "o", and "u".  As with the is_english_vowel function 
presented in the text, your method should recognize both lower- and uppercase 
consonants. 

 
4. Rewrite the is_palindrome function so that it operates recursively, taking 

advantage of the fact that a string is a palindrome if (a) its length is less than two 
or (b) its first and last characters match and the substring between those 
characters is a palindrome. 

 
5. The concept of a palindrome is often extended to full sentences by ignoring 

punctuation, spacing, and differences in the case of letters.  For example, the 
string "Madam, I'm Adam." is a sentence palindrome, because if you look only 
at the letters and ignore any case distinctions, it reads identically backward and 
forward. 

 

Write a predicate function is_sentence_palindrome(s) that returns True 
if s fits this definition of a sentence palindrome.  For example, you should be 
able to use your function to reproduce the following IDLE session: 
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6. Write a function create_regular_plural(word) that returns the plural of 

word formed by following these standard English rules: 
 

a. If the word ends in s, x, z, ch, or sh, add es to the word. 
b. If the word ends in a y preceded by a consonant, change the y to ies. 
c. In all other cases, add just an s. 

 

Design a set of test cases to verify that your function works. 
 
7. In English, the notion of an ongoing action is expressed using the present 

progressive tense, which involves the addition of an ing suffix to the verb.  For 
example, the sentence I think conveys a sense that one is capable of thinking; by 
contrast, the sentence I am thinking conveys the impression that one is currently 
doing so.  The ing form of the verb is called the present participle. 

 

Unfortunately, creating the present participle is not always as simple as 
adding the ing ending.  One common exception is a word like cogitate that ends 
in a silent e.  In such cases, the e is usually dropped, so that the participle form 
becomes cogitating.  Another common exception involves words that end with a 
single consonant, which typically gets doubled in the participle form.  For 
example, the verb run becomes running. 

 

Although there are many exceptions, you can construct a large fraction of the 
legal participle forms in English by applying the following rules: 

 

a. If the word ends in an e preceded by a consonant, take the e away before 
adding ing.  Thus, move should become moving.  If the e is not preceded by a 
consonant, it should remain in place, so that see becomes seeing. 

b. If the word ends in a consonant preceded by a vowel, insert an extra copy of 
that consonant before adding ing.  Thus, jam should become jamming.  If, 
however, there is more than one consonant at the end of the word, no such 
doubling takes place, so that walk becomes walking. 

c. In all other circumstances, simply add the ing suffix. 
 

Write a function create_present_participle(verb) that takes an English 
verb, which you may assume is entirely lowercase and at least two characters 
long, and forms the participle using these rules. 
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8. As in most languages, English includes two types of numbers.  The cardinal 
numbers (such as one, two, three, and four) are used in counting; the ordinal 
numbers (such as first, second, third, and fourth) are used to indicate a position 
in a sequence.  In text, ordinals are usually indicated by writing the digits in the 
number, followed by the last two letters of the English word that names the 
corresponding ordinal.  Thus, the ordinal numbers first, second, third, and fourth 
often appear in print as 1st, 2nd, 3rd, and 4th.  The ordinals for 11, 12, and 13, 
however, are 11th, 12th, and 13th.  Devise a rule that determines what suffix 
should be added to each number, and then use this rule to write a function 
create_ordinal_form(n) that returns the ordinal form of the number n as a 
string. 

 
9. The waste of time in spelling imaginary sounds and their history 

(or etymology as it is called) is monstrous in English . . . 
—George Bernard Shaw, 1941 

 

In the early part of the 20th century, there was considerable interest in both 
England and the United States in simplifying the rules used for spelling English 
words, which has always been a difficult proposition.  One suggestion advanced 
as part of this movement was to eliminate all doubled letters, so that bookkeeper 
would be written as bokeper and committee would become comite.  Write a 
function remove_doubled_letters(s) that returns a new string in which any 
duplicated characters in s have been replaced by a single copy. 

 
10. When large numbers are written on paper, it is traditional—at least in the United 

States—to use commas to separate the digits into groups of three.  For example, 
the number one million is usually written as 1,000,000.  Implement a function 
add_commas(digits) that takes a string of digits representing a number and 
returns the string formed by inserting commas at every third position, starting on 
the right.  Your implementation of add_commas—which should not use the 
grouping option in the f-string model to perform this operation—should be able 
to reproduce the following IDLE session: 
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11. As written, the PigLatin.py program in Figure 7-3 behaves oddly if you enter 
a string that includes words beginning with an uppercase letter.  For example, if 
you were to capitalize the first word in the sentence and the name of the Pig Latin 
language, you would see the following output: 

 

 
 

Rewrite the word_to_pig_latin function so that any word that begins with a 
capital letter in the English line still begins with a capital letter in Pig Latin.  
Thus, after you make the necessary changes in the program, the output should 
look like this: 

 

 
 
12. Most people in English-speaking countries have played the Pig Latin game at 

some point in their lives.  There are other invented “languages” in which words 
are created using some simple transformation of English.  One such language is 
called Obenglobish, in which words are created by adding the letters ob before 
the vowels (a, e, i, o, and u) in an English word.  For example, under this rule, 
the word english gets the letters ob added before the e and the i to form 
obenglobish, which is how the language got its name. 

 

In official Obenglobish, the ob characters are added only before vowels that 
are pronounced, which means that a word like game would become gobame 
rather than gobamobe because the final e is silent.  While it is impossible to 
implement this rule perfectly, you can do a pretty good job by adopting the rule 
that the ob should be added before every vowel in the English word except 

 

• Vowels that follow other vowels 

• An e that occurs at the end of the word 
 

Write a function obenglobish that takes an English word and returns its 
Obenglobish equivalent, using the translation rule given above.  Your function 
should allow you to generate the following IDLE session: 
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13. Although Caesar ciphers are simple, they are also extremely easy to break.  A 

somewhat more secure scheme allows each letter in the message to be 
represented consistently by some other letter, but not one chosen by shifting the 
character a fixed distance in the alphabet.  This kind of coding scheme is called 
a letter-substitution cipher. 

 

The key in a letter-substitution cipher is a 26-character string that shows the 
enciphered counterpart of each of the 26 letters of the alphabet.  For example, if 
the communicating parties choose "QWERTYUIOPASDFGHJKLZXCVBNM" as the key 
(which is unimaginatively generated by typing the letter keys on the keyboard in 
order), that key then corresponds to the following mapping: 

 

 
 

Write a function encrypt that takes a string and a 26-character key and 
returns the string after applying a letter-substitution cipher with that key.  For 
example, your function should be able to produce the following sample run: 

 

 
 

The words squeamish ossifrage were part of the solution to a cryptographic 
puzzle published in Scientific American.  The puzzle was developed by Ron 
Rivest, Adi Shamir, and Leonard Adleman, who invented the widely used RSA 
encryption algorithm, named from the first letters of their surnames. 

 
14. Write a predicate function is_key_legal, which takes a string and returns True 

if that string would be a legal key in a letter-substitution cipher.  A key is legal 
only if it meets the following two conditions: 

 

1. The key is exactly 26 characters long. 

2. Every uppercase letter appears in the key. 
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These conditions automatically rule out the possibility that the key contains 
invalid characters or duplicated letters.  After all, if all 26 uppercase letters appear 
and the string is 26 characters long, there isn’t room for anything else. 

 
15. Letter-substitution ciphers require the sender and receiver to use different keys: 

one to encrypt the message and one to decrypt it when it reaches its destination.  
Your task in this exercise is to write a function invert_key that takes an 
encryption key and returns the corresponding decryption key.  In cryptography, 
that operation is called inverting the encryption key. 

 

The idea of inverting a key is most easily illustrated by example.  Suppose, 
for example, that the key is "QWERTYUIOPASDFGHJKLZXCVBNM" as in exercise 
14.  That key represents the following translation rule: 

 

 
 

The translation table shows that A maps into Q, B maps into W, C maps into E, and 
so on.  To turn the encryption process around, you have to read the translation 
table from bottom to top, looking to see what letter in the original text would 
have produced each letter in the encrypted version.  For example, if you look for 
the letter A in the bottom line of the key, you discover that the corresponding 
letter in the original must have been K.  Similarly, the only way to get a B in the 
encrypted message is to start with an X in the original one.  The first two entries 
in the inverted translation table therefore look like this: 

 

 
 

If you continue this process by finding each letter of the alphabet on the bottom 
of the original translation table and then looking to see what letter appears on 
top, you will eventually complete the inverted table, as follows: 

 

 
 

The inverted key is simply the 26-character string on the bottom row, which in 
this case is "KXVMCNOPHQRSZYIJADLEGWBUFT". 

 
16. Rewrite the FactorialTable.py program from Figure 2-4 on page 54 so that it 

uses the formatting features of f-strings instead of the align_right function. 
 
17. The genetic code for all living organisms is carried in its DNA—a molecule with 

the remarkable capacity to replicate its own structure.  The DNA molecule itself 
consists of a long strand of chemical bases wound together with a similar strand 
in a double helix.  DNA’s ability to replicate comes from the fact that its four 
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constituent bases—adenosine, cytosine, guanine, and thymine—combine with 
each other only in the following ways: 

 

• Cytosine on one strand links only with guanine on the other, and vice versa. 

• Adenosine links only with thymine, and vice versa. 
 

Biologists abbreviate the names of the bases to a single letter: A, C, G, or T. 
 

Inside the cell, a DNA strand acts as a template to which other DNA strands 
can attach themselves.  As an example, suppose that you have the following DNA 
strand, in which the position of each base has been numbered as in a string: 

 

 
 

 

Your mission in this exercise is to determine at what point a shorter DNA strand 
can attach itself to the longer one.  If, for example, you are trying to find a match 
for the strand 

 

 

 
 

the rules dictate that this strand can bind to the longer one only at position 1: 
 

 
 

By contrast, the strand 
 

 
 

matches at either position 2 or position 7. 
 

Write a function find_dna_match(s1, s2, start=0) that returns the first 
position at which the DNA strand s1 can attach to the strand s2 after the start 
position, which defaults to 0.  If there is no match, find_dna_match should 
return -1. 

 
18. When Charles Babbage designed his computing machines in the early 19th 

century, his initial motivation was to automate the production of mathematical 
tables, which were produced by hand and often contained frequent errors.  
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Figure 7-6 shows a table of logarithms (using the math.log10 function) for the 
integers between 1 and 100, arranged—just as in Babbage’s Table of the 
Logarithms of the Natural Numbers—into five vertical columns on the page. 

 

Write a Python program to produce a multicolumn table of logarithms in the 
style of Figure 7-6. 

 
19. The first program for Babbage’s Analytical Engine—and therefore presumably 

the first program ever—was written by Ada Lovelace in 1843.  Its purpose was 
to calculate the Bernoulli numbers, a mathematical series discovered by the 
Swiss mathematician Jakob Bernoulli at the beginning of the 18th century.  
Bernoulli numbers can be defined recursively as follows, where C(n, k) is the 
combinations function introduced on page 142: 

 

B(n)   = 

 

  1 if n = 0 

 otherwise
 

 

Write a Python program to list the Bernoulli numbers, displaying the results 
in tabular form so that each value shows six digits after the decimal point. 

 



 
 

C H A P T E R  8  
Lists 

 
 

I’m not rich because I invented VisiCalc, but I feel that I’ve 
made a change in the world.  That’s a satisfaction money 
can’t buy. 

— Dan Bricklin, November 1985, as quoted 
in Robert Slater, Portraits in Silicon 

 
 
 
 

 
Bob Frankston and Dan Bricklin 

 

In modern computing, one of the most visible applications of the data structures described in this chapter is 
the electronic spreadsheet, which uses a two-dimensional array to store tabular information.  The first 
electronic spreadsheet was VisiCalc, which was released in 1979 by Software Arts, Incorporated, a small 
startup company founded by MIT graduates Dan Bricklin and Bob Frankston.  VisiCalc proved to be a 
popular application, leading many larger firms to develop competing products, including Lotus 1 2 3 and, 
more recently, Microsoft Excel.
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Up to now, the programs in this book have worked with individual data items.  The 
real power of computing, however, comes from the ability to work with collections 
of data.  This chapter introduces the idea of an array, which is the general term that 
programmers use to indicate an ordered collection of values. Arrays are important in 
programming largely because ordered collections occur quite frequently in the real 
world.  Whenever you want to represent a set of values in which it makes sense to 
think about those values as forming a sequence, arrays are likely to play a role in the 
solution. 
 

At the same time, arrays—as a separate data type—are becoming less important 
because most programming languages today offer more powerful types that provide 
not only the limited set of operations historically associated with arrays but also a 
range of more sophisticated operations that programmers find extremely useful.  
Python, for example, does not include arrays in their traditional form but instead 
implements the array idea using a built-in data structure called a list. 
 

 8.1 Introduction to arrays and lists 
An array is a collection of individual values in which the elements are identified by a 
position number.  You must be able to enumerate the individual values of an array in 
order: here is the first, here is the second, and so on.  Conceptually, it is easiest to 
think of an array as a sequence of boxes, with one box for each data value.  Each of 
the values in an array is called an element. 
 

As noted in the introduction to this chapter, Python implements the array concept 
using the more powerful list class, which is one of Python’s built-in data types.  
Like every other data type in Python, lists can be stored in variables, passed as 
arguments to a function, and returned from functions as a result.  And like every other 
data type, lists in Python support a set of operations appropriate to the type.  For lists, 
that set of operations allows you to manipulate both the contents and the ordering of 
elements.  These operations are outlined in the sections that follow. 
 
Python list notation 
Creating a list in Python is much easier than it is in most other programming 
languages.  As you know from Chapter 1, all you need to do is enclose the elements 
of the list in square brackets, using commas to separate the elements.  For example, 
the following constant declaration defines COINS as a list of integers that corresponds 
to coins in the United States: 
 

COINS = [ 1, 5, 10, 25, 50, 100 ] 
 

After you make this definition, the value of the constant COINS is a list that 
corresponds to the following box diagram: 
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The small numbers underneath the boxes in this diagram represent the position of that 
value in the list, which is called its index.  As you already know, index numbers in 
Python always begin with 0 and run up to one less than the number of elements, just 
as they do for strings. 
 

You can apply the built-in len function to a list to determine the number of 
elements it contains.  The expression 
 

len(COINS) 
 
therefore has the value 6. 
 

The elements of a list need not be numbers but can instead be any Python value.  
For example, the following variable declaration defines hogwarts as a list containing 
the names of the four houses at the Hogwarts School of Witchcraft and Wizardry from 
J. K. Rowling’s Harry Potter novels: 
 

hogwarts = [ 
    "Gryffindor", "Hufflepuff", "Ravenclaw", "Slytherin" 
] 

 
The box diagram for this list looks like this: 
 

 
 

The expression len(hogwarts) has the value 4. 
 

As with strings, you can select an individual element of a list by writing the name 
of the list and following it with the index written in square brackets.  For example, 
given the earlier definitions in this section, the expression COINS[2] is 10, because 
that is the value at index 2 in the COINS list.  Similarly, hogwarts[0] has the value 
"Gryffindor".  If you select an index position that falls outside the limits of a list, 
Python treats that selection as an error. 
 
Sequence types 
Unless you’ve already forgotten everything you learned in Chapter 7, you must have 
noticed by now that the discussion of lists from the preceding section is starting to 
sound familiar.  Strings and lists share several fundamental properties.  Both types 
number their elements beginning with index position 0, both types use the len 
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function to determine the number of elements, and both types indicate selection using 
square brackets. 
 

As it happens, the similarities between strings and lists extend well beyond these 
particular characteristics.  In Python, strings and lists are examples of a more general 
class of objects called a sequence, which refers to any ordered collection.  Strings are 
sequences of characters; lists are sequences of any Python value. 
 

In keeping with the general principles of object-oriented programming—which 
you will have more of a chance to explore in Chapter 10—the fact that strings and 
lists are both sequences mean that strings and lists implement a common set of 
operations that apply to all sequences.  In particular, most of the string operations you 
learned about in Chapter 7 apply equally well to lists.  For example, lists support all 
of the following operations, which you already know from working with strings: 
 
• The len function 
• Index numbering that begins at 0 and extends up to the length minus 1 
• Negative index numbering that counts from the end of the sequence 
• Selection of an individual element using square brackets 
• Slicing in all its forms 
• Checking whether a value is contained in a list using the in operator 
• Concatenation using the + or += operator 
• Repetition using the * operator 
 
The effect of each of these operations is illustrated in the following IDLE session: 
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Perhaps more importantly, both strings and lists support iteration using the for 
statement.  For example, you can use the following function to print the elements of 
a list on the console, one per line: 
 

def print_list(list): 
    for element in list: 
        print(element) 

 
This function allows you to reproduce the following IDLE session: 
 

 
 
Assigning to list elements 
Despite their many similarities, strings and lists differ in one important respect.  In 
Python, strings are immutable, which means that you can’t change their elements.  
Lists, by contrast, are mutable, which means, among other things, that you can assign 
a new value to a list element.  For example, if some future leaders of Hogwarts 
decided that they might need to honor a more worthy wizard, evaluating the 
expression 
 

hogwarts[3] = "Dumbledore" 
 
would change the value of the hogwarts list to 
 

 
 
Passing lists as parameters 
When you pass a list as a parameter to a function, it is important to keep in mind that 
all objects in Python are represented internally as references, as described in Chapter 
4.  As a result, if a function makes changes to the elements of a list, the caller will see 
those changes because the caller and the function share access to the same list. 
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It is important to note that this behavior is not a violation of the rules for parameter 
passing presented in Chapter 5.  In the list of rules presented in the section entitled 
“The steps in calling a function,” rules 3 and 4 read as follows: 
 

3. Each positional argument is copied into the corresponding parameter variable. 
4. All keyword arguments are copied to the parameter with the same name. 
 
These rules say explicitly that both positional and keyword arguments are copied into 
the appropriate parameter variable, but passing a list as a parameter results in the 
values being shared.  The explanation of this apparent inconsistency is that Python 
does indeed copy the argument, but that argument is just a reference.  Python copies 
the reference but does not copy the internal data.  The effect of this strategy is that a 
function and its caller have access to the same elements. 
 

 8.2 List methods 
As was true for strings, Python’s list class also exports several methods that provide 
additional operations beyond those that apply to all sequences.  Figure 8-1 at the top 
of the next page describes several of the most important methods implemented by the 
list class. These methods are detailed in the sections that follow. 
 
Methods that leave the original list unchanged 
Python’s list class exports several methods that leave the original list unchanged.  The 
index method, for example, returns the first index at which the argument appears in 
the list.  The index method is therefore in some ways analogous to the find method 
for strings.  Like find, the index method takes an optional argument to specify the 
index position at which to start the search for a matching element.  Unlike find, the 
index method raises a ValueError exception if no matching element is found.  You 
can test for this condition using a try statement, which is described in the section 
entitled “Exception handling” later in this chapter. 
 

The count method returns the number of list elements that match the argument.  
For example, if scores contains a list of the scores students received on an exam, the 
expression scores.count(100) would return the number of students who achieved 
a perfect score of 100. 
 

The copy method returns a new list that contains the same elements as the original.  
The result of the copy method occupies a different address in memory and therefore 
no longer shares the list elements with the original.  The use of copy is therefore 
different from assignment, which copies the reference to a list, leaving its values 
shared.  Although the copy method creates a new set of memory cells for the elements 
of the list, it initializes the values of those cells by assignment from the old cells. If 
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those elements are themselves lists or any other object, the list produced by copy will 
contain the same internal references as the original.  Computer scientists say that the 
copy method makes a shallow copy of the original because the copy operation does 
not descend below the top level of the list.  
 
Methods that add and remove elements 
The list class includes six methods that add or remove elements from a list.  The 
append and extend methods support adding new elements to the end of the list; 
append adds a single element, and extend adds all the elements in a second list.  The 
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insert method makes it possible to add elements in the middle of a list.  The index 
number in the insert method specifies the index position before the insertion.  For 
example, calling 
 

list.insert(0, 17) 
 
inserts the value 17 at the beginning of the list before element 0. 
 

The clear, remove, and pop methods remove elements from a list.  The clear 
method is the easiest to describe, since it has the effect of removing all the elements, 
leaving the list empty.  The remove and pop methods each remove one element from 
the list.  The primary difference is that remove takes the value of the element you 
want to remove, while pop takes the index.  Another difference is that pop returns the 
value that was removed.  As noted in Figure 8-1, the index number is optional in the 
pop method.  If it is missing, pop removes and returns the last element. 
 
Methods that reorder the elements of a list 
The list class includes two methods—reverse and sort—that reorder the elements 
of an existing list.  The reverse method simply reverses the elements of the list 
without allocating any new list storage.  Although you can easily implement a 
function that duplicates its operation, the reverse method in the list class operates 
more efficiently because it is built into the Python language. 
 

The sort method rearranges the elements of a list so that they appear in ascending 
order.  If you call sort with no argument, Python sorts the list using the style of 
comparison that is appropriate to its elements.  If you sort a list of numbers, Python 
reorders the elements so that they increase numerically.  If you sort a list of strings, 
Python arranges the elements in lexicographic order. 
 

The sort method takes two optional parameters, which must be specified as 
keyword arguments.  The key parameter allows you to specify a key function, which 
takes a single argument and returns the value that sort should use in the comparison.  
For example, if lines is a list of strings, you can sort lines by increasing length by 
calling lines.sort(key=len).  Similarly, you can sort lines alphabetically 
ignoring case by calling lines.sort(key=str.upper).  In this example, upper is 
a method belonging to Python’s string class, which means that you need to include 
the class name str so that Python knows where to find its definition.  The reverse 
parameter allows you to invert the order.  For example, calling 
lines.sort(reverse=True) sorts lines in reverse lexicographic order. 
 

In many cases, you don’t need to change the order of a list but can instead simply 
iterate through the list in a different order.  The built-in functions reversed and 
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sorted take any iterable object and return a new iterable object that cycles through 
the elements in a different order.  For example, the statement 
 

for line in reversed(lines): 
 
leaves lines unchanged but cycles through them backward starting at the end.  The 
sorted function also takes the optional key and reversed arguments from sort. 
 
String methods that involve lists 
The list operations described in Figure 8-1 include three methods that are part of the 
string class but which are covered here because they also require an understanding of 
lists.  The split method separates a string into substrings by dividing it at each 
instance of a separator string and then returns a list of the individual substrings.  For 
example, if date contains "16-Jul-1969" (the date on which Apollo 11 landed on 
the moon), calling date.split("-") returns the following list: 
 

 
 

If you leave out the separator string from the call to split, Python divides the 
string at any sequence of whitespace characters.  For example, suppose that the 
variable line is defined as 
 

line = "abc   def ghi " 
 

where three spaces separate the substrings "abc" and "def" and a space appears at 
the end of the string.  Calling line.split() produces the three-element list 
 

 
 

If you instead call line.split(" ") using an explicit space character as the 
separator, Python splits the string at each individual occurrence of a space character 
to produce the following six-element list: 
 

 
 

The splitlines method is handy when you are working with a string that 
consists of a sequence of lines ending with the newline character.  As an example, the 
first page of Dr. Seuss’s One Fish, Two Fish, Red Fish, Blue Fish contains the words 
of the title divided into lines, which are stored internally like this: 
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Calling text.split("\n") returns a list with five elements, the last of which is the 
empty string corresponding to the characters after the final newline.  What you almost 
certainly want to do instead is to divide the title into its four components, which is 
exactly what splitlines does. 
 

The join method reverses the operation of split and allows you to create a string 
from a list of substrings, inserting a separator between each one.  You apply the join 
method to the separator string, passing in the list as an argument.  Thus, the expression 
 

" ".join(["this", "is", "a", "test"]) 
 

joins the four strings in the list together to produce the string "this is a test", in 
which the substrings are separated by the space character. 
 

 8.3 List comprehensions 
Although Python’s notation for initializing a list by enclosing its elements in square 
brackets is very convenient, it suffers from a lack of flexibility.  Suppose, for example, 
you are writing an application and discover that it would be useful to have a list of 
the powers of ten.  If you know in advance how many powers of ten you need, you 
can initialize the list using Python’s square-bracket syntax.  For example, if you know 
that your application uses only the powers of ten up to a million (106) , you can use 
the following declaration: 
 

powers_of_ten = [ 1, 10, 100, 1000, 10000, 100000, 1000000 ] 
 
But what if you aren’t sure how many powers of ten your clients will need?  It would 
be better if you could structure your program so that the number of elements is 
specified by a constant called N_POWERS, making it easy to change.  To produce the 
list that includes the first seven powers of ten, you would set N_POWERS to 7. 
 

Given that the number of elements in powers_of_ten might change, you can no 
longer simply list the elements inside square brackets but must instead compute the 
desired values.  One strategy for doing so is to initialize powers_of_ten to be an 
empty list and then append N_POWERS elements to it using a for loop, like this: 
 

powers_of_ten = [ ] 
for i in range(N_POWERS): 
    powers_of_ten.append(10 ** i) 

 
Although this code is already reasonably concise, Python supports an even more 

compact syntactic form called a list comprehension, which allows the programmer 
to specify a for loop inside the square brackets, thereby combining the processes of 
creating the list and assigning the elements.  The code to initialize powers_of_ten 
using list comprehension looks like this: 
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powers_of_ten = [ 10 ** i for i in range(N_POWERS) ] 
 

In its simplest form, list comprehension uses the syntactic pattern 
 

[ exp for var in iterable ] 
 
which returns a list consisting of the value of exp repeated for each of the cycles of 
the for loop.  The following IDLE session shows three examples of this pattern: 
 

 
 

You can also include an if clause in the list-comprehension pattern to select 
elements that satisfy some condition.  Using this option, the pattern looks like this: 
 

[ exp for var in iterable if condition ] 
 
Once again, the simplest way to illustrate the use of this pattern is with a couple of 
examples in an IDLE session: 
 

 
 

It is always possible to expand a list comprehension into a for statement that 
produces a variable with the same value.  For example, the pattern 
 

[ exp for var in iterable if condition ] 
 
produces a value that is the same as the contents of the variable seq after executing 
the following code: 
 

seq = [ ] 
for var in iterable: 
    if condition: 
        seq.append(exp) 

 

Even though it is possible to achieve the same result using statements that you 
already know, using list comprehensions offer the following advantages: 
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• List comprehensions are shorter.  The expanded form of this pattern requires four 
lines to accomplish what the list-comprehension form manages in one. 

• List comprehensions are typically more efficient.  Python interpreters are usually 
able to optimize the performance of a list comprehension more effectively than 
code written in an expanded form.  In particular, Python can often allocate space 
for the list at the beginning rather than having to add an element on each cycle. 

• List comprehensions can be embedded as expressions.  A list comprehension is a 
standalone expression that can be used as part of a more general Python 
computation.  For example, you can pass a list comprehension as an argument to 
a function without having to create a variable to hold the result. 

• List comprehensions are more likely to match algorithmic descriptions.  Formal 
descriptions of algorithms are often written in a form that is easily translated into 
a list comprehension. 

 
List comprehensions in Python are actually more powerful than the examples here 

suggest.  A single list comprehension can include several nested for loops and any 
number of if clauses.  The simple pattern, however, covers the vast majority of 
applications you are likely to encounter in practice. 
 

 8.4 Using lists for tabulation 
The data structure of a program is typically designed to reflect the organization of 
data in the real-world domain of the application.  In general, whenever an application 
involves data that can be represented in the form of a list with elements a0, a1, a2, and 
so on, a list is the natural choice for the underlying representation.  It is also quite 
common for programmers to refer to the index of a list element as a subscript, 
reflecting the fact that lists are used to hold data that would typically be written with 
subscripts in mathematics. 
 

There are, however, important uses of lists in which a different relationship exists 
between the data in the application domain and the data in the program.  This section 
shows how you can use a list to count how many times each character in the alphabet 
appears in a string by using the Unicode values of each character to derive an index 
position. 
 

The exercises for Chapter 7 ask you to implement a letter-substitution cipher, 
which encrypts a message by replacing each letter with an encoded version of that 
letter determined through the use of a secret key.  Although implementing a 
letter-substitution cipher is a good exercise, a more interesting problem is figuring 
out how to break a letter-substitution cipher if you do not have access to the key. 
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The problem of breaking a letter-substitution cipher often appears in recreational 
puzzles called cryptograms.  Edgar Allan Poe was a great fan of cryptograms and 
described a technique for solving them in his 1843 novel The Gold Bug: 
 

My first step was to ascertain the predominant letters. . . .  Now, in English, 
the letter which most frequently occurs is e. Afterwards, the succession 
runs thus: a o i d h n r s t u y c f g l m w b k p q x z.  E however 
predominates so remarkably that an individual sentence of any length is 
rarely seen, in which it is not the prevailing character. 

 
As it happens, Poe’s list of the most common letters is by no means accurate.  

Computerized analysis reveals that the 12 most common letters in English are 
 

E T A O I N S H R D L U 
 

Given that computerized analyses of English text were not available in his day, Poe 
can perhaps be excused for making a few mistakes.  Poe was, however, entirely 
correct in his claim that the first step in discovering the hidden meaning of a 
cryptogram is to construct a table showing how often each letter appears.  A program 
that does just that appears in Figure 8-2 on the next page. 
 

The following sample run shows the output of CountLetterFrequencies.py 
using the first page of One Fish, Two Fish, Red Fish, Blue Fish as input: 
 

 
 
The output shows that the file contains four copies of the letters F, I, S, and H, three 
E’s, two O’s, and a smattering of letters that each appear exactly once.  Note that 
letters that never appear in the input are not shown in the output. 
 

 
Edgar Allan Poe 
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CountLetterFrequencies.py 
 



 8.4 Using lists for tabulation     271 

 

The implementation strategy used in CountLetterFrequencies.py is to create 
a list of 26 integers in which each index position contains the current count of the 
letter in the alphabet corresponding to that index.  The element at the beginning of 
the list contains the number of A’s, and the element at the end of the list contains the 
number of Z’s.  The code then subdivides the tasks of initializing, updating, and 
printing out the letter-frequency data contained in that list into three functions.  The 
function create_frequency_table creates a list in which each of the 26 letter 
counts is set to 0.  The update_frequency_table function then updates the contents 
of the list by running through every character in a string and incrementing the count 
associated with each letter.  When all the updates have been made, the program calls 
the function print_frequency_table to display the results. 
 

Of these functions, create_frequency_table is by far the simplest.  All it has 
to do is return a list with 26 elements, each of which is set to 0.  The following function 
definition uses Python’s repetition operator to accomplish this task: 
 

def create_frequency_table(): 
    return [ 0 ] * 26 

 
The code for the count_letter_frequencies function assigns this result to the 
variable counts, which can be diagrammed as follows: 
 

 
 

Each time a letter appears in the input, you need to increment the corresponding 
element in counts, which occurs in update_frequency_table.  As you can see 
from Figure 8-2, update_frequency_table uses the standard for-loop pattern to 
iterate through the characters in line and then executes the following statement for 
each character that passes the isalpha test, marking it as a letter: 
 

counts[ord(ch.upper()) - ord("A")] += 1 
 

This statement is sufficiently complex that it is worth going through it in some 
detail.  When Python executes this statement, it has already determined that ch is a 
letter, but it might be an uppercase letter or a lowercase one.  Calling ch.upper() 
produces the uppercase value.  Calling ord on this character returns the Unicode value 
for the character.  Subtracting the Unicode value for the character "A" produces the 
desired index in the counts array, which is then incremented. 
 

The code for display_frequency_table performs the same conversion in the 
opposite direction.  The values of i in the for loop run from 0 to 25.  To convert that 
index into a character requires the following code: 
 

ch = chr(ord("A") + i) 
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 8.5 Using files 
In a practical application to count letter frequencies, you would not want the user to 
have to enter the text of each line but would instead like to read the data from a input 
file.  Before you can change CountLetterFrequencies.py to take its input from a 
file, you need know more about how Python works with files. 

The concept of a file 
Programs use variables to store information: input data, calculated results, and any 
intermediate values generated along the way.  The information in variables, however, 
is ephemeral and disappears when the program stops running.  For many applications, 
it is important to store data in a more permanent way. 
 

Whenever you want to store information on the computer for longer than the 
running time of a program, the usual approach is to store that information in a file, 
which in computing contexts refers to any collection of data stored in electronic form 
and distinguished from other files by an identifying name.  Files are ordinarily stored 
on your computer’s hard disk but can also reside on the network or on a removable 
storage device, such as a flash memory drive.  Files also come in a variety of types.  
Computers use files to store music, images, movies, formatted documents, statistical 
information, and a wide variety of other data types.  The most common type of file—
and the only one considered in this book—is a text file, which contains a sequence of 
characters. 
 

To get a sense of how you might use text files, suppose that you want to collect 
your favorite quotations from Shakespeare and store them on your computer.  One 
approach is to store each quotation in a separate file.  You might begin your collection 
with the following lines from Hamlet: 
 

 
 
For your second quotation, you might choose the following lines from Romeo and 
Juliet: 
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These diagrams show the name outside the file, in much the same way that variable 
diagrams show the variable name on the outside and the value on the inside. 
 

When you look at a file, it often makes sense to regard it as a two-dimensional 
structure—a sequence of lines composed of individual characters.  Internally, 
however, text files are represented as a continuous sequence of characters.  In addition 
to the printing characters you can see, files also contain newline characters that mark 
the end of each line. 
 

Suppose, for example, that you have also created a file called Macbeth.txt 
containing the following rhymed couplet: 
 

 
 

Although it is entirely reasonable to think of this file as containing two lines of 
characters, it is important to remember that the internal structure of the file is 
represented as a single sequence of characters, like this: 
 

 
 

As this most recent example makes clear, a text file is similar to a string.  Both are 
ordered sequences of characters.  The critical differences are that 
 
• The information stored in a file is permanent.  The value of a string variable 

persists only as long as the variable does.  All program variables disappear when 
the program exits.  Information stored in a file exists until the file is deleted. 

• Files are usually read sequentially.  When you read data from a file, you usually 
start at the beginning and read through them in order, typically line by line.  You 
read the first line, then the second, and so on until you reach the end of the file. 

 
Reading text files 
The standard pattern for reading a text file in Python uses a new feature called the 
with statement, the details of which are beyond the scope of this book.  Even without 
knowing precisely what it does, you can use the with statement in the file-reading 
pattern, which looks like this: 
 

with open(filename) as handle: 
    Call methods on the file handle to read the data 

 
In this pattern, filename specifies the name of the file, and handle is a variable used 
to hold a reference to the file, which is commonly called a file handle.  The statements 
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in the body then call methods on the file handle to read the data.  There are several 
strategies for doing so, including the following: 
 
1. Reading the entire file as a single string 

2. Reading the file one line at time, processing each line as you go 

3. Reading the entire file into a list of strings and then working with that list  
 
The rest of this section describes each of these strategies in more detail. 
 

In many ways, the simplest approach is to read the entire file as a single string by 
calling the read method on the file handle.  The return value includes the embedded 
newline characters.  For example, if you execute the code 
 

with open("Macbeth.txt") as f: 
    text = f.read() 

 
the variable text is set to the entire contents of the file, like this: 
 

 
 
The disadvantage of using the read method is that it has to read the entire contents 
of the file into memory at once.  If a file is large, the need to allocate storage for a 
single string that includes its entire contents can slow your program down.  Most 
computers today have large memories, which means that you are unlikely to run into 
trouble with this strategy unless you are working with extremely large files. 
 

You can avoid having to read an entire file at once by calling the readline 
method to read the next line from the file. The string returned by the readline 
method includes the newline character at the end of the line.  Thus, the code 
 

with open("Macbeth.txt") as f: 
    line1 = f.readline() 
    line2 = f.readline() 

 
sets the variables line1 and line2 to the two lines in the file, as follows: 
 

 
 

Calling the readline method after you have read the last line in a file returns the 
empty string.  You can therefore process every line in a file by adapting the code for 
the read-until-sentinel loop presented in Chapter 2 as follows: 
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with open("Macbeth.txt") as f: 
    finished = False 
    while not finished: 
        line = f.readline() 
        if line == "": 
            finished = True 
        else: 
            Perform whatever process is required for the line 

 

Although this implementation works, the code is hard to read.  You can use the 
fact that file handles are iterable objects to shorten the code considerably, like this: 
 

with open("Macbeth.txt") as f: 
    for line in f: 
        Perform whatever process is required for the line 

 

You can combine this pattern with CountLetterFrequencies.py to count the 
letter frequencies in George Eliot’s 1871 novel Middlemarch, as follows: 
 

with open("Middlemarch.txt") as f: 
    counts = create_frequency_table() 
    for line in f: 
        update_frequency_table(counts, line) 
    print_frequency_table(counts) 

 

Running this program produces the following output: 
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If you sort this output by letter frequency in descending order, you discover that 
the 12 most common letters in Middlemarch are 
 

E T A O I N H S R D L U 
 

The only difference between this frequency table and the statistical results for modern 
English presented on page 269 is that the H and the S are reversed.  In general, the 
more text you analyze, the closer the frequencies will align with those calculated for 
modern English. 
 

The CountLetterFrequencies.py program can accomplish its task without ever 
having to keep track of more than one line from the file at a time.  Other programs, 
by contrast, may make it necessary to read all the lines of the file before performing 
any computation.  The simplest example is that of an application that reverses the 
order of the lines that file contains.  When you read the first line, for example, you 
can’t yet do anything useful with it.  What your program has to do is store that line 
away so that it can print it at the end. 
 

If you are implementing an application that needs access to all the lines in a file, 
the usual strategy is to read the contents of the file into a list.  Python’s file class 
includes a readlines method that works for many applications, but is not ideal for 
others.  The problem with the readlines method is that each line includes the 
newline character that marks the end of the line, which most applications would prefer 
not to see.  And while it is possible to remove these characters by going through each 
element of the list and stripping off the newline at the end, doing so at the client level 
is far less efficient than having Python implement this function. 
 

The following pattern offers the simplest strategy for reading a list of lines without 
the newlines, which is usually exactly what you want: 
 

with open(filename) as f: 
    lines = f.read().splitlines() 

 
The splitlines method in the string class removes the newline characters. 
 

Suppose that WitchesBrew.txt contains the following lines from Macbeth: 
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You can display these lines in reverse order using 
 

with open("WitchesBrew.txt") as f: 
    lines = f.read().splitlines() 
    lines.reverse() 
    for line in lines: 
        print(line) 

 
which generates the following output: 
 

 
 
Writing text files 
Although reading a file is a more common operation, Python also allows you to write 
data to a file using the following pattern: 
 

with open(filename, "w") as handle: 
    Call methods on the file handle to write the data 

 
The only difference from the pattern used for reading is that the open function takes 
a second argument that specifies how the file is used.  This optional argument to open 
is called the mode.  By default, the mode parameter is "r", which signifies that the 
file should be opened for reading.  If you instead specify "w", the file is opened for 
writing.  If the file does not exist, Python creates it; if it does, Python deletes the 
existing contents of the file and prepares to write new data, just as if the file had been 
created from scratch.  Another useful mode is "a", which opens a file for writing 
without deleting its contents so that you can append new content. 
 

The body of the with statement specifies the code used to write the contents of 
the file.  The most common method is write, which writes a string to the file.  The 
following code, for example, creates a file named Seuss.txt containing the text from 
the first page of One Fish, Two Fish, Red Fish, Blue Fish: 
 

with open("Seuss.txt", "w") as f: 
    f.write("One fish\n") 
    f.write("two fish\n") 
    f.write("red fish\n") 
    f.write("blue fish.\n") 
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As this code example illustrates, you must specify line breaks in the file by including 
the newline character in the string you pass to write.  The file created by this code 
looks like this: 
 

 
 
You can also use the writelines method, which writes data from a list of lines. 
 
Exception handling 
When you are writing an application that works with files, it is important to keep in 
mind that the call to open might fail. For example, if you request the name of an input 
file from the user, and the user types the filename incorrectly, the open function will 
be unable to find the mistyped filename.  To signal a failure of this sort, the 
implementation of open responds by raising an exception, which is the phrase 
Python uses to describe the process of reporting an exceptional condition outside the 
normal program flow.  Python includes a special statement form called try that 
allows you as a programmer to specify an interest in responding to exceptions of a 
particular type.  The simplest form of the try statement appears in the syntax box on 
the left. 
 

When Python encounters a try statement, it executes the statements in the body.  
Those statements, of course, may call other functions, which may in turn call other 
functions, as the computation descends through the levels that implement its 
decomposition strategy.  In any function nested at any level inside the body raises an 
exception, Python stops its normal execution and looks to see whether any function 
in the chain of callers has used a try statement that responds to exceptions of that 
type.  If so, Python executes the except clause, which defines the response to that 
exception. 
 

The following definition offers a simple illustration of the try statement in the 
form of a function that asks the user to specify the name of a file: 
 

def open_input_file(prompt="Input file: "): 
    while True: 
        filename = input(prompt) 
        try: 
            with open(filename): 
                return filename 
        except IOError: 
            print("That file cannot be opened") 
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If the user-specified file exists, open_input_file returns its name.  If not, the function 
continues to ask for a file name until the user enters one that succeeds. 
 

The code for open_input_file includes a couple of details that are worth noting.  
First, the with statement only opens the file to see whether it exists and never reads 
any data from the file, which means there is no need to store the file handle.  Second, 
the except clause specifies the exception type IOError, which is the type that Python 
uses to report any errors in the file package.  Python defines many other error types, 
but those are beyond the scope of this book. 
 
Choosing files interactively 
If you are creating a general-purpose application, it doesn’t make sense to include the 
name of the file explicitly in the code as in the examples you have seen so far.  What 
you want to do instead is have Python open a file dialog that allows the user to select 
a file.  The modules supplied with this book include a filechooser library that lets 
the user select files interactively.  Figure 8-3 illustrates the use of the filechooser 
module by creating a CountLetterFrequenciesInFile.py application that adds 
interactive file selection on top of the earlier version of the code.  The functions that 
perform the actual counts are imported from the CountLetterFrequencies.py 
application in Figure 8-2. 
 



280     Lists 

 

The filechooser library exports two functions: choose_input_file and 
choose_output_file.  Each of these functions pops up a dialog, which then allows 
the user to move through the directory structure to select a particular file.  
Double-clicking on the filename or highlighting a file and then clicking the Open or 
Save button completes the action of the dialog and returns the complete pathname of 
the selected file to the calling function.  Clicking the Cancel button dismisses the 
dialog and returns the empty string to the caller. 
 

 8.6 Multidimensional arrays 
In Python, the elements of a list can be of any type.  In particular, the elements of a 
list can themselves be lists.  Lists of lists are used to model the concept of a 
multidimensional array, which is an array in which the elements are laid out in more 
than one dimension and therefore require more than one index to select an individual 
element. 
 

The most common form of multidimensional array is the two-dimensional array, 
which is most often used to represent data in which the individual entries form a 
rectangular structure marked off into rows and columns.  This type of 
two-dimensional structure is called a matrix.  Arrays with three or more dimensions 
are also legal in Python but occur less frequently. 
 

As an example of a two-dimensional array, suppose you want to represent a game 
of Tic-Tac-Toe as part of a program.  As you probably know, Tic-Tac-Toe is played 
on a board consisting of three rows and three columns, as follows: 
 

 
 

Players take turns placing the letters X and O in the empty squares, trying to line up 
three identical symbols horizontally, vertically, or diagonally. 
 

The most natural strategy for representing the Tic-Tac-Toe board is to use a 
two-dimensional array with three rows and three columns.  Each of the elements is a 
string, which must be one of the following: "" (representing an empty square), "X", 
and "O".  Since the board is initially empty, you can initialize it like this: 
 

board = [ [ "" ] * 3 for i in range(3) ] 
 
Given this declaration, you can refer to the characters in the individual squares by 
supplying two indices, one specifying the row number and another specifying the 



 8.7 Image processing     281 

 

column number.  In this representation, each number varies over the range 0 to 2, and 
the individual positions on the board have the following designations: 
 

 
 

It is important to note that you can’t initialize board like this: 
 

board = [ [ "" ] * 3 ] * 3 
  

While this statement might seem to have the same effect as the earlier one, the three 
rows of this board are the same object, so that you can’t change one element without 
having that change reflected in the other rows. 
 

 8.7 Image processing 
In modern computing, one of the most important applications of two-dimensional 
arrays occurs in the field of computer graphics.  As you learned in Chapter 4, 
graphical images are composed of individual pixels.  Figure 4-3 on page 104 offers a 
magnified view of the screen that shows how the pixels create the image as a whole.  
Those images are most easily represented using two-dimensional arrays. 
 
The GImage class 
The Portable Graphics Library defines the GImage class as a graphical object that 
contains image data encoded using one of the standard formats.  The three most 
common are the Portable Network Graphics (PNG) format, the Joint Photographic 
Experts Group (JPEG) format, and the Graphics Interchange Format (GIF). 
 

Displaying an image requires two steps.  The first is to create or download an 
image file.  The name of the image file should end with an extension that identifies 
the encoding format, which is.png for the images in this book.  The second step is to 
create a GImage object and add it to the graphics window, just as you would with any 
other graphical object.  For example, if you have an image file called MyImage.png, 
you can display that image in the upper left corner of the graphics window using the 
following line: 
 

gw.add(GImage("MyImage.png")) 
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If you want to center an image in the graphics window, you must first create the 
GImage and then use its size to determine where you need to position it, much as you 
do with a GLabel.  This technique is illustrated by the following code: 
 

image = GImage("MyImage.png") 
x = (gw.get_width() - image.get_width()) / 2 
y = (gw.get_height() - image.get_height()) / 2 
gw.add(image, x, y) 

 
In many cases, you will find that you want to display an image at a different size 

on the screen from the size that appears in the file.  The easiest way to do so is to use 
the scale method, which changes the size of a GObject by the specified scale factor.  
If image contains a GImage, calling image.scale(0.5) makes it half as big in each 
dimension.  Similarly, calling image.scale(2) doubles its size. 
 

The code for the EarthImage.py program in Figure 8-4 at the top of the next page 
illustrates the use of scaling to display an image so that it fills the available space.  
The image, which shows the earth as seen by the Apollo 17 astronauts on their way 
to the moon in December 1972, is stored in an image file named EarthImage.png.  
The EarthImage.py program reads that image file into a GImage object and then 
adds that object to the window.  The line 
 

image.scale(gw.get_width() / image.get_width()) 
 
scales the image so that it fills the entire width of the window. 
 

Running the EarthImage.py program produces the following display: 
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This screenshot also illustrates the inclusion of a citation along with an image.  
When you use existing images, you need to be aware of possible restrictions on the 
use of intellectual property.  Most of the images you find on the web are protected by 
copyright.  Under copyright law, you must obtain the permission of the copyright 
holder in order to use the image, unless your use of the image satisfies the guidelines 
for “fair use”—a doctrine that has unfortunately become more murky in the digital 
age.  Under “fair use” guidelines, you could almost certainly use a copyrighted image 
in a paper that you write for a class.  On the other hand, you could not put that same 
image into a commercially published work without first securing—and probably 
paying for—the right to do so. 
 

Even in cases in which your use of an image falls within the “fair use” guidelines, 
it is important to give proper credit to the source.  As a general rule, whenever you 
find an image on the web that you would like to use, you should first check to see 
whether that website explains its usage policy.  Many of the best sources for images 
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on the web have explicit guidelines for using their images.  Some images are 
absolutely free, some are free for use with citation, some can be used in certain 
contexts but not others, and some are completely restricted.  For example, the website 
for the National Aeronautics and Space Administration (https://www.nasa.gov) 
has an extensive library of images about the exploration of space.  As the website 
explains, you can use these images freely as long as you include the citation “Courtesy 
NASA/JPL-Caltech” along with the image.  The EarthImage.py program follows 
these guidelines and includes the requested citation on the graphics window. 
 
Representation of images 
In Python, an image is a two-dimensional array in which the image as a whole is a 
sequence of rows, and each row is a sequence of individual pixel values.  The value 
of each element indicates the color that should appear in the corresponding pixel 
position on the screen.  From Chapter 4, you know that you can specify a color in 
Python by indicating the intensity of each of the primary colors.  Each of those 
intensities ranges from 0 to 255 and therefore fits in an eight-bit byte.  The color as a 
whole is stored in a 32-bit integer that contains the red, green, and blue intensity 
values along with a measure of the transparency of the color, represented by the Greek 
letter alpha (a).  For the opaque colors used in most images, the value of a is always 
255 in decimal, which is 11111111 in binary or FF in hexadecimal. 
 

As an example, the following diagram shows the four bytes that form the color 
"Pink", which Python defines using the hexadecimal values FF, C0, and CB as the 
red, green, and blue components.  Translating those values to their binary form gives 
you the following: 
 
 a red green blue 

 
 

The fact that Python packs all the information about a color into a 32-bit integer 
means that you can store an image as a two-dimensional array of integers.  Each 
element of the entire array contains one row of the image.  In keeping with Python’s 
coordinate system, the rows of an image are numbered from 0 starting at the top.  
Each row is an array of integers representing the value of each pixel as you move 
from left to right. 
 
Using the GImage class to manipulate images 
The GImage class in the graphics library exports several methods that make it possible 
to perform basic image processing.  As long as certain conditions are met concerning 
the source of the image, you can obtain the two-dimensional array of pixel values by 
calling get_pixel_array.  Thus, if the variable image contains a GImage, you can 
retrieve its pixel array by calling 
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array = image.get_pixel_array() 
 
The height of the image is equal to the number of rows in the pixel array.  The width 
is the number of elements in any of the rows, each of which has the same length in a 
rectangular image.  Thus, you can initialize variables to hold the height and width of 
the pixel array like this: 
 

height = len(array) 
width = len(array[0]) 

 
If you need to create a new pixel array with dimensions width and height, the best 
approach is to use list comprehension like this: 
 

array = [ [ 0 for i in height ] for j in width ] 
 

The GImage class includes several methods to simplify the task of manipulating 
image data.  These methods appear in Figure 8-5.  As you can see from the first 
section of the figure, the GImage class supports two constructors, one for reading data 
from a file and one to construct a GImage from a two-dimensional array.  Given an 
initialized image, the get_pixel_array method returns the array of pixels stored 
within the image.  The GImage class also exports class methods for retrieving the red, 
green, and blue components of a pixel from an integer and for assembling red, green, 
and blue values into the corresponding integer form. 
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These new capabilities in the GImage class make it possible for you to write 
programs to manipulate images, in much the same way that a commercial system like 
Adobe Photoshop™ does.  The general strategy looks like this: 
 
1. Use get_pixel_array to obtain the array of pixel values. 
2. Perform the desired transformation by manipulating the values in the array. 
3. Call the GImage function to create a new object from the modified array. 
 

The following function definition uses this pattern to flip an image vertically: 
 

def flip_vertical(image): 
    array = image.get_pixel_array() 
    array.reverse() 
    return new GImage(array) 

 

A more substantive problem is that of converting a color image to grayscale, a 
format in which all the pixels are either black, white, or some intermediate shade of 
gray.  To do so, you need to go through each element in the pixel array and replace 
each pixel with a shade of gray that approximates the apparent brightness of that 
color.  In computer graphics, that apparent brightness is called luminance. 
 

The goal of a grayscale conversion is to produce a shade of gray that approximates 
the brightness of each pixel to the eye.  As it turns out, luminance is controlled much 
more strongly by how much green appears in the pixel than by the amount of red or 
blue.  Red and blue tend to make an image appear darker, while green tends to lighten 
it up.  The formula for luminance adopted by the standards committee responsible for 
television signals in the United States looks like this: 
 

luminance  =  0.299 x red  +  0.587 x green  +  0.114 x blue 
 

A complete program to produce a grayscale image appears in Figure 8-6 on the 
next page.  The main program begins by allowing the user to choose an image file.  It 
then loads the image and displays the original and grayscale images side by side: 
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GrayscaleImage.py 
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 Summary 
In this chapter, you have learned how to use lists, which are the data structure that 
Python uses to represent an ordered collection of data. The important points 
introduced in this chapter include: 
 
• Most programming languages define a type for storing a sequence of elements.  

Historically, this type of sequential structure is called an array.  Python supports 
the idea of an array using a more general structure called a list that implements 
additional operations. 

• Each element in a list is identified by an integer index that indicates its position in 
the list.  Index numbers begin with 0. 

• Python lists are most often created by enclosing a list of the elements in square 
brackets, separated by commas. 

• You can select a particular element of a list by indicating the index of the desired 
element in square brackets after the list name.  This operation is called selection. 

• Both lists and strings are examples of a more general class of objects called 
sequences, which means that these classes share a set of common operations 
associated with sequences. 

• Lists in Python are stored as references to the memory containing the values of 
the list.  An important implication of this design is that passing a list as a parameter 
means that the function ands its caller see the same list of elements. 

• Lists support a variety of operations implemented as methods.  The most important 
list methods are listed in Figure 8-1 on page 245. 

• Python includes a syntactic form called list comprehension, which makes it easy 
to create a list using a for loop and an optional conditional test. 

• A file is a collection of data stored in electronic form and distinguished from other 
files by an identifying filename. 

• Files can contain data of different types.  This book works only with text files, 
which are sequences of characters. 

• The open method creates a file handle, which you can then use to read data from 
or write data to a file. 

• The methods read, readline, and readlines are useful in reading data from a 
text file; the methods write and writelines are used to write data to a file. 

• Python’s try-except statement makes it possible for programs to respond to 
exceptional conditions, such as a requested input file that doesn’t exist. 

• Python supports multidimensional arrays with any number of subscripts.  Those 
arrays are represented as lists of lists. 
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• Images are represented as two-dimensional arrays of integers, each of which 
specifies the red, green, and blue components of the pixel color. 

• The Portable Graphics Library includes a class called GImage that supports images 
in a way that gives clients access to the underlying pixel array. 

 

 Review questions 
1. Define the following terms as they apply to lists: element, index, length, and 

selection. 
 
2. How would you create a list called dwarves containing the names of the 13 

dwarves who arrived at Bilbo’s doorstep in J. R. R. Tolkien’s fantasy The 
Hobbit?  Their names, in the order in which they appeared, are Dwalin, Balin, 
Kili, Fili, Dori, Nori, Ori, Oin, Gloin, Bifur, Bofur, Bombur, and Thorin. 

 
3. How do you determine the length of a list? 
 
4. True or false: Lists violate the rules for parameter passing by sharing values 

rather than copying them. 
 
5. Describe the Python syntax for list comprehension.  What are the advantages of 

using this syntactic shorthand? 
 
6. What are the principal differences between a text file and a string? 
 
7. Suppose that you have a variable filename that contains the name of a file.  

What code would you use to read the contents of that file as a single string? 
 
8. If you are using the readline method to read a file line by line, how do you tell 

the difference between a blank line in the file and the end of the file? 
 
9. What is an exception? 
 
10. What is the general form of the try statement? 
 
11. What is a multidimensional array? 
 
12. In your own words, explain why the text attaches a bug symbol to the following 

code, which is attempting to initialize a Tic-Tac-Toe board to a 3 ´ 3 matrix, each 
of whose elements is the empty string: 

 
board = [ [ "" ] * 3 ] * 3 

  

What is the correct statement for accomplishing this task? 
 



290     Lists 

 

13. What class from the graphics library makes it possible to display images on the 
graphics window? 

 

14. Describe how images are represented internally. 
 

15. How do you extract the pixel array from an image? 
 

16. Given a pixel array, how do you determine the width and height of the image? 
 

 Exercises 
1. In statistics, a collection of data values is usually referred to as a distribution.  A 

primary purpose of statistical analysis is to find ways to compress the complete 
set of data into summary statistics that express properties of the distribution as a 
whole.  The most common statistical measure is the mean (traditionally denoted 
by the Greek letter µ), which is simply the traditional average.  Another common 
measure is the standard deviation (traditionally denoted as s ), which provides 
an indication of how much the values in a distribution x1, x2, . . . , xn differ from 
the mean.  If you are computing the standard deviation of a complete distribution 
as opposed to a sample, the standard deviation can be expressed as follows: 

 

s  =  
 

 

The uppercase sigma (S) indicates a summation of the quantity that follows, 
which in this case is the square of the difference between the mean and each 
individual data point. 

 

Create a library module called stats that exports the functions mean and 
stdev, each of which takes a list of numbers representing a distribution and 
returns the corresponding statistical measure.  Make sure that the comments are 
sufficient for clients to understand how to use these functions. 

 
2. Implement a function create_index_array(n) that returns a list containing n 

integer elements, each of which is its own index.  For example, calling 
create_index_array(8) should return the list 

 

 
 
3. Use the list, sort, and join methods to write a function sort_letters that 

rearranges the characters in a string so that they appear in lexicographic order.  
For example, calling sort_letters("cabbage") should return the string 
"aabbceg". 
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4. A histogram is a graph that displays a set of values by dividing the data into 
separate ranges and then indicating how many data values fall into each range.  
For example, given the set of exam scores 

 

100, 95, 47, 88, 86, 92, 75, 89, 81, 70, 55, 80 
 

a traditional histogram would have the following form: 
 

 
 

The asterisks in the histogram indicate one score in the 40s, one in the 50s, five 
in the 80s, and so forth.  When you generate histograms on the console, however, 
it is easier to display them sideways on the page, like this: 

 

 
 

Write a program called Histogram that allows the user to select a file 
containing exam scores ranging from 0 to 100 and then displays a histogram of 
those scores, divided into the ranges 0–9, 10–19, 20–29, and so forth, up to the 
range containing only the value 100.  Your function should match the format 
shown in the sample run as closely as possible. 

 
5. In the third century BCE, the Greek astronomer Eratosthenes developed an 

algorithm for finding all the prime numbers up to some upper limit N.  To apply 
the algorithm, you start by writing down a list of the integers between 2 and N.  
For example, if N were 20, you would begin by writing the following list: 

 

 
 

You then circle the first number in the list, indicating that you have found a 
prime.  Whenever you mark a number as a prime, you go through the rest of the 
list and cross off every multiple of that number, since none of those multiples 
can itself be prime.  Thus, after executing the first cycle of the algorithm, you 
will have circled the number 2 and crossed off every multiple of 2, as follows: 
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To complete the algorithm, you simply repeat the process by circling the first 
number in the list that is neither crossed off nor circled, and then crossing off its 
multiples.  In this example, you would circle 3 as a prime and cross off all 
multiples of 3 in the rest of the list, which would result in the following state: 

 

 
 

Eventually, every number in the list will either be circled or crossed out, as shown 
in this diagram: 

 

 
 

The circled numbers are the primes; the crossed-out numbers are composites.  
This algorithm is called the sieve of Eratosthenes. 

 

Write a program that uses the sieve of Eratosthenes to generate a list of the 
primes between 2 and 1000. 

 
6. Write a function create_identity_matrix(n) that returns an n ´ n matrix in 

which the elements are 0 except for the main diagonal in which the value is 1.  If 
you use list comprehensions and the fact that the built-in int function converts 
Boolean values to 0 and 1, the implementation should be a single line. 

 
7. Write a program that uses the filechooser library to let the user select an input 

file and then prints on the console the longest line contained in that file. 
 
8. Modify the program from the preceding exercise so that your program prints out 

the lines of the selected file, sorted in decreasing order by length. 
 
9. Books were bks and Robin Hood was Rbinhd.  Little Goody Two 

Shoes lost her Os and so did Goldilocks, and the former became a 
whisper, and the latter sounded like a key jiggled in a lck.  It was 
impossible to read “cockadoodledoo” aloud, and parents gave up 
reading to their children, and some gave up reading altogether. . . . 

—James Thurber, The Wonderful O, 1957 
 

In James Thurber’s children’s story The Wonderful O, the island of Ooroo is 
invaded by pirates who set out to banish the letter O from the alphabet.  Such 
censorship would be much easier with modern technology.  Write a program that 
asks the user for an input file, an output file, and a string of letters to be 
eliminated.  The program should then copy the input file to the output file, 
deleting any of the letters that appear in the string of censored letters, no matter 
whether they appear in uppercase or lowercase form. 
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As an example, suppose that you have a file containing the first few lines of 
Thurber’s novel, as follows: 

 

 
 

If you run your program with the input 
 

 
 

it should write the following file: 
 

 
 

If you get greedy and remove all the vowels by supplying the string "aeiou" 
as the letters to banish, the contents of the output file corresponding to 
TheWonderfulO.txt would be 

 

 
 
10. A magic square is a two-dimensional array of integers in which the rows, 

columns, and diagonals all add up to the same value.  One of the most famous 
magic squares appears in the 1514 engraving Melencolia I by Albrecht Dürer 
shown in Figure 8-7 at the top of the next page, in which a 4´4 magic square 
appears at the upper right, just under the bell.  In Dürer’s square, which can be 
read more easily in the magnified inset shown at the right of the figure, all four 
rows, all four columns, and both diagonals add up to 34. 

 
A more familiar example is the following 3´3 magic square in which each of 

the rows, columns, and diagonals add up to 15, as shown: 
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Implement a function is_magic_square that takes a two-dimensional array 
of integers and then tests whether those integers form a magic square.  Your 
function should return False if the two-dimensional array is not square. 
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11. In the game of Minesweeper, a player searches for hidden mines on a rectangular 
grid that might—for a very small board—look like this: 

 

 
 

One way to represent that grid in Python is to use a list of Boolean values marking 
mine locations, where True indicates the location of a mine.  You could, for 
example, initialize the variable mine_locations to this list by writing the 
following declaration: 

 

mine_locations = [ 
    [  True, False, False, False, False,  True ], 
    [ False, False, False, False, False,  True ], 
    [  True,  True, False,  True, False,  True ], 
    [  True, False, False, False, False, False ], 
    [ False, False,  True, False, False, False ], 
    [ False, False, False, False, False, False ] 
] 

 

Write a function count_mines that takes a two-dimensional Boolean array 
representing the location of the mines and returns a new array with the same 
dimensions that indicates how many mines are in the neighborhood of each 
location.  If a location contains a mine, the corresponding entry in the matrix 
returned by count_mines should be -1.  Thus, the assignment statement 

 

counts = count_mines(mine_locations) 
 

should initialize counts as follows: 
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12. Over the last couple of decades, a logic puzzle called Sudoku has become popular 
throughout the world.  In Sudoku, you start with a 9´9 array of integers in which 
some of the cells have been filled with a digit between 1 and 9 as shown on the 
left side of Figure 8-8.  Your job in the puzzle is to fill each of the empty spaces 
with a digit between 1 and 9 so that each digit appears exactly once in each row, 
each column, and each of the smaller 3´3 squares. The solution appears at the 
right side of Figure 8-8.  Each Sudoku puzzle is carefully constructed so that 
there is only one solution. 

 

Although the algorithmic strategies you need to solve Sudoku puzzles lie 
beyond the scope of this book, you can easily write a function that checks to see 
whether a proposed solution follows the Sudoku rules against duplicating values 
in a row, column, or outlined 3´3 square.  Write a function named 
check_sudoku_solution that takes a 9´9 array and returns True if that array 
obeys all the rules for a Sudoku square. 

 
13. Write a method flip_horizontal that works similarly to flip_vertical as 

presented in the chapter except that it reverses the image in the horizontal 
dimension. 

 
14. Write a method rotate_left that takes a GImage and produces a new GImage 

in which the original has been rotated 90 degrees to the left. 
 



 
 

C H A P T E R  9  
Searching and Sorting 

 
I conclude that there are two ways of constructing a software 
design: One way is to make it so simple that there are 
obviously no deficiencies and the other way is to make it so 
complicated that there are no obvious deficiencies.  The first 
method is far more difficult. 

—C. A. R. Hoare, Turing Award Lecture, 1981 
 
 

 
C. A. R. Hoare 

 

Charles Antony Richard (Tony) Hoare is Professor emeritus of Computer Science at Oxford University and 
a senior researcher at Microsoft’s Research Laboratory in Cambridge, England.  After completing a degree 
in philosophy at Oxford in 1956, Hoare became fascinated by the emerging world of computer science.  
During his graduate-school years, Hoare developed a highly efficient sorting algorithm called Quicksort, 
which is described in this chapter and remains in active use today.  He also led the effort during the 1960s to 
create the first commercial compiler for Algol 60, a programming language that served as an important model 
for subsequent languages.  Professor Hoare received the ACM Turing Award in 1980.
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As you have certainly discovered by this point in your study of programming, there 
are usually many different strategies that you can use to solve a problem.  Choosing 
among those different strategies is a central part of the programming process and 
typically requires you to evaluate several possible approaches to determine which is 
most appropriate to the problem at hand.  One important consideration is efficiency.  
Algorithms that run more efficiently will presumably require less computing time and 
deliver the desired results more quickly. 
 

This chapter explores the topic of algorithmic efficiency in the context of two 
fundamental operations in which the choice of algorithm has a significant impact on 
the program’s running time.  Those operations are 
 

• Searching, which is the process of finding a particular element in an array 

• Sorting, which is the process of rearranging the elements in an array so that they 
are stored in a well-defined order 

 

Historically, each of these operations is defined in the context of arrays.  This 
chapter is therefore in some sense a continuation of the discussion of arrays and lists 
from Chapter 8.  This chapter, however, has another central theme that links it not 
only to that chapter but also to the discussion of algorithmic strategies in Chapter 3. 
 

As you will see as you go through the programs in this chapter, there are many 
different strategies you can use to implement searching and sorting.  These strategies 
vary enormously in their efficiency and therefore raise more general issues about 
precisely what the term efficiency means in an algorithmic context and how one might 
go about measuring that efficiency.  These questions form the foundation for the 
subfield of computer science known as analysis of algorithms.  Although a detailed 
understanding of algorithmic analysis requires a reasonable facility with mathematics 
and a lot of careful thought, you can get a sense of how it works by investigating the 
performance of several different algorithms in an important programming domain. 
 

 9.1 Searching 
Although the search problem is usually framed as one of finding the index at which a 
particular element occurs in a list, the properties of search algorithms can be 
illustrated just as well in the context of the simpler problem of determining whether 
an element exists in the list at all.  This operation is precisely the one implemented 
by Python’s in operator.  The expression 
 

key in list 
 
has the value True if key exists at any position in the list and the value False if it 
doesn’t. 
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To make this version of the search problem more concrete—and more useful as 
well—suppose that you are writing a program to play a word game like Scrabble and 
need to know whether a particular string is a valid English word.  To do so, you will 
need to have access to a list of English words so that you can compare the word you 
have against the elements of that list.  That list, of course, has conceptual similarities 
to a dictionary, but lacks the associated definitions.  Computer scientists commonly 
refer to a word list without definitions as a lexicon. 
 

As you know from 3, the libraries associated with this book include a module 
called english that exports a list called ENGLISH_WORDS that contains 127,145 words 
along with a function is_english_word(s) that checks to see whether s is a valid 
English word.  Although you could simply use the in operator to ask whether 
 

s in ENGLISH_WORDS 
  
determining the answer would take considerable time bccause Python would have to 
check through the entire list in ENGLISH_WORDS.  The goal of the next two sections is 
to explore alternative strategies for implementing this test to find one that offers 
considerably better performance. 
 
The linear-search algorithm 
The simplest strategy for writing is_english_word—although not necessarily the 
most efficient one—is captured in the following advice that the King of Hearts gives 
the White Rabbit in Lewis Carroll’s Alice’s Adventures in Wonderland: 
 

Begin at the beginning, and go on till you come to the end: then stop. 
 

Turning that informal statement into an algorithm for searching is not particularly 
difficult.  The only modification that you need to make is that the algorithm should 
also stop if it finds the value it is searching for.  Thus, you might express a more 
complete account of Lewis Carroll’s searching algorithm as follows: 
 

Begin at the beginning, and go on till you either find the element you’re 
looking for or come to the end.  If you find the element, you know that it 
exists; if you reach the end, you know that the element does not appear. 

 

Because the process starts at the beginning and proceeds in a straight line through the 
elements of the array, this algorithm is called linear search. 
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Turning this informal strategy into a Python definition for is_english_word 
requires little more than a direct translation of Lewis Carroll’s approach: 
 

def is_english_word(s): 
    s = s.lower() 
    for i in range(len(ENGLISH_WORDS)): 
        if s == ENGLISH_WORDS[i]: 
            return True 
    return False 

 
The for loop begins at the beginning and continues until it comes to the end of the 
ENGLISH_WORDS array.  The function returns when it finds the word in the array or, 
failing that, at the end of the for loop. 
 

The binary-search algorithm 
The version of is_english_word from the previous section runs slowly because the 
linear-search algorithm has to looks at each array element in turn to check for a match.  
Fortunately, the fact that the ENGLISH_WORDS array is stored in alphabetical order 
makes it possible to do much better.  A useful strategy for improving the efficiency 
of is_english_word is to compare the word you’re looking for against the entry in 
the middle of the array.  If your word precedes in alphabetical order the value you 
find at the middle position, you only have to search the first half of the array.  
Conversely, if your word follows the value in the center position, you only have to 
search the second half.  Repeating this process means that you can throw away half 
of the values in the array on each cycle of the search loop.  This algorithm, which 
appears in Figure Error! Reference source not found.-1 on the next page, is called 
binary search. 
 

After converting the parameter s to lower case to ensure that it matches the words 
in the lexicon, the binary-search implementation of is_english_word begins by 
setting the variables lh and rh to the leftmost and rightmost index positions in the 
array.  At the beginning, the leftmost index is 0, and the rightmost index is one less 
than the length of the ENGLISH_WORDS array.  If the string contained in s is in the 
lexicon, it must lie somewhere in this range of indices.  The rest of the function 
consists of a loop that successively narrows this range by comparing s against the 
entry in the middle of the index range and using the result of that comparison to decide 
how to adjust the index bounds.  The loop continues until the word is found or until 
there are no elements left in the range, which means that the word is not in the lexicon. 
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The binary-search implementation of is_english_word is important enough that 
it makes sense to go through an example.  Suppose that you want to check whether 
lexicon is really an English word or simply part of a technical vocabulary that 
computer scientists use.  To do so, you can execute the following code: 
 

if is_english_word("lexicon"): 
    print("lexicon is a valid word") 

 

The ENGLISH_WORDS array contains 127145 words, which means that the initial 
values of lh and rh are 0 and 127144.  On the first cycle of the loop, the code 
computes the midpoint of the remaining range by averaging lh and rh, using the // 
operator to ensure that the result is an integer.  The code then stores this position in 
the variable mid.  The word at index 63572 is the unusual but nonetheless legitimate 
word lightered.  Since lexicon comes before lightered in lexicographic order, 
is_english_word needs to search only the indices between lh and mid - 1.  
Substituting the current values of these variables shows that the new search range is 
limited to the indices between 0 and 63571.  The process then continues until it either 
finds the specified word or there are no elements left in the index range. 
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Calling is_english_word("lexicon") makes the sequence of comparisons 
shown in the following console log: 
 

 
 

As you can see from the trace output, the binary-search algorithm is able to find 
the word lexicon by making just 12 comparisons, even though the lexicon contains 
127,145 words.  The linear-search algorithm has to look at every one of those words, 
which means that the binary-search approach reduces the number of required 
comparisons by a factor of 10,000. 
 

 9.2 Simple strategies for sorting 
Although the differences in efficiency between linear search and binary search are 
certainly significant, the importance of choosing the right algorithm is even more 
evident in the problem of sorting, which consists of rearranging the elements in a list 
so that they appear in some well-defined order.  For example, suppose you have stored 
the following integers in the variable array, which is implemented as a list in Python: 
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Your mission is to write a function sort(array) that rearranges the elements into 
ascending order, like this: 
 

 
 
The selection sort algorithm 
There are many algorithms you could choose to sort an array into ascending order.  
One of the simplest is called selection sort, which is implemented in Figure 9-2.  
Given an array of size N, the selection sort algorithm goes through each element 
position and finds the value that should occupy that position in the sorted array.  When 
it finds the appropriate element, the algorithm exchanges that element with the value 
previously occupying the desired position to ensure that no elements are lost.  Thus, 
on the first cycle, the algorithm finds the smallest element and swaps it with the first 
element, which appears at index position 0.  On the second cycle, it finds the smallest 
remaining element and swaps it with the second element.  Thereafter, the algorithm 
continues this strategy until all positions in the array are correctly ordered. 
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For example, if the initial contents of the array are 
 

 
 

the first cycle through the outer for loop identifies the 19 in index position 5 as the 
smallest value in the entire array and then swaps it with the 56 in index position 0 to 
leave the following configuration: 
 

 
 
On the second cycle, the algorithm finds the smallest element between positions 1 
and 7, which turns out to be the 25 in position 1.  The program goes ahead and 
performs the exchange operation, leaving the array unchanged from that in the 
preceding diagram.  On each subsequent cycle, the algorithm performs a swap 
operation to move the next smallest value into its appropriate final position.  When 
the for loop is complete, the entire array is sorted. 
 
Empirical measurement of performance 
How efficient is the selection sort algorithm as a strategy for sorting?  To answer 
questions of this kind, it helps to collect empirical data about how long it takes a 
computer to complete a task for problems of varying size.  When I ran the selection 
sort algorithm on my MacBook Pro laptop, for example, I observed the following 
running times, where N represents the number of elements in the array: 
 

N Running time 
 10 0.000013 sec 
 100 0.000581 sec 
 1000 0.0579 sec 
 10,000 5.738 sec 
 100,000 574.2 sec 
 1,000,000 57,395.0 sec 

 
For an array of 100 integers, the selection sort algorithm completes its work in less 
than a millisecond.  Even for 10,000 integers, this implementation of sort takes just 
a few seconds, which seems fast enough in terms of our human sense of time.  As the 
array sizes get larger, however, the performance of selection sort begins to go 
downhill.  For an array of 100,000 integers, the algorithm requires 574 seconds, which 
is almost 10 minutes.  If you’re sitting in front of your computer waiting for it to 
reply, that seems a long time.  But that number pales into insignificance when you 
compare it to the time required to sort 1,000,000 integers, which—at least when coded 
in Python using the selection sort algorithm—takes almost 16 hours. 
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The performance of selection sort rapidly gets worse as the array size increases.  
As you can see from the timing data, every time you multiply the number of values 
by 10, the time required to sort the array goes up a hundredfold.  Sorting a list of ten 
million numbers would therefore take somewhere around 1600 hours, which is on the 
order of 66 days. If your business required sorting arrays on this scale, you would 
have no choice but to find a more efficient approach. 
 
Analyzing the performance of selection sort 
What makes selection sort perform so badly as the number of values to be sorted 
becomes large?  To answer this question, it helps to think about what the algorithm 
has to do on each cycle of the outer loop.  To correctly determine the first value in the 
array, the selection sort algorithm must consider all N elements as it searches for the 
smallest value.  Thus, the time required on the first cycle of the loop is presumably 
proportional to N.  For each of the other elements in the array, the algorithm performs 
the same basic steps but looks at a smaller number of elements each time.  It looks at 
N–1 elements on the second cycle, N–2 on the third, and so on, so the total running 
time is roughly proportional to 
 

N  +  N–1  +  N–2  +  . . .  +  3  +  2  +  1 
 

Because it is difficult to work with an expression in this expanded form, it is useful 
to simplify it by applying a bit of mathematics.  As you may have learned in an algebra 
course, the sum of the first N integers is given by the formula 
 

 
 

or, after evaluating the multiplication sign in the numerator, 
 

 
 

If you write out the values of this function for various values of N, you get a table 
that looks like this: 
 

N  
 10  55 
 100  5050 
 1000  500,500 
 10,000  50,005,000 
 100,000  5,000,050,000 
 1,000,000  500,000,500,000 

 
Because the running time of the selection sort algorithm is presumably related to the 
amount of work the algorithm needs to do, the values in this table should be roughly 
proportional to the observed execution time of the algorithm, which turns out to be 
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true.  If you look at the measured timing data for selection sort in Figure 9-3, for 
example, you discover that the algorithm requires 574.2 seconds to sort 100,000 
numbers.  In that time, the selection sort algorithm has to perform 50,005,000 
operations in its innermost loop.  Assuming that there is indeed a proportionality 
relationship between these two values, dividing the time by the number of operations 
gives the following estimate of the proportionality constant: 
 

  ≈  1.15 ´ 10–7 seconds
 

 

If you apply this same proportionality constant to the other entries in the table, you 
discover that the formula 
 

1.22 ´ 10–7 seconds  ´ 
 

 

offers a reasonable approximation of the running time for all but the smallest values 
of N, where the time required for other statements in the program have more 
significance.  The table in Figure 9-3 includes these estimated times and the relative 
error between the observed and estimated times. 
 

 9.3 Computational complexity 
The problem with carrying out a detailed analysis like the one shown in Figure 9-3 is 
that you end up with too much information.  Although it is occasionally useful to have 
a formula for predicting exactly how long a program will take, you can usually get 
away with more qualitative measures.  The reason that selection sort is impractical 
for large values of N has little to do with the precise timing characteristics of a 
particular implementation running on the laptop I happen to have at the moment.  The 
problem is simpler and more fundamental.  At its essence, the problem with selection 
sort is that doubling the size of the input array increases the running time of the 
selection sort algorithm by a factor of four, which means that the running time grows 
more quickly than the number of elements in the array. 
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The most valuable qualitative insights you can obtain about algorithmic efficiency 
are usually those that help you understand how the performance of an algorithm 
responds to changes in problem size.  For algorithms that operate on numbers, it 
generally makes sense to let the numbers themselves represent the problem size.  For 
algorithms that operate on arrays, you can use the number of elements.  When 
evaluating algorithmic efficiency, computer scientists traditionally use the letter N to 
indicate the size of the problem, no matter how it is calculated.  The relationship 
between N and the performance of an algorithm as N becomes large is called the 
computational complexity of that algorithm. 
 
Big-O notation 
Computer scientists use a special formulation called big-O notation to denote the 
computational complexity of algorithms.  Big-O notation was introduced by the 
German mathematician Paul Bachmann in 1892—long before the development of 
computers.  The notation itself is very simple and consists of the letter O, followed 
by a formula enclosed in parentheses.  When it is used to specify computational 
complexity, the formula is usually a simple function involving the problem size N.  
For example, in this chapter you will soon encounter the big-O expression 
 

O(N2) 
 
which reads aloud as “big-oh of N squared.” 
 

Big-O notation is used to specify qualitative approximations and is ideal for 
expressing the computational complexity of an algorithm.  Coming as it does from 
mathematics, big-O notation has a precise definition, which appears later in this 
chapter in the section entitled “A formal definition of big-O.”  At this point, however, 
it is more important for you to gain some intuition into what big-O means. 
 
Standard simplifications of big-O 
When you use big-O notation to express computational complexity, the goal is to 
offer a qualitative insight as to how changes in N affect the algorithmic performance 
as N becomes large.  Because big-O notation is not intended to be a quantitative 
measure, it is not only appropriate but desirable to make the formula inside the 
parentheses as simple as possible.  The most common simplifications you can make 
when using big-O notation to express computational complexity are as follows: 
 
1. Eliminate any term whose contribution to the total ceases to be significant as N 

becomes large.  When a formula involves several terms added together, one of 
the terms often grows much faster than the others and ends up dominating the 
entire expression as N becomes large.  For large values of N, this term alone will 
control the running time of the algorithm, and you can ignore the other terms in 
the formula entirely. 
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2. Eliminate any constant factors.  When you calculate computational complexity, 
your main concern is how running time changes as a function of the problem size 
N.  Constant factors have no effect on the overall pattern.  If you bought a 
machine that was twice as fast as your old one, any algorithm that you executed 
on your machine would run twice as fast as before for every value of N.  The 
growth pattern, however, would remain exactly the same.  Thus, you can ignore 
constant factors when you use big-O notation. 

 
The computational complexity of selection sort 
You can apply the simplification rules from the preceding section to derive a big-O 
expression for the computational complexity of selection sort.  From the analysis in 
the section “Analyzing the performance of selection sort” earlier in the chapter, you 
know that the running time of the selection sort algorithm for an array of N elements 
is proportional to 
 

 
 
Although it would be mathematically correct to use this formula directly in the big-O 
expression 
 

O( ) 
 

 

you would never do so in practice because the formula inside the parentheses is not 
expressed in the simplest form. 
 

The first step toward simplifying this relationship is to recognize that the formula 
is actually the sum of two terms, as follows: 
 

  +  
 

 
You then need to consider the contribution of each of these terms to the total formula 
as N increases in size, which is illustrated by the following table: 
 

N    
 10  50  5  55 
 100  5000  50  5050 
 1000  500,000  500  500,500 
 10,000  50,000,000  5000  50,005,000 
 100,000  5,000,000,000  50,000  5,000,050,000 
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As N increases, the term involving N2 quickly dominates the term involving N.  As a 
result, the simplification rule allows you to eliminate the smaller term from the 
expression.  Even so, you would not write that the computational complexity of 
selection sort is 
 

O( ) 
 

 

because you can eliminate the constant factor.  The simplest expression you can use 
to indicate the complexity of selection sort is 
 

O(N2) 
 

This expression captures the essence of the performance of selection sort.  As the size 
of the problem increases, the running time tends to grow by the square of that 
increase.  Thus, if you double the size of the array, the running time goes up by a 
factor of four.  If you instead multiply the number of input values by 10, the running 
time explodes by a factor of 100. 
 
Deducing computational complexity from code 
It is often possible to determine the computational complexity of a function simply 
by looking at the code, as in the following function that computes the average of the 
elements in an array: 
 

def average(array): 
    total = 0 
    for value in array: 
        total += value 
    return total / n 

 
When you call this function, some parts of the code are executed only once, such as 
the initialization of total to 0 and the division operation in the return statement.  
These computations take a certain amount of time, but that time is constant in the 
sense that it doesn’t depend on the size of the array.  Code whose execution time does 
not depend on the problem size is said to run in constant time, which is expressed in 
big-O notation as O(1). 
 

The designation O(1) can seem confusing, because the expression inside the 
parentheses does not depend on N.  In fact, this lack of any dependency on N is the 
whole point of the O(1) notation.  As you increase the size of the problem, the time 
required to execute code whose running time is O(1) increases in exactly the same 
way that 1 increases; in other words, the running time does not increase at all. 
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There are, however, other parts of the average function that are executed exactly 
N times, once for each cycle of the for loop.  These components include the internal 
calculations in the for loop to produce the next element and the statement 
 

total += value 
 
that constitutes the loop body.  Although any single execution of this part of the 
computation takes a fixed amount of time, the fact that these statements are executed 
N times means that their total execution time is directly proportional to the array size.  
The computational complexity of this part of the average function is O(N), which is 
commonly called linear time. 
 

The total running time for average is therefore the sum of the times required for 
the constant parts and the linear parts of the algorithm.  As the size of the problem 
increases, however, the constant term becomes less and less relevant.  By exploiting 
the simplification rule that allows you to ignore terms that become insignificant as N 
gets large, you can assert that the average function runs in O(N) time. 
 

You could also predict this result just by looking at the loop structure of the code.  
For the most part, the individual expressions and statements—unless they involve 
function calls that must be accounted separately—run in constant time.  What matters 
in terms of computational complexity is how often those statements are executed.  For 
many programs, you can determine the computational complexity simply by finding 
the piece of the code that is executed most often and determining how many times it 
runs as a function of N.  In the case of the average function, the body of the loop is 
executed n times.  Because no part of the code is executed more often than this, you 
can predict that the computational complexity will be O(N). 
 

The selection sort function can be analyzed in a similar way.  The most frequently 
executed part of the code is the comparison in the statement 
 

if array[i] < array[rh]: 
 
That statement is nested inside two for loops whose limits depend on the value of N.  
The inner loop runs N times as often as the outer loop, which implies that the inner 
loop body is executed O(N2) times.  Algorithms like selection sort that exhibit O(N2) 
performance are said to run in quadratic time. 
 
Worst-case versus average-case complexity 
In some cases, the running time of an algorithm depends not only on the size of the 
problem but also on the specific characteristics of the data.  For example, consider 
the function 
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def linear_search(key, array): 
    for i in range(len(array)): 
        if key == array[i]: 
            return i 
    return -1  

 
which uses the linear-search algorithm to return the first index position in array at 
which the value key appears or the sentinel value –1 if the value key does not appear 
anywhere in the array.  Because the for loop in the implementation executes N times, 
you expect the performance of linear_search, as its name implies, to be O(N). 
 

On the other hand, some calls to linear_search can be executed very quickly.  
Suppose, for example, that the key element you are searching for happens to be in the 
first position in the array.  In that case, the body of the for loop will run only once.  
If you’re lucky enough to search for a value that always occurs at the beginning of 
the array, linear_search will run in constant time. 
 

When you analyze the computational complexity of a program, you are rarely 
interested in the minimum possible time.  In general, computer scientists tend to be 
concerned about analyzing the following two types of complexity: 
 
• Worst-case complexity.  The most common type of complexity analysis consists 

of determining the performance of an algorithm in the worst possible case.  Such 
an analysis is useful because it allows you to set an upper bound on the 
computational complexity.  If you analyze for the worst case, you can guarantee 
that the performance of the algorithm will be at least as good as your analysis 
indicates.  You might sometimes get lucky, but you can be confident that the 
performance will not get any worse. 

• Average-case complexity.  From a practical point of view, it is often useful to 
consider how well an algorithm performs if you average its behavior over all 
possible sets of input data.  Particularly if you have no reason to assume that the 
specific input to your problem is in any way atypical, the average-case analysis 
provides the best statistical estimate of actual performance.  Unfortunately, 
average-case analysis is usually more difficult to carry out and typically requires 
considerable mathematical sophistication. 

 
The worst case for the linear_search function occurs when the key is not in the 

array at all.  When the key is not there, the function must complete all n cycles of the 
for loop, which means that its performance is O(N).  If the key is known to be in the 
array, the for loop will be executed about half as many times on average, which 
implies that average-case performance is also O(N).  As you will discover in the 
section on “The Quicksort algorithm” later in this chapter, the average-case and 
worst-case performances of an algorithm sometimes differ in qualitative ways, which 
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means that in practice it is often important to take both performance characteristics 
into consideration. 
 

 9.4 Divide-and-conquer strategies 
At this point, you know considerably more about complexity analysis than you did 
when you started the chapter.  However, you are no closer to solving the practical 
problem of how to write a sorting algorithm that is more efficient for large arrays.  
The selection sort algorithm is clearly not up to the task, because the running time 
increases in proportion to the square of the input size.  The same is true for most 
sorting algorithms that process the elements of an array in a linear order.  To develop 
a better sorting algorithm, you need a qualitatively different approach. 
 

Oddly enough, the key to finding a better sorting strategy lies in recognizing that 
the quadratic behavior of algorithms like selection sort has a hidden virtue.  The basic 
characteristic of quadratic complexity is that, as the size of a problem doubles, the 
running time increases by a factor of four.  The reverse, however, is also true.  If you 
divide the size of a quadratic problem by two, you decrease the running time by that 
same factor of four.  This fact suggests that dividing an array in half and then applying 
a recursive divide-and-conquer approach might reduce the required sorting time. 
 

To make this idea more concrete, suppose you have a large array that you need to 
sort.  What happens if you divide the array into two halves and then use the selection 
sort algorithm to sort each of those pieces?  Because selection sort is quadratic, each 
of the smaller arrays requires one quarter of the original time.  You need to sort both 
halves, of course, but the total time required to sort the two smaller arrays is still only 
half the time that would have been required to sort the original array.  If it turns out 
that sorting two halves of an array simplifies the problem of sorting the complete 
array, you will be able to reduce the total time substantially.  More importantly, once 
you discover how to improve performance at one level, you can use the same 
algorithm recursively to sort each half. 
 

To determine whether a divide-and-conquer strategy is applicable to the sorting 
problem, you need to answer the question of whether dividing an array into two 
smaller arrays and then sorting each one helps to solve the general problem.  As a 
way to gain some insight into this question, suppose that you start with an array 
containing the following eight elements: 
 

 
 

If you divide the array of eight elements into two arrays of length four and then sort 
each of those smaller arrays—keep in mind that the recursive leap of faith means you 
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can assume that the recursive calls work correctly—you get the following situation 
in which each of the smaller arrays is sorted: 
 

 
 

How useful is this decomposition?  Remember that your goal is to take the values out 
of these smaller arrays and put them back into the original array in the correct order.  
How does having these smaller sorted arrays help you accomplish that goal? 
 

As it happens, reconstructing the complete array from the smaller sorted arrays is 
a simpler problem than sorting itself.  The required technique, called merging, 
depends on the fact that the first element in the complete ordering must be either the 
first element in a1 or the first element in a2, whichever is smaller.  In this example, 
the first element you want is the 19 in a2.  If you add that element to an array of the 
right length and cross it out of a2, you get the following configuration: 
 

 
 

Once again, the next element can only be the first unused element in a1 or a2.  This 
time, you compare the 25 from a1 against the 30 in a2 and choose the former: 
 

 
 

You can easily continue this process of choosing the smaller value from a1 or a2 until 
you have reconstructed the entire array, which will look like this: 
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The merge sort algorithm 
The merge operation, combined with recursive decomposition, gives rise to a sorting 
algorithm called merge sort, which requires the following steps: 
 
1. Check to see if the length of the array is 0 or 1.  If so, it must already be sorted. 
2. Divide the array into two smaller arrays, each of which is half the size. 
3. Sort each of the smaller arrays recursively. 
4. Merge the two sorted arrays back into the original one. 
 

The code for the merge sort algorithm, shown in Figure 9-4, divides neatly into 
two functions: sort and merge.  The code for sort follows directly from the outline 
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of the algorithm.  After checking for the special case, the algorithm uses slicing to 
divide the original array into two smaller ones, sorts these arrays recursively, and then 
calls merge to reassemble the complete solution. 
 

Most of the work is done by the merge function, which takes the original array 
along with the smaller arrays a1 and a2.  The heart of the merge function is the for 
loop that fills each position in array.  On each cycle of the loop, the function selects 
the smaller element from a1 or a2 (after first checking whether any elements are left) 
and copies that value to the next free slot in the original array. 
 
The computational complexity of merge sort 
You now have an implementation of the sort function based on the strategy of 
divide-and-conquer.  How efficient is it?  You can measure its efficiency by sorting 
arrays of numbers and timing the result, but it is helpful to start by thinking about the 
algorithm in terms of its computational complexity. 
 

When you call the merge sort implementation of sort on a list of N numbers, the 
running time can be divided into two components: 
 
1. The amount of time required to execute the operations at the current level of the 

recursive decomposition 

2. The time required to execute the recursive calls 
 
At the top level of the recursive decomposition, the cost of performing the 
nonrecursive operations is proportional to N.  The loop to fill the subsidiary arrays 
accounts for N cycles, and the call to merge has the effect of refilling the original N 
positions in the array.  If you add these operations and ignore the constant factor, you 
discover that the complexity of any single call to sort—not counting the recursive 
calls within it—requires O(N) operations. 
 

But what is the cost of the recursive operations?  To sort an array of size N, you 
must recursively sort two arrays of size N  / 2.  Each of these operations requires some 
amount of time.  If you apply the same logic, you quickly determine that sorting each 
of these smaller arrays requires time proportional to N  / 2 at that level of the recursive 
decomposition, plus whatever time is required by any further recursive calls.  The 
same process then continues until you reach the simple case in which the arrays 
consist of a single element or no elements at all. 
 

The total time required to solve the problem is the sum of the time required at each 
level of the recursive decomposition.  In general, the decomposition has the structure 
shown in Figure 9-5.  As you move down through the recursive hierarchy, the arrays 
get smaller, but more numerous.  The amount of work done at each level, however, 
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is always directly proportional to N.  Determining the total amount of work is thus a 
question of finding out how many levels there will be. 
 

At each level of the hierarchy, the value of N is divided by 2.  The total number of 
levels is therefore equal to the number of times you can divide N by 2 before you get 
down to 1.  Rephrasing this problem in mathematical terms, you need to find a value 
of k such that 
 

N = 2k 
 

Solving the equation for k gives you 
 

k = log2N 
 

Because the number of levels is log2N and the amount of work done at each level is 
proportional to N, the total amount of work is proportional to N log2N. 
 

Unlike other scientific disciplines, in which logarithms are expressed in terms of 
powers of 10 (common logarithms) or the mathematical constant e (natural 
logarithms), computer science tends to use binary logarithms, which are based on 
powers of 2.  Logarithms computed using different bases differ only by a constant 
factor, and it is therefore traditional to omit the logarithmic base when you talk about 
computational complexity.  Thus, the computational complexity of merge sort is 
usually written as 
 

O(N log N) 
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Comparing N2 and N log N performance 
But how much better is an algorithm that runs in O(N log N) time than one that 
requires O(N2)?  One way to assess the level of improvement is to look at empirical 
data to get a sense of how the running times of the selection and merge sort algorithms 
compare.  That timing information appears in Figure 9-6.  For 10 items, this 
implementation of selection sort is twice as fast as merge sort.  By the time you get 
up to 100,000 items, however merge sort is faster by nearly three orders of magnitude.  
For large arrays, merge sort represents a significant improvement.  The numbers in 
both columns grow as N becomes larger, but the N2 column grows much faster than 
the N log N column.  Sorting algorithms based on an N log N algorithm will therefore 
be useful over a much larger range of array sizes. 
 

 9.5 Standard complexity classes 
In programming, most algorithms fall into one of several common complexity classes.  
The most important complexity classes are shown in Figure 9-7, which gives the 
common name of the class along with the corresponding big-O expression and a 
representative algorithm in that class. 
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The classes in Figure 9-7 are presented in strictly increasing order of complexity.  
If you have a choice between one algorithm that requires O(log N) time and another 
that requires O(N) time, the first will always outperform the second as N grows large.  
For small values of N, terms that are discounted in the big-O calculation may allow a 
theoretically less efficient algorithm to outperform one that has a lower computational 
complexity.  On the other hand, as N grows larger, there will always be a point at 
which the theoretical difference in efficiency becomes the deciding factor. 
 

The differences in efficiency between these classes are in fact profound.  You can 
begin to get a sense of how the different complexity functions stand in relation to one 
another by looking at the graph in Figure 9-8, which plots these complexity functions 
on a traditional linear scale.  Unfortunately, this graph tells an incomplete and 
somewhat misleading part of the story, because the values of N are all very small.  
Complexity analysis, after all, is primarily relevant as the values of N become large.  
Figure 9-9 shows the same data plotted on a logarithmic scale, which gives you a 
better sense of how these functions grow over a more extensive range of values. 
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Algorithms that fall into the constant, linear, quadratic, and cubic complexity 
classes are all part of a more general family called polynomial algorithms, which 
execute in time N k for some constant k.  One of the useful properties of the logarithmic 
plot shown in Figure 9-9 is that the graph of any function N k always comes out as a 
straight line whose slope is proportional to k.  If you look at the figure, it is clear that 
N k—no matter how big k happens to be—invariably grows more slowly than the 
exponential function represented by 2N, which continues to curve upward as the value 
of N increases.  This property has important implications in terms of finding practical 
algorithms for real-world problems.  Even though the selection sort example 
demonstrates that quadratic algorithms have substantial performance problems for 
large values of N, algorithms whose complexity is O(2N ) are considerably less 
efficient.  As a general rule of thumb, computer scientists classify problems that can 
be solved using algorithms that run in polynomial time as tractable, in the sense that 
they are amenable to implementation on a computer.  Problems for which no 
polynomial-time algorithm exists are regarded as intractable. 
 

Unfortunately, there are many commercially important problems for which all 
known algorithms require exponential time.  One of these is the subset-sum problem, 
which consists of determining whether any subset of a set of N integers adds up to a 
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given target value.  Another is the traveling salesperson problem, which consists of 
finding the shortest route by which one can visit a set of N cities connected by some 
transportation system and then return to the starting point.  As far as anyone knows, 
it is not possible to solve either the subset-sum problem or the traveling salesman 
problem in polynomial time.  The best-known approaches all have exponential 
performance in the worst case and are equivalent in efficiency to generating all 
possible routings and comparing the cost.  At least for the moment, the optimal 
solution to each of these problems is to try every possibility, which requires 
exponential time.  On the other hand, no one has been able to prove conclusively that 
no polynomial-time algorithm for these problems exist.  There might be some clever 
algorithm that would make these problems tractable.  If so, many problems currently 
believed to be difficult would move into the tractable range as well. 
 

The question of whether problems like subset-sum or the traveling salesman 
problem can be solved in polynomial time is one of the most important open questions 
in computer science and indeed in mathematics.  This question is known as the 
P = NP problem and carries a million-dollar prize for its solution. 
 

 9.6 The Quicksort algorithm 
Even though the merge sort algorithm presented earlier in this chapter performs well 
in theory and has a worst-case complexity of O(N log N), it is not used much in 
practice.  Instead, most sorting programs in use today are based on an algorithm called 
Quicksort, developed by the British computer scientist C. A. R. (Tony) Hoare profiled 
on the first page of this chapter. 
 

Both Quicksort and merge sort employ a divide-and-conquer strategy.  In the 
merge sort algorithm, the original array is divided into two halves, each of which is 
sorted independently.  The resulting sorted arrays are then merged together to 
complete the sort operation for the entire array.  Suppose, however, that you took a 
different approach to dividing up the array.  What would happen if you started the 
process by making an initial pass through the array, changing the positions of the 
elements so that “small” values come at the beginning of the array and “large” values 
come at the end, for some definition of the words large and small? 
 

For example, suppose that the original array you wanted to sort was the following 
one, presented earlier in the discussion of merge sort: 
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Since half of these elements are larger than 50 and half are smaller, it might make 
sense to define small in this case as being less than 50 and large as being 50 or more.  
If you could then find a way to rearrange the elements so that all the small elements 
appear at the beginning and all the large ones at the end, you would wind up with an 
array that looks something like the following diagram, which shows one of many 
possible orderings in which the small and large elements appear on opposite sides of 
the boundary: 
 

 
 

When the elements are divided into parts in this fashion, all that remains to be done 
is to sort each of the parts, using a recursive call to the function that does the sorting.  
Since all the elements on the left side of the boundary line are smaller than all those 
on the right, the final result will be a completely sorted array: 
 

 
 

If you could always choose the optimal boundary between the small and large 
elements on each cycle, this algorithm would divide the array in half each time and 
end up demonstrating the same qualitative characteristics as merge sort.  In practice, 
the Quicksort algorithm selects some existing element in the array and uses that value 
to represent the dividing line between the small and large elements.  Although you 
will have a chance to explore more effective strategies in the exercises, one strategy 
is to pick the first element (56 in the original array) and use that to represent the 
boundary value.  When the array is reordered, the boundary will fall at a particular 
index position rather than between two positions, as follows: 
 

 
 

From this point, the recursive calls must sort the array between positions 0 and 3 and 
the array between positions 5 and 7, leaving index position 4 right where it is. 
 

As in merge sort, the simple case of the Quicksort algorithm is an array of size 0 
or 1, which must already be sorted.  The recursive part of the Quicksort algorithm 
consists of the following steps: 
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1. Choose an element to serve as the boundary between the small and large 
elements.  This element is called the pivot.  For the moment, the simplest strategy 
is to select the first element in the array. 

2. Rearrange the elements in the array so that large elements are moved toward the 
end of the array and small elements toward the beginning.  More formally, the 
goal of this step is to divide the elements around a boundary position so that all 
elements to the left of the boundary are less than the pivot and all elements to the 
right are greater than or possibly equal to the pivot.  This processing is called 
partitioning the array and is discussed in detail in the next section. 

3. Sort the elements in each of the partial arrays.  Because all elements to the left 
of the pivot boundary are strictly less than all those to the right, sorting each of 
the arrays must leave the entire array in sorted order.  Moreover, since the 
algorithm uses a divide-and-conquer strategy, these smaller arrays can be sorted 
using a recursive application of Quicksort. 

 
Partitioning the array 
In the partition step of the Quicksort algorithm, the goal is to rearrange the elements 
so that they are divided into three classes: those that are smaller than the pivot; the 
pivot element itself, which is situated at the boundary position; and those elements 
that are at least as large as the pivot.  The tricky part about partitioning is to rearrange 
the elements without using any extra storage, which is typically done by swapping 
pairs of elements. 
 

Tony Hoare’s original approach to partitioning is easy to explain in English.  As 
in the preceding section, the discussion that follows assumes that the pivot is stored 
in the initial element position.  Because the pivot value has already been selected 
when you start the partitioning phase of the algorithm, you can tell immediately 
whether a value is “small” or “large” by comparing it to the pivot.  Hoare’s 
partitioning algorithm then proceeds as follows: 
 
1. For the moment, ignore the pivot element at index position 0 and concentrate on 

the remaining elements.  Use two index values, lh and rh, to record the index 
positions of the first and last elements in the rest of the array, as shown: 

 

 
 

2. Move the rh index to the left until it either coincides with lh or points to an 
element containing a small value.  In this example, the value 30 is already a small 
value, so the rh index does not need to move. 
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3. Move the lh index to the right until it coincides with rh or points to an element 
containing a value that is larger than or equal to the pivot.  In this example, the 
lh index must move to the right until it points to an element larger than 56, which 
leads to the following configuration: 

 

 
 
4. If the lh and rh index values have not yet reached the same position, exchange 

the elements in the lh and rh positions, which leaves the array looking like this: 
 

 
 

5. Repeat steps 2 through 4 until the lh and rh positions coincide.  On the next 
pass, for example, the exchange operation in step 4 swaps the 19 and the 95.  As 
soon as that happens, the next execution of step 2 moves the rh index to the left, 
where it ends up matching the lh, as follows: 

 

 
 

6. Unless the chosen pivot just happened to be the smallest element in the entire 
array (and the code includes a special check for this case), the point at which the 
lh and rh index positions coincide will be the small value that is furthest to the 
right in the array.  The only remaining step is to exchange that value with the 
pivot element at the beginning of the array, like this: 

 

 
 

Note that this configuration meets the requirements of the partitioning step.  The 
pivot value is at the marked boundary position, with every element to the left 
being smaller and every element to the right being at least as large. 

 
An implementation of sort using the Quicksort algorithm is shown in Figure 9-10. 
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QuickSort.py 
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Analyzing the performance of Quicksort 
A head-to-head comparison of the actual running times for the merge sort and 
Quicksort algorithms appears in Figure 9-11.  As you can see, this implementation of 
Quicksort tends to run slightly faster than the implementation of merge sort given in 
Figure 9-4, which is one of the reasons why programmers use it more frequently in 
practice.  Moreover, the running times for both algorithms appear to grow in roughly 
the same way. 
 

The empirical results presented in Figure 9-11, however, obscure an important 
point.  As long as the Quicksort algorithm chooses a pivot that is close to the median 
value in the array, the partition step will divide the array into roughly equal parts.  If 
the pivot value does not actually fall near the middle of the range of values, one of 
the two partial arrays may be much larger than the other, which defeats the purpose 
of the divide-and-conquer strategy.  In an array with randomly chosen elements, 
Quicksort tends to perform well, with an average-case complexity of O(N log N).  In 
the worst case—which paradoxically consists of an array that is already sorted—the 
performance degenerates to O(N2).  Despite this inferior behavior in the worst case, 
Quicksort is so much faster in practice than most other algorithms that it has become 
the standard choice for general sorting procedures. 
 

There are several strategies you can use to increase the likelihood that the pivot is 
in fact close to the median value in the array.  One simple approach is to have the 
Quicksort implementation choose the pivot element at random.  Although it is still 
possible that the random process will choose a poor pivot value, it is unlikely that it 
would make the same mistake repeatedly at each level of the recursive decomposition.  
Moreover, there is no distribution of the original array that is always bad.  Given any 
input, choosing the pivot randomly ensures that the average-case performance for that 
array will be O(N log N).  Another possibility, which you can explore in more detail 
in exercise 11, is to select a few values, typically three or five, from the array and 
choose the median of those values as the pivot. 
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You do have to be somewhat careful as you try to improve the algorithm in this 
way.  Picking a good pivot improves performance, but also costs some time.  If the 
algorithm spends more time choosing the pivot than it gets back from making a good 
choice, you will end up slowing down the implementation rather than speeding it up. 
 

 9.7 A formal definition of big-O 
Because understanding big-O notation is critical to modern computer science, it is 
important to offer a more formal definition to help you understand why the intuitive 
model of big-O works and why the suggested simplifications of big-O formulas are 
in fact justified.  Doing so, however, inevitably requires some mathematics.  If 
mathematics scares you, try not to worry.  It is more important to understand what 
big-O means in practice than it is to follow all the steps presented in this section. 
 

In computer science, big-O notation is used to express the relationship between 
two functions, typically in an expression like this: 
 

t(N) = O(ƒ(N)) 
 

The formal meaning of this expression is that ƒ(N) is an approximation of t(N) with 
the following characteristic: it must be possible to find a constant N0 and a positive 
constant C so that for every value of N ≥ N0 the following condition holds: 
 

t(N) ≤ C  ´  ƒ(N) 
 

In other words, as long as N is sufficiently large, the function t(N) is always bounded 
by a constant multiple of the function ƒ(N). 
 

When it is used to express computational complexity, the function t(N) represents 
the actual running time of the algorithm, which is usually difficult to compute.  The 
function ƒ(N) is a much simpler formula that nonetheless provides a reasonable 
qualitative estimate of how the running time changes as a function of N, because the 
condition expressed in the mathematical definition of big-O ensures that the actual 
running time cannot grow faster than ƒ(N). 
 

To see how the formal definition applies, it is useful to return to the selection sort 
example.  Analyzing the loop structure of selection sort showed that the operations in 
the innermost loop were executed 
 

 
 

times and that the running time was presumably roughly proportional to this formula.  
When this complexity was expressed in terms of big-O notation, the constants and 
low-order terms were eliminated, leaving only the assertion that the execution time 
was O(N2), which is in fact an assertion that  
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  = O(N2)
 

 

To show that this expression is indeed true under the formal definition of big-O, 
all you need to do is come up with values for the constants C and N0 such that 
 

  ≤  C  ´  N2
 

 

for all values of N ≥ N0.  This example is unusually simple, since the inequality always 
holds if you set the constants C and N0 both to 1.  After all, as long as N is no smaller 
than 1, you know that N ≤ N2.  It must therefore be the case that 
 

  ≤  
 

 

But the right side of this inequality is simply N2, which means that 
 

  ≤  N2
 

 

for all values of N ≥ 1, as required by the definition. 
 

You can use a similar argument to show that any polynomial of degree k, which 
can be expressed in general terms as 
 

ak N k  +  ak–1 N k–1  +  ak–2 N k–2  +  .  .  .  +  a2 N2  +  a1 N   +  a0
 

 

is O(N k).  Once again, your goal is to find constants C and N0 such that 
 

ak N k  +  ak–1 N k–1  +  ak–2 N k–2  +  .  .  .  +  a2 N2  +  a1 N   +  a0   ≤  C  ´  N k 

 

for all values of N ≥ N0.  As in the preceding example, you can start by choosing 1 
for the value of the constant N0.  For all values of N ≥ 1, each successive power of N 
is at least as large as its predecessor, so 
 

N k  ≥  N k–1  ≥  N k–2  ≥  .  .  .  ≥  N  ≥  1 

 

This property in turn implies that 
 

ak N k  +  ak–1 N k–1  +  ak–2 N k–2  +  .  .  .  +  a1 N   +  a0 

≤  | ak | N k  +  | ak-1 | N k  +  | ak-2 | N k  +  .  .  .  +  | a1 | N k  +  | a0 | N k 

 

where the vertical bars surrounding the coefficients on the right side of the equation 
indicate absolute value.  By factoring out N k, you can simplify the right side of this 
inequality to 
 

( | ak |   +  | ak-1 |   +  | ak-2 |   +  .  .  .  +  | a1 |   +  | a0 | ) N k 
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Thus, if you define the constant C to be 
 

| ak |   +  | ak-1 |   +  | ak-2 |   +  .  .  .  +  | a1 |   +  | a0 |  

 

you have established that 
 

ak N k  +  ak–1 N k–1  +  ak–2 N k–2  +  .  .  .  +  a2 N2  +  a1 N   +  a0   ≤  C  ´  N k 

 
This result proves that the entire polynomial is O(N k). 
 

Although big-O notation is commonly used because it provides an upper bound 
on computational complexity, computer scientists also define two other measures that 
make it possible to express tighter bounds on computational complexity: 
 
• Big-omega notation uses the Greek letter W to define a lower bound on the 

complexity of a computation.  For example, the notation W(ƒ(N)) indicates that 
the running time is always at least C  ´  ƒ(N) for all N ≥ N0. 

• Big-theta notation uses the Greek letter Q to express a tight bound in which both 
the lower and upper bounds apply. 

 

 Summary 
The most valuable concept to take with you from this chapter is that algorithms for 
solving a problem can vary widely in their performance characteristics.  Choosing an 
algorithm that has better computational properties can often reduce the time required 
to solve a problem by many orders of magnitude.  This chapter illustrates those 
differences by implementing several algorithms for searching and sorting. 
 

Other important points in this chapter include: 
 
• The problem of searching consists of finding a particular element in an array. 

• The linear-search algorithm looks at each element in the array and therefore runs 
in time proportional to the size of the array. 

• Binary search offers much better performance than linear search but requires that 
the elements of the array are sorted. 

• Most algorithmic problems can be characterized by an integer N that represents 
the size of the problem.  For algorithms that operate on arrays, it is conventional 
to define the problem size as the number of elements. 

• The most useful qualitative measure of efficiency is computational complexity, 
which is defined as the relationship between problem size and algorithmic 
performance as the problem size becomes large. 
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• Big-O notation provides an intuitive way of expressing computational complexity 
because it allows you to highlight the most important aspects of the complexity 
relationship in the simplest possible form. 

• When you use big-O notation, you can simplify the formula by eliminating any 
term in the formula that becomes insignificant as N becomes large, along with any 
constant factors. 

• You can often predict the computational complexity of a program by looking at 
the nesting structure of the loops it contains. 

• Two useful measures of complexity are worst-case and average-case analysis.  
Average-case analysis is usually more difficult to conduct. 

• Divide-and-conquer strategies make it possible to reduce the complexity of sorting 
algorithms from O(N2) to O(N log N), which is a significant reduction. 

• Many common algorithms fall into one of several complexity classes that include 
the constant, logarithmic, linear, N log N, quadratic, cubic, and exponential 
classes.  Algorithms whose complexity class appears earlier in this list are more 
efficient than those that come later, at least when the problems being considered 
are sufficiently large. 

• Problems that can be solved in polynomial time, which is defined to be O(N k) for 
some constant value k,  are considered to be tractable.  Problems for which no 
polynomial-time algorithm exists are considered intractable because solving such 
problems requires prohibitive amounts of time, even for problems of relatively 
modest size. 

• Because it tends to perform extremely well in practice, most sorting programs are 
based on the Quicksort algorithm, developed by Tony Hoare, even though its 
worst-case complexity is O(N2). 

 

 Review questions 
1. Describe the algorithmic problems of searching and sorting in your own words.  
 
2. Estimate the number of comparisons that the binary-search algorithm would need 

to perform in order to find an element in an array of 1000 elements.  
 
3. The implementation of sort shown in Figure 9-2 exchanges the values at 

positions lh and rh even if these values happen to be the same.  If you change 
the program so that it checks to make sure lh and rh are different before making 
the exchange, it is likely to run more slowly than the original algorithm.  Why 
might this be so? 

 
4. Suppose that you are using the selection sort algorithm to sort an array of 500 

values and you find that it takes 60 milliseconds to complete the operation.  What 
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would you expect the running time to be if you used the same algorithm to sort 
an array of 1000 values on the same machine? 

 
5. What is the closed-form expression that computes the sum of the series 
 

N  +  N–1  +  N–2  +  . . .  +  3  +  2  +  1 
 
6. In your own words, define the concept of computational complexity. 
 
7. What are the two rules given in this chapter for simplifying big-O notation? 
 
8. Is it technically correct to say that selection sort runs in 
 

O ( )
 

 

time?  What, if anything, is wrong with expressing computational complexity in 
this form? 

 
9. Is it technically correct to say that selection sort runs in O(N3) time?  Again, 

what, if anything, is wrong with characterizing selection sort in this way? 
 
10. What is the computational complexity of the following function: 
 

def mystery1(n): 
    sum = 0 
    for i in range(n): 
        for j in range(i): 
            sum += i * j 
    return sum  

 
11. What is the computational complexity of this function: 
 

def mystery2(n): 
    sum = 0 
    for i in range(10): 
        for j in range(i): 
            sum += j * n 
    return sum 

 
12. Why is it customary to omit the base of the logarithm in big-O expressions such 

as O(N log N)? 
 
13. What is the difference between worst-case and average-case complexity?  In 

general, which of these measures is harder to compute? 
 
14. Explain the roles of the constants C and N0 in the formal definition of big-O. 
 
15. Why does the merge function run in linear time? 
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16. Explain each of the lines in the following loop from the merge function: 
 

for i in range(len(array)): 
    if p2 == n2 or (p1 < n1 and a1[p1] < a2[p2]): 
        array[i] = a1[p1] 
        p1 += 1 
    else: 
        array[i] = a2[p2] 
        p2 += 1 

 

17. What are the seven complexity classes identified in this chapter as the most 
common classes encountered in practice? 

 

18. What does the term polynomial algorithm mean? 
 
19. What is the difference between a tractable and an intractable problem? 
 
20. In Quicksort, what conditions must be true at the end of the partitioning step? 
 
21. What are the worst- and average-case complexities for Quicksort? 
 

 Exercises 
1. It is easy to write a recursive function 
 

def raise_to_power(x, n) 
 

that calculates xn for a nonnegative integer n by relying on the recursive insight 
that 

 

xn  =  x  ´  xn–1 
 

Such a strategy leads to an implementation that runs in linear time.  You can, 
however, adopt a recursive divide-and-conquer strategy that takes advantage of 
the fact that 

 

x2n  =  xn  ´  xn 
 

Use this fact to write a recursive version of raise_to_power that runs in 
O(log N) time. 

 
2. Write a program to produce a trace of the binary-search algorithm of the sort 

shown on page 302. 
 
3. When you convert English to Pig Latin, most words turn into something that 

sounds vaguely Latinate but different from conventional English.  There are, 
however, a few words whose Pig Latin equivalents just happen to be English 
words.  For example, the Pig Latin translation of trash is ashtray, and the 
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translation for express is expressway.  Use the PigLatin.py program from 
Chapter 7 together with the english library to write a program that displays a 
list of all such words. 

 
4. There are several other sorting algorithms that exhibit the O(N2) behavior of 

selection sort.  Of these, one of the most important is insertion sort, which 
operates as follows.  You go through each element in the array in turn, as with 
the selection sort algorithm.  At each step in the process, however, the goal is not 
to find the smallest remaining value and switch it into its correct position, but 
rather to ensure that the values considered so far are correctly ordered with 
respect to each other.  Although these values may shift as more elements are 
processed, they form an ordered sequence in and of themselves. 

 

For example, if you consider again the data used in the sorting examples from 
this chapter, the first cycle of the insertion sort algorithm requires no work, 
because an array of one element is always sorted: 

 

 
 

On the next cycle, you need to put 25 in the correct position with respect to the 
elements you have already seen, which means that you need to exchange the 56 
and 25 to reach the following configuration: 

 

 
 

On the third cycle, you need to find where the value 37 should go.  To do so, you 
must move backward through the earlier elements—which you know are in order 
with respect to each other—looking for the position where 37 belongs.  As you 
go, you need to shift each of the larger elements one position to the right, which 
eventually makes room for the value you’re trying to insert.  In this case, the 56 
gets shifted by one position, and the 37 winds up in position 1.  Thus, the 
configuration after the third cycle looks like this: 

 

 
 

After each cycle, the initial portion of the array is always sorted, which implies 
that cycling through all the positions in this way will sort the entire array. 
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The insertion sort algorithm is important in practice because it runs in linear 
time if the array is already more or less in the correct order.  It therefore makes 
sense to use insertion sort to restore order to a large array in which only a few 
elements are out of sequence. 

 

Write an implementation of sort that uses the insertion sort algorithm.  
Construct an informal argument to show that the worst-case behavior of insertion 
sort is O(N2). 

 
5. Write a function that keeps track of the elapsed time as it executes the sort 

procedure on a randomly chosen array.  Use that function to write a program that 
produces a table of the observed running times for a predefined set of sizes, as 
shown in the following sample run: 

 

 
 

The best way to measure elapsed system time for programs of this sort is to 
call the standard function time.perf_counter, which returns the most accurate 
time value available on the computer expressed in seconds.  The time base for 
the perf_counter function is not defined, but you can nonetheless measure 
elapsed time using the following code pattern: 

 
start = time.perf_counter() 
. . . Perform some calculation . . . 
elapsed = time.perf_counter() - start 

 
Unfortunately, calculating the time requirements for a program that runs 

quickly requires some subtlety because there is no guarantee that the system 
clock unit is precise enough to measure elapsed time accurately.  For example, if 
you used this strategy to time the process of sorting 10 integers, it might well 
turn out that the value of elapsed at the end of the code fragment is 0.  The 
reason is that the processing unit on most machines can execute many 
instructions in the space of a single clock tick—almost certainly enough to get 
the entire sorting process done for an array of 10 elements.  Because the system’s 
internal clock may not tick in the interim, the two values returned by 
time.perf_counter are likely to be the same. 

 

The best way to get around this problem is to repeat the calculation many 
times between the two calls to time.perf_counter.  For example, if you want 
to determine how long it takes to sort 10 numbers, you can perform the 
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sort-10-numbers experiment 1000 times in a row and then divide the total elapsed 
time by 1000.  This strategy gives you a timing measurement that is much more 
accurate. 

 
6. Write a function elapsed_time that generalizes the computation from the 

preceding exercise by returning how many seconds are required to call a 
client-supplied function.  The elapsed_time function takes two parameters.  
The first is a callback function that implements the operation whose running time 
you want to measure.  The second argument, which is optional and defaults to 1, 
indicates how many repetitions of the function call should occur between the 
time measurements. 

 
7. Suppose you know that all the values in an integer array fall into the range 0 to 

9999.  Show that it is possible to write a O(N) algorithm to sort arrays with this 
restriction.  Implement your algorithm and evaluate its performance by taking 
empirical measurements using the strategy outlined in exercise 8.  Explain why 
the algorithm is less efficient than selection sort for small values of N. 

 
8. Change the implementation of the Quicksort algorithm so that, instead of picking 

the first element in the array as the pivot, the partition function chooses the 
median of the first, middle, and last elements. 

 
9. Although O(N log N) algorithms are more efficient than O(N2) algorithms if you 

are sorting a large array, the simplicity of quadratic algorithms like selection sort 
often means that they perform better for small values of N.  This fact raises the 
possibility of developing a strategy that combines the two algorithms, using 
Quicksort for large arrays but selection sort whenever the size of the arrays 
becomes less than some threshold called the crossover point.  Approaches that 
combine two different algorithms to exploit the best features of each are called 
hybrid strategies. 

 

Reimplement sort using a hybrid of the Quicksort and selection sort 
strategies.  Experiment with different values of the crossover point and determine 
what value gives the best performance.  The optimal value of the crossover point 
depends on the specific timing characteristics of your computer and will change 
from system to system. 

 
10. Another interesting hybrid strategy for the sorting problem is to start with a 

recursive implementation of Quicksort that simply returns when the size of the 
array falls below a certain threshold.  When this function returns, the array is not 
sorted, but all the elements are relatively close to their final positions.  At this 
point, you can use the insertion sort algorithm presented in exercise 7 on the 
entire array to fix any remaining problems.  Because insertion sort runs in linear 
time on arrays that are mostly sorted, this two-step process may run more quickly 
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than either algorithm alone.  Write an implementation of the sort function that 
uses this hybrid approach. 

 
11. Suppose you have two functions, ƒ and g, for which ƒ(N) is less than g(N) for 

all values of N.  Use the formal definition of big-O to prove that 
 

15ƒ(N)  +  6g(N) 
 

is O(g(N)). 
 
12. Use the formal definition of big-O to prove that N2 is O(2N). 
 
13. Exercise 1 shows that it is possible to compute xn in O(log N) time.  This fact in 

turn makes it possible to write an implementation of the function fib(n) that 
also runs in O(log N) time, which is much faster than the traditional iterative 
version. 

 

To do so, you need to rely on the somewhat surprising fact that the Fibonacci 
function is closely related to a value called the golden ratio, which has been 
known since the days of Greek mathematics.  The golden ratio, which is usually 
designated by the Greek letter phi (j ), is defined to be the value that satisfies the 
equation 

 

j2  –  j  –  1  =  0 
 

Because this is a quadratic equation, it actually has two roots.  If you apply the 
quadratic formula, you will discover that these roots are 

 

j   =  
 
 

   =  
 

In 1718, the French mathematician Abraham de Moivre discovered that the 
n th Fibonacci number can be represented in closed form as 

 

 
 

Moreover, because n is always very small, the formula can be simplified to 
 

 
 

rounded to the nearest integer. 
 

Use this formula and the raise_to_power function from exercise 1 to write 
an entirely recursive implementation of fib(n) that runs in O(log N) time. 
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14. If you’re ready for a real algorithmic challenge, write the function 
 

def find_majority_element(array) 
 

that takes an array of nonnegative integers and returns the majority element, 
which is defined to be a value that occurs in a majority (at least 50 percent plus 
one) of the element positions.  If no majority element exists, the function should 
return –1.  Your function must also meet the following conditions: 

 

• It must run in O(N) time. 
• It must use O(1) additional space.  In other words, it may use individual 

temporary variables but may not allocate any additional array storage.  This 
condition also rules out recursive solutions, because the space required for 
stack frames grows with the depth of the recursion. 

• It must not change any of the values in the array. 
 
15. If you enjoyed the previous problem, here’s an even more challenging one that 

was at one time an interview question at Microsoft.  Suppose that you have an 
array of N elements, in which each element has a value in the range 1 to N–1, 
inclusive.  Since there are N elements in the array and only N–1 possible values 
to store in each slot, there must be at least one value that is duplicated in the 
array.  There may, of course, be many duplicated values, but you know that there 
must be at least one by virtue of what mathematicians call the pigeonhole 
principle: if you have more items to put into a set of pigeonholes than the number 
of pigeonholes, there must be some pigeonhole that ends up with more than one 
item. 

 

Your task in this problem is to write a function 
 

def find_duplicate(array) 
 

that takes an array whose elements are constrained to be in the 1 to N–1 range 
and returns one of the duplicated elements.  As in the previous exercise, your 
solution must meet the following conditions: 

 

• It must run in O(N) time. 
• It must use O(1) additional space. 
• It must not change any of the values in the array. 

 



 
 

C H A P T E R  1 0  
Classes and Objects 

 

I have always tried to identify and focus in on what is essential 
and yields unquestionable benefits. For example, the inclusion 
of a coherent and consistent scheme of data type declarations in 
a programming language I consider essential. 

—Niklaus Wirth, Turing Award Lecture, 1984 
 
 
 
 
 

 
Niklaus Wirth (1934–) 

 

Swiss computer scientist Niklaus Wirth designed and engineered several early programming languages 
including Euler, PL360, Algol-W, and Pascal, which became the standard language for introductory 
computer science throughout the 1970s and 1980s.  Although Grace Hopper’s COBOL language described 
on page 35 included support for data records, Pascal was the first programming language to integrate the 
record concept into the type system in a consistent way.  In 1975, Wirth published an influential book entitled 
Algorithms + Data Structures = Programs, which offers an eloquent defense of the idea that data structures 
are as fundamental to programming as algorithms.  Niklaus Wirth received the ACM Turing Award in 1984.
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When you learned about lists in Chapter 8, you took your first steps toward 
understanding an extremely important idea in computer programming: the use of 
compound data structures to represent collections of information.  When you use a 
list in the context of a program, you are able to combine an arbitrarily large number 
of data values into a single structure that has conceptual integrity as a whole.  If you 
need to do so, you can select particular elements of the list and manipulate them 
individually.  But you can also treat the list as a unit and manipulate it all at once. 
 

The ability to take individual values and organize them into coherent units is an 
essential feature of modern programming.  Functions allow you to unify many 
independent operations under a single name.  Compound data structures—of which 
lists are only one example—offer the same facility in the data domain.  In each case, 
being able to aggregate the tiny pieces of a program into a single, higher-level 
structure provides both conceptual simplification and a significant increase in your 
power to express ideas.  The power of unification is hardly a recent discovery; it has 
given rise to social movements and to nations, as reflected in the labor anthem that 
proclaims “the union makes us strong” and the motto “E Pluribus Unum”—“out of 
many, one”—on the Great Seal of the United States. 
 

Although lists are a powerful tool when you need to model real-world data that 
can be represented as a sequence of ordered elements, it is also important to be able 
to combine unordered data values into a single unit.  This chapter describes how 
classes and objects enable Python programmers to use the object-oriented paradigm, 
which is defined by two main principles.  The first is encapsulation, which is the 
technique of combining data values and methods into a single structure.  The second 
is inheritance, which allows programmers to define hierarchies in which classes 
automatically acquire behavior from their ancestors in the hierarchy.  Encapsulation 
is discussed in this chapter, and inheritance is covered in Chapter 13 after you have 
had more of a chance to work with objects. 
 

 10.1 Records and tuples 
As you learned in Chapter 8, Python’s lists are an extension of an earlier, more 
primitive concept called arrays.  In much the same way, Python’s implementation of 
classes and objects grows out of an older programming concept called a record, which 
is any data structure that combines several distinct values into an integrated whole.  
In this section, you will learn how to create Python objects that model traditional 
records so that you have a foundation from which to build a more comprehensive 
understanding of how objects in Python work. 
 

The term record has its origin in the world before computing, where it refers to a 
collection of data values pertaining to a single entity.  For example, census records—
which were kept on paper until Hermann Hollerith invented punch cards for the 1880 
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census—collects the information pertaining to a single individual.  Each census 
record presumably includes for the person’s name, age, address, occupation, and any 
other data collected by the census bureau.  Loan records for a bank would presumably 
include information such as the date of the loan, the name of the borrower, the amount 
of the loan, and the interest rate.   Employee records for a firm presumably include 
information like the employee’s name, job title, and salary.  The individual 
components of a record are generically called fields. 
 
A simple example of records 
The concepts of records and fields are best illustrated by example. At the rather small 
firm of Scrooge and Marley that appears in A Christmas Carol by Charles Dickens, 
the employee ledger might look something like this: 
 

 
 
The preprinted top line in the ledger provides names for the three data fields: one for 
the employee’s name, one for the job title, and one for the weekly salary in shillings.  
Each subsequent line represents a record for a single employee, giving the value of 
these three fields.  The entries in the paper copy of the ledger book show that Scrooge 
and Marley has two employees: a founder named Ebenezer Scrooge who earns 1000 
shillings per week and a clerk named Bob Cratchit struggling to make ends meet on 
the pitiful salary of 15 shillings a week. 
 
Representing records as tuples 
The simplest way to represent a record in Python is to use a built-in data structure 
called a tuple, which is used in both computer science and mathematics to refer to an 
ordered, immutable collection of elements.  In Python, you create a tuple by enclosing 
its elements in parentheses.  For example, the assignment statement 
 

employee = ("Bob Cratchit", "clerk", 15) 
 
creates a tuple with three elements and assigns that tuple to the variable employee. 
 

In its internal structure, a tuple is similar to a list.  If, for example, you use square 
brackets instead of parentheses to define this variable, the box diagram for the 
variable has exactly the same form: 
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You can also apply many of the same operators to these two types.  Both tuples and 
lists are sequences and therefore implement the operations for sequences described in 
Chapter 8.  Tuples, however, differ from lists in two critical ways: 
 
1. Tuples are immutable.  Although you can change the elements of a list through 

direct assignment or by calling any of the methods that manipulate their 
elements, tuples are immutable.  You cannot, for example, assign new values to 
the elements of a tuple or add values to the end using the += operator.  Once you 
have created a tuple, its elements remain unchanged. 

2. Tuples are used primarily to represent records rather than sequences of values.  
In Python, lists are used primarily to represent ordered sequences of objects, all 
of which have the same type.  Tuples, by contrast, represent collections of values 
in which order is often not important and in which the types of the individual 
elements can vary. 

 
The easiest way to understand the functional similarity of tuples and records is to 

think about the etymology of tuple, which comes from the suffix of more specific 
words like quintuple, sextuple, septuple, octuple, and so on.  If you need to represent 
a data structure that contains a particular number of elements—which might well be 
a smaller number for which the English word does not end with the suffix tuple, such 
as pair, triple, or quadruple—using a tuple probably makes sense.  By contrast, 
programmers use lists when they don’t know how many elements a list contains or 
when instances of that list can differ in their number of elements. 
 

The primary advantage of representing a record as a Python tuple is that doing so 
eliminates the overhead of defining a new class.  At the same time, representing 
records as tuples has several disadvantages that often make the class-based strategy 
worth the additional cost.  If you need to change the fields of a record, the fact that 
tuples are immutable makes it necessary to choose a different strategy.  In addition, 
the fact that elements of a tuple are identified using an index number rather than a 
name can make programs that use a tuple-based strategy more difficult to understand. 
 

As it happens, Python programmers rarely refer to the elements of a tuple by their 
index number because the language offers a convenient syntactic form called 
destructuring assignment for splitting a tuple into its component elements.  If, for 
example, the variable employee contains the tuple defined on page 339, destructuring 
assignment allows you to extract the individual fields like this: 
 

name, title, salary = employee 
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When Python notices that the left side of the assignment consists of three variables 
and the right side is a tuple of length 3, it automatically unpacks the component 
values, assigning the first element of the tuple to the variable name, the second 
element to the variable title, and the third element to the variable salary.  The fact 
that these elements have numeric indices is no longer explicit in the program but is 
simply an implementation detail. 
 

Because tuples are typically used to model structures that appear in the real world 
as pairs, triples, quadruples, and so on, there are not many applications in which it 
makes sense to have a tuple with just one element or no elements at all.  On those rare 
occasions when you want to create a tuple containing a single value, Python requires 
a comma after that value to differentiate a tuple with one element from a 
parenthesized expression.  For example, to create a tuple containing the number 42 
as its only element, Python requires you to write 
 

(42,) 
 

If you leave out the comma, Python interprets (42) as a parenthesized expression. 
 
Representing records as objects 
A more sophisticated strategy for representing the employee records for Scrooge and 
Marley is to encode the information for each record as an object containing the 
necessary fields, which are more often called attributes in the context of a Python 
object.  The name and title attributes are presumably strings, and the salary attribute 
is a number.  If you draw each of the records as a box containing interior boxes for 
each attribute, the information for Scrooge and Marley looks like this: 
 

 
 

As you know from the discussion of classes and objects in Chapter 4, objects in 
Python are instances of a class, which provides a template for all objects that belong 
to that class.  The GRect class in the Portable Graphics Library, for example, acts as 
a template for all GRect objects.  Thus, while you can display many distinct GRect 
objects on the graphics window, there is only one GRect class.  In much the same 
way, each of the objects representing an employee of Scrooge and Marley is an 
instance of an Employee class that defines the general structure shared by all 
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employees.  The Employee class therefore acts as a fill-in-the-blanks template that 
looks like this: 
 

 
 
Defining an empty class template 
Python’s model for defining classes is sufficiently complex that it makes sense to 
present it in two stages.  To make the general process of creating new objects clear, 
the next few paragraphs show how you can define a class without specifying any of 
its attributes.  And although the rest of this chapter will show you how to add more 
sophisticated behavior to a class, defining an empty class with no internal structure is 
not without its uses.  The GState class introduced in Chapter 6 works in exactly this 
way. 
 

In this simplified model, the class definition for Employee looks like this: 
 

class Employee: 
    """Fill in the details later""" 

 
Python’s syntactic rules require that the body of a class contain at least one line, but 
the docstring comment is sufficient for this purpose, although you can also use the 
keyword pass for this purpose. 
 

Defining a new class automatically creates a function that acts as a constructor for 
that class.  For example, the statement 
 

clerk = Employee() 
 
creates a new instance of the Employee class.  Given the current empty definition of 
Employee, that instance contains no data but instead serves as a blank slate: 
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As the diagram makes clear, the value stored in clerk is not the object itself but 
is instead a reference to the blank-slate object.  In Python, having a reference to an 
object makes it possible to create new attributes within it.  That fact makes it possible 
for the client to fill in the values of the missing attributes. 
 

Properties within an object are indicated by name using the syntax 
 

object.name 
 
in which the object reference and the name of the attribute are separated by a period, 
which in programming contexts is more often called a dot.  Because attributes are 
assignable, you can fill in the details for Bob Cratchit like this: 
 

clerk.name = "Bob Cratchit" 
clerk.title = "clerk" 
clerk.salary = 15 

 
Those statements create the necessary attributes and assign values to them so that the 
diagram looks like this: 
 

 
 
Defining a constructor 
The point of the example in the preceding section is to introduce the notions of object 
references and dot selection so that you are in a better position to understand how to 
initialize the attributes of an Employee object from the implementation side rather 
than as a client operation.  As noted in Chapter 4, functions that create new instances 
of a class are called constructors.  The division of responsibility between client and 
implementation becomes much clearer if the Employee class defines a constructor 
that takes the values of name, title, and salary and uses those to create a fully 
initialized object in which those values are stored in the appropriate internal attributes. 
 

To create a constructor in Python, you need to define a special method called 
__init__ inside the body of the class.  The header for the __init__ method has the 
following form: 
 

def __init__(self, parameters): 
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where parameters is a list of the parameter names passed to the constructor.  The first 
parameter to __init__ is conventionally named self and contains a reference to the 
same blank-slate object described in the preceding section.  The body of the 
constructor typically assigns the parameter values to the corresponding attributes in 
the object, using self as a reference to the object state. 
 

For example, the following code defines an enhanced version of the Employee 
class that includes the constructor: 
 

class Employee: 
    """This class represents a simple employee object""" 

 

    def __init__(self, name, title, salary): 
        self.name = name 
        self.title = title 
        self.salary = salary 

 
With this definition, the client of the Employee class can create the entry for Bob 
Cratchit like this: 
 

clerk = Employee("Bob Cratchit", "clerk", 15) 
 

If you look only at the increased complexity of the Employee class, this change 
may not seem like much of an improvement.  Arguably, the code in the preceding 
section is easier to understand, if for no other reason than it does not require knowing 
anything about the __init__ method or the self parameter.  Those details, however, 
exist only on the implementation side and are not exposed to clients.  On the client 
side, creating and initializing a new Employee object now takes a single line instead 
of four.  The savings is even more evident if, for example, you want to create a list 
containing the employee records for everyone at Scrooge and Marley, which requires 
only the following code: 
 

SCROOGE_AND_MARLEY = [ 
    Employee("Ebenezer Scrooge", "founder", 1000), 
    Employee("Bob Cratchit", "clerk", 15) 
] 

 
Getters and setters 
Although it is possible for clients to use dot selection to refer directly to attributes 
within an object, the conventions of modern object-oriented programming favor a 
different approach that seeks to maintain the integrity of the object.  If a client needs 
access to a particular attribute, the class defines a method that returns that value.  Such 
methods are called getters.  In the Portable Graphics Library, for example, you don’t 
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get the x coordinate of a GRect stored in the variable box by using a selection 
expression like box.x but instead by calling box.get_x(). 
 

It is easy to imagine that clients of the Employee class would need access to each 
of the attributes, which means that the Employee class should define the getter 
methods get_name, get_title, and get_salary.  Like the constructor, these 
methods take a parameter named self, which Python supplies automatically 
whenever you make a method call using the receiver syntax.  The definition of the 
get_name method, for example, looks like this: 
 

def get_name(self): 
    """Returns the name of the employee""" 
    return self.name 

 
In addition to getters, classes that define mutable types typically include methods 

called setters that set individual attributes. Setters are less common than getters, and 
it is important to think carefully about whether you need a setter for an individual 
attribute.  In the case of the Employee class, for example, it is more likely that clients 
would want to be able to change an employee’s salary or job title than the employee’s 
name, which is easier to think about as a permanent part of the employee’s record.  
The employee management application can implement name changes, on the 
infrequent occasions when they occur, by removing the record for the old name and 
replacing it with a new one.  This argument suggests that the Employee class should 
export the methods set_title and set_salary, but not set_name.  The set_salary 
method has the following form: 
 

def set_salary(self, salary): 
    """Resets the salary of this employee""" 
    self.salary = salary 

 
Converting objects to strings 
In addition to the constructor and any methods necessary to define the behavior of a 
class, most Python classes will also define a special method called __str__, which 
specifies how to convert the object to a string.  Defining this method makes it possible 
to see the value of an object and is invaluable for debugging.  Figure 10-1 shows an 
implementation of the Employee class that includes a __str__ method, along with 
the constructors, getters, and setters defined earlier. 
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The employee module in Figure 10-1 also includes a test program that uses the 
roster of employees at Scrooge and Marley to test the __init__ constructor and the 
__str__ method.  Running employee as a program produces the following output: 
 

 
 
A more complete test program would also test the implementation of the getters and 
setters, but that program listing would no longer fit on a single page. 
 

 10.2 Representing points 
One of the advantages of using records—no matter whether they are implemented as 
tuples or as objects—is that doing so makes it possible to combine several related 
pieces of information into a composite value that can be manipulated as a unit.  An 
important practical application of this principle arises when you need to represent a 
point in two-dimensional space, such as the drawing surface of the graphics window.  
So far, the graphical programs in this text have kept track of independent x and y 
coordinates, which is sufficient for many applications.  As you move on to more 
complex graphical programs, however, it is useful to store the x and y values in an 
integrated unit called a point. 
 

Combining the x and y coordinates into a single data structure makes it possible to 
work with points as composite values.  You can assign a point to a variable, create an 
array of points, pass a point as an argument to a function, and return a point as a result.  
This last example—returning a point as the result of a function call—adds a new 
capability that would otherwise be difficult to achieve.  A Python function is allowed 
to return only a single value, so there is no way for a function to return the x and y 
coordinates independently.  A function can, however, return a point, from which the 
caller can extract the x and y coordinates, if necessary. 
 
Representing points as tuples 
Although the Python implementation of the pgl module defines points using a class 
called GPoint to maintain consistency with other implementations of the graphics 
library other Python packages (including the one used to implement the pgl module) 
implement a point in two-dimensional space as a tuple with two elements representing 
the x and y coordinates.  Thus, the tuple (0,0) represents the origin of the graphics 
window and the tuple (1,4) represents the point whose x coordinate is 1 and whose 
y coordinate is 4. 
 

From the client’s point of view, it is convenient to represent points as tuples 
because the Python syntax precisely matches the conventional mathematical form.  
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And although it might initially seem odd to select the individual coordinates of a point 
using the index numbers 0 and 1 instead of the names x and y, it is not at all hard to 
get used to that convention, particularly if you use destructuring assignment to 
separate the component values. 
 
Defining points as a class 
The Portable Graphics Library defines a class called GPoint that encapsulates an x-y 
coordinate pair.  The definition of this class appears in Figure 10-2.  Like the 
definition of the Employee class in Figure 10-1, the implementation of the GPoint 
class defines a constructor, getter methods for the x and y coordinates, and a method 
to convert a GPoint to a string.  The code also illustrates a technique that is useful in 
maintaining an effective separation between the implementation and its clients.  The 
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names of the attributes that hold the x and y coordinates are not called x and y but 
instead have the names _x and _y, which begin with an underscore.  Python uses the 
leading-underscore convention to mark variables and methods that belong to the 
implementation and are considered off-limits to clients.  Although Python cannot 
prevent clients from referring directly to these variables using the attribute names _x 
and _y, the underscore warns clients that any such access comes at their own risk.  
The implementer is free to remove or change the names of these variables, even 
though doing so would likely break client programs that ignored the warning signs 
these underscores represent. 
 

The GPoint class is often useful in graphical programs because it allows a 
program to treat a coordinate pair as a single object.  The YarnPattern.py program 
in Figure 10-3, for example, creates beautiful patterns using only GLine objects.  
Each of the GLine objects connects two points stored in a list using a process that you 
can easily carry out in the real world.  Conceptually, the process begins by arranging 
pegs around the perimeter of the window so that they are evenly spaced along all four 
edges. 
 

To get a sense of how this program operates, imagine that you start with a small 
graphics window in which the pegs are numbered clockwise from the upper left:  
 

 
 
From here, you create a figure by winding a single piece of yarn through the pegs, 
starting at peg 0 and then moving ahead DELTA spaces on each cycle.  For example, 
if DELTA is 11, the yarn goes from peg 0 to peg 11, then from peg 11 to peg 22, and 
then (counting past the beginning) from peg 22 to peg 5, as follows: 
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YarnPattern-py.png 
 



 10.2 Representing points     351 

 

The process continues until the yarn returns to peg 0, creating the following pattern: 
 

 
 

The program in Figure 10-3 begins by calling create_pegs to create the array of 
points around the perimeter.  The code creates pegs from left to right across the top, 
from top to bottom along the right side, from right to left across the bottom, and finally 
from bottom to top along the left side.  When create_pegs returns, the 
YarnPattern.py program starts at peg 0 and then advances DELTA steps on each 
cycle until the index loops back to 0.  On each cycle, the implementation creates a 
GLine object to connect the current point in the array with the previous one. 
 

Figure 10-4 shows a larger example of the output produced by YarnPattern.py 
that uses the values of N_ACROSS and N_DOWN shown in the program listing. 
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 10.3 Rational numbers 
Although the GPoint class from section 10.2 illustrates the basic mechanics used to 
define a new class, developing a solid understanding of the topic requires you to 
consider more sophisticated examples.  This section walks you through the design of 
a class to represent rational numbers, which are those numbers that can be 
represented as the quotient of two integers. 
 

In some respects, rational numbers are similar in concept to the float class in 
Python.  Both rational numbers and floating-point numbers can represent fractional 
values, such as 1.5, which is the rational number 3/2.  The difference is that rational 
numbers are exact, while the built-in implementation of floating-point numbers relies 
on approximations limited by the hardware precision. 
 

To get a sense of why this distinction might be important, consider the arithmetic 
problem of adding together the following fractions: 
 

 
 

Basic arithmetic makes it clear that the answer is 1, but Python’s floating-point 
arithmetic gives a different result, as the following IDLE session shows: 
 

 
 

The problem is that the memory cells used to store numbers have a limited storage 
capacity, which in turn restricts the precision they can offer.  Within the limits of 
Python’s standard arithmetic, the sum of one-half plus one-third plus one-sixth is 
closer to 0.9999999999999999 than it is to 1.0.  By contrast, rational numbers are not 
subject to this type of rounding error because no approximations are involved.  
What’s more, rational numbers obey well-defined arithmetic rules, which are 
summarized in Figure 10-5.  Since Python does not include rational numbers among 
its predefined types, you have to implement Rational as a new class. 
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A general strategy for defining new classes 
When you work in object-oriented languages, designing new classes is the most 
important skill you need to master.  As with much of programming, designing a new 
class is as much an art as it is a science.  Designing a class requires a strong sense of 
aesthetics and sensitivity to the needs of any clients who will use that class as a tool.  
Experience and practice are the best teachers, but following a general design 
framework can help get you started along this path. 
 

From my own experience, I’ve often found the following approach helpful: 
 
1. Think generally about how clients are likely to use the class.  From the very 

beginning of the process, it is essential to remember that library classes are 
designed to meet the needs of clients and not for the convenience of the 
implementer.  In a professional context, the most effective way to ensure that a 
new class meets those needs is to involve clients in the design process.  At a 
minimum, however, you need to put yourself in the client role as you sketch the 
outlines of the class design. 

2. Determine what information belongs in the private state of each object.  
Although the private data maintained in the attributes of the object is 
conceptually part of the implementation, it simplifies the later design phases if 
you have an intuitive sense of what information objects of this class contain. 

3. Determine the parameters needed for the constructor.  Whenever a client creates 
a new instance of your class, the first step in the process is making a call to the 
constructor.  As part of the design phase, you need to decide what information 
the client will want to supply at the time the object is created, which in turn 
determines what parameters the constructor will need.  In the case of the GPoint 
class, the client must supply the x and y coordinates. 

4. Enumerate the operations that will become the public methods of the class.  In 
this phase, the goal is to define the names and parameters for the methods 
exported by the class, thereby adding specificity to the general outline you 
developed at the beginning of the process. 

5. Code and test the implementation.  Once you have completed the overall design, 
you need to implement it.  Writing the actual code is not only essential to having 
a working program but also offers validation for the design.  As you write the 
implementation, it is sometimes necessary to revisit the interface design if, for 
example, you discover that a particular feature is difficult to implement at an 
acceptable level of efficiency.  As the implementer, you also have a responsibility 
to test your implementation to ensure that the class delivers the functionality it 
claims. 

 
The sections that follow carry out these steps for the Rational class. 
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Adopting the client perspective 
As a first step toward the design of the Rational class, you need to think about what 
features your clients are likely to need.  In a large company, you might have various 
implementation teams that need to use rational numbers and could give you a good 
sense of what operations should be part of that class.  In that setting, it would be useful 
to work together with those clients to agree on a set of design goals. 
 

Since this example is a textbook scenario, however, it isn’t possible for you to 
schedule meetings with prospective clients.  The primary purpose of the example is 
to illustrate the structure of class definitions in Python.  Given these limitations and 
the need to manage the complexity of the example, it makes sense to implement only 
the arithmetic operations defined in Figure 10-5. 
 
Specifying the private state of the Rational class 
For the Rational class, the private state is easy to specify.  A rational number is 
defined as the quotient of two integers.  Each rational object must therefore keep track 
of these two values.  In the implementation, these variables are called _num and _den.  
The names are abbreviations of the mathematical terms numerator and denominator 
used to refer to the upper and lower parts of a fraction.  The underscore at the 
beginning of these names indicates that these variables are the attribute of the 
implementation and should not be examined or changed by clients. 
 
Defining the Rational constructor 
Given that a rational number represents the quotient of two integers, the constructor 
will presumably take two numbers representing the components of the fraction.  
Defining the constructor in this way makes it possible, for example, to define the 
rational number one-third by calling Rational(1, 3).   To make it easier to work 
with integers—which are just rational numbers whose denominator is 1—it is useful 
to allow clients to call the constructor with a single integer argument, letting Python 
supply the default value of 1 for the denominator.  Given this design, the header line 
for the constructor will look like this: 
 

def __init__(self, num, den=1): 
 

To help clients discover errors in the use of the Rational class, the constructor 
should check that the supplied parameters correspond to a legal rational number.  For 
example, the constructor should check that that den is not 0, because division by zero 
is not a legal operation.  The code can check that this condition holds by making the 
following test: 
 

if den == 0: 
    raise ValueError("Illegal denominator value") 
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If the client calls the constructor with den equal to 0, the constructor responds by 
raising the built-in ValueError exception with an explanatory string. 
 

Beyond checking for zero in the denominator, there are other restrictions that you 
might want to impose on the values of the parameters num and den to ensure that the 
implementation operates correctly.  The code becomes much simpler if the 
constructor can guarantee that every rational number has a consistent, unique 
representation, which is not true if the client can supply any values for num and den. 
The rational number one-third, for example, can be written as a fraction in any of the 
following ways: 
 

 
 
Because these fractions all represent the same rational number, it is appropriate for 
them to have the same internal representation.  Mathematicians achieve this goal by 
insisting on the following rules: 
 
• The denominator is always positive, which means that the sign of the value is 

stored with the numerator. 

• The rational number 0 is always represented as the fraction 0/1. 

• The fraction is always expressed in lowest terms, which means that both the 
numerator and the denominator are divided by their greatest common divisor. 

 
Enumerating the methods for the Rational class 
Along with the constructor, the Rational class must define additional methods that 
implement the behavior of the class.  As with the Employee and GPoint classes 
defined earlier in the chapter, it is good practice to define a __str__ method that 
converts a Rational object to a string.  More importantly, the Rational class must 
define methods for the four arithmetic operators.  For the moment, the simplest 
strategy is to define methods called add, sub, mul, and div that perform the necessary 
computations.  Each of these methods takes two parameters.  The self parameter that 
appears first in the parameter list of every method holds a reference to the Rational 
number that is implementing the operator.  The second parameter, which is called r 
in the implementation, contains a reference to the other Rational value involved in 
the computation. 
 
Implementing the Rational class 
Figure 10-6 shows the code for a rational module that implements a simple version 
of the Rational class.  As suggested in the preceding section, the class includes a 
constructor, an implementation of the __str__ method that converts a Rational 
object to a string, and the code for the methods that implement the operations. 
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rational-py.pn 
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The code for the arithmetic operators follows directly from the mathematical 
definition.  The implementation of the add method, for example, looks like this: 
 

def add(self, r): 
    return Rational(self._num * r._den + self._den * r._num, 
                    self._den * r._den) 

 
The definition of the add method creates a new Rational object by calling the 
constructor with the values required by the addition formula: 
 

 
 

In this method, the values a and b refer to the numerator and denominator of the 
current Rational object, which are available in the attributes _num and _den inside 
the self object.  The values c and d refer to the corresponding components of the 
Rational object passed as the variable r. 
 

The return statement in the add method calls the Rational constructor with the 
computed values of the numerator and denominator for the result.  Calling the 
constructor ensures that the result is properly reduced to lowest terms and meets the 
other requirements maintained inside each Rational object. 
 

 10.4 Operator overloading 
In the implementation of the Rational class shown in Figure 10-6, the arithmetic 
operators are implemented as the methods add, sub, mul, and div.  This design 
decision means that you must invoke these methods using the receiver syntax.  Thus, 
if you want to set the variable sum to the sum of the rational values stored in the 
variables a, b, and c, you would need to use the following statement: 
 

sum = a.add(b).add(c) 
 

Although this syntax makes sense to anyone familiar with Python’s implementation 
of objects, it is certainly less expressive than the statement you would use to add three 
numbers, which looks like this: 
 

sum = a + b + c 
 

Unlike most object-oriented languages, Python makes it possible to define the 
Rational class so that this more natural syntax has the desired effect.  To do so, you 
need to define a method for each operator that Python can then use to determine what 
that operator means in the context of the Rational class.  This technique is called 
operator overloading. 
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Each of the standard operators in Python is associated with a method whose name, 
like the name of the __str__ method you have already seen, begins and ends with 
two underscores.  The association between method names and operators appears in 
Figure 10-7.  As an example, the first entry in the table shows that the method name 
__add__ implements Python’s + operator.  Although addition is initially undefined 
for new classes, the implementation of that class can specify the meaning of addition 
by defining an __add__ method.  Moreover, since the Rational class already defines 
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an add method that uses the traditional receiver syntax, you can enable addition for 
Rational objects by including the following method definition: 
 

def __add__(self, rhs): 
    return self.add(rhs) 

 
When Python encounters an expression like a + b in which a and b are instances of 
the Rational class, it automatically translates that expression into the method call 
a.__add__(b).  The implementation of the __add__ method corresponding to the 
operator then calls the regular add method in the Rational class to compute the 
answer. 
 

You can, however, include additional code in the __add__ method so that it is 
possible to use the + operator to add a Rational value and an integer without forcing 
the client to convert the integer to a Rational explicitly.  To do so, the easiest way 
is to have the definition of __add__ use the built-in type function to determine the 
type of the value that appears as the operand on the right side of the + operator.  If 
this value is an integer, the code can first convert it to a Rational and then complete 
the addition.  If this value is another Rational object, the code can apply the add 
method to the two rational numbers it has in hand.  If this value is anything else, 
Python’s conventions for operator overloading require the __add__ method to return 
the built-in Python value NotImplemented.  This strategy leads to the following 
definition of the __add__ method: 
 

def __add__(self, rhs): 
    if type(rhs) is int: 
        return self.add(Rational(rhs)) 
    elif type(rhs) is Rational: 
        return self.add(rhs) 
    else: 
        return NotImplemented 

 
This definition makes it possible, for example, to evaluate the expression 
 

Rational(1, 2) + 1 
 
which adds one to the Rational value 1/2, which produces the Rational value 3/2. 
 

But what happens if the operands to + appear in the opposite order?  If you ask 
Python to evaluate the expression 
 

1 + Rational(1, 2) 
 
it should get the same answer.  Python, however, decides what to do based on the 
methods associated with the left operand, which in this case is the int value 1.  The 
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__add__ method associated with the built-in type int has no knowledge of the 
Rational class and therefore is unable to perform the addition.  Recognizing that it 
can’t produce an answer, the __add__ method for int returns NotImplemented, 
which Python takes as a signal to try a different strategy. 
 

It is at this point that the methods in Figure 10-7 labeled “Arithmetic operators 
applied in reverse” come into play.  For each of the arithmetic operators, Python 
defines a method that is used only if the left operand fails to implement the operation.  
These methods determine the result if the defining class appears on the right side of 
the operator.  The __radd__ method for Rational looks like this: 
 

def __radd__(self, lhs): 
    if type(lhs) is int: 
        return Rational(lhs).add(self) 
    elif type(lhs) is Rational: 
        return lhs.add(self) 
    else: 
        return NotImplemented 

 

Once this method is in place, the expression 
 

1 + Rational(1, 2) 
 
correctly produces the Rational value 3/2. 
 

The definitions for the other arithmetic operators and the comparison operators 
look very much like the definitions for __add__ and __radd__.  The only differences 
are the method names.  The code for the expanded Rational class is available on the 
web site for this book, but is too long to be useful as an example. 
 

Before turning away from the topic of rational numbers, it is worth going back to 
the example at the beginning of the chapter to show that rational arithmetic is exact.  
Running the function 
 

def rational_sum(): 
    a = Rational(1, 2) 
    b = Rational(1, 3) 
    c = Rational(1, 6) 
    print("1/2 + 1/3 + 1/6 = " + str(a + b + c)) 

 

produces the following output: 
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 10.5 Implementing a token scanner 
The Point and Rational classes defined earlier in this chapter are both examples of 
immutable classes in which the internal attributes of the class never change after an 
object is created.  While immutable classes are ideal for many data types—such as 
the built-in str class Python uses to represent strings—other types derive much of 
their utility from allowing clients to manipulate the internal data.  For example, a list 
is more flexible than its immutable tuple counterpart precisely because it offers 
operations like insertion, deletion, and setting individual elements.  The graphical 
programs you have built using the Portable Graphics Library depend on the fact that 
the objects in the GObject are mutable and that you can change their color, position, 
and size by invoking methods on those objects. 
 

The rest of this chapter goes through the design of a class that allows clients to 
divide a string into substrings that form a logically connected unit that can be larger 
than a single character, such as a word or a number.  In computer science, such units 
are called tokens, and a class that delivers tokens sequentially from a string is called 
a token scanner.  A token scanner has to be implemented as a mutable class because 
its state changes as you use.  When you call a method to read the next token, the token 
scanner has to update its internal state so the next call will return the following token.   
 

In terms of its operation, a token scanner accomplishes much the same task as the 
to_pig_latin function in the PigLatin.py shown in Figure 7-3, which was 
responsible for dividing the input into words and then calling word_to_pig_latin to 
convert each word to its Pig Latin form.  The goal in the next several sections is to 
reimplement word_to_pig_latin using a more general TokenScanner class that is 
flexible enough to use in a variety of applications. 
 
What clients want from a token scanner 
The best way to begin the design of the TokenScanner class is to look at the problem 
from the client perspective.  Every client that wants to use a scanner starts with a 
source of tokens, which might be a string but might also be an input stream for 
applications that read data from files.  In either case, what the client needs is some 
way to retrieve individual tokens from that source. 
 

Although there are other strategies that offer the necessary functionality, the 
conventional design for a token scanner uses the following pseudocode form: 
 

Initialize a token scanner object and set its input source. 
while more tokens are available: 
    Read and process the next token. 
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This pseudocode pattern immediately suggests what methods the TokenScanner 
class will have to support.  From this example, you would expect TokenScanner to 
export the following methods: 
 
• A TokenScanner constructor that creates a token scanner object from a source. 

• A has_more_tokens method that tests if there are more tokens left to read. 

• A next_token method that scans and returns the next token. 
 
These methods define the operational structure of a token scanner and are largely 
independent of the specifics of the applications.  Different applications, however, 
define tokens in all sorts of different ways, which means that the TokenScanner class 
must give the client some control over what types of tokens are recognized. 
 

The need to recognize different types of tokens is easiest to illustrate by offering 
a few examples.  As a starting point, it is instructive to revisit the problem of 
translating English into Pig Latin.  If you rewrite the PigLatin.py program to use 
the token scanner, you can’t ignore the spaces and punctuation marks, because those 
characters need to be part of the output.  In the context of the Pig Latin problem, 
tokens fall into one of two categories: 
 
1. A string of consecutive alphanumeric characters representing a word 

2. A single-character string consisting of a space or punctuation mark 
 
If you gave the token scanner the input 
 

this is pig latin. 
 
calling next_token repeatedly would return the following sequence of eight tokens: 
 

 
 

Other applications, however, are likely to define tokens in different ways.  The 
Python interpreter, for example, uses a token scanner to break programs into tokens 
that make sense in the programming context, including identifiers, constants, 
operators, and other symbols that define the syntactic structure of the language.  For 
example, if you typed the line 
 

print("The sum is " + str(sum)) 
 
into the Python interpreter, you would like its token scanner to deliver the following 
sequence of tokens: 
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There are several differences between these two application domains in the 
definition of a token.  In the Pig Latin translator, anything that’s not a sequence of 
alphanumeric characters is returned as a single-character token.  In the example of 
the Python interpreter, the situation is more complicated.  For one thing, the string 
constant "The sum is " has the correct meaning only if the token scanner treats it as 
a single entity.  Perhaps less obviously, the compiler’s token scanner ignores spaces 
in the input entirely, unless they appear inside string constants. 
 

As you will learn if you go on to take a course on programming languages, it is 
possible to build a token scanner that allows the client to specify what constitutes a 
legal token, typically by supplying a precise set of rules.  That design offers the 
greatest possible generality.  Generality, however, sometimes comes at the expense 
of simplicity.  If you force clients to specify the rules for token formation, they need 
to learn how to write those rules, which is similar in many respects to learning a new 
language.  Worse still, the rules for token formation—particularly if you are trying to 
specify, for example, the rules that a compiler uses to recognize numbers—are 
complicated and difficult for clients to get right. 
 

If your goal in the interface is to maximize simplicity, it is probably better to 
design the TokenScanner class so that clients can enable options that allow it to 
recognize the type of tokens used in specific application contexts.  If all you want is 
a token scanner that collects consecutive alphanumeric characters into words, you use 
the TokenScanner class in its simplest possible configuration.  If you instead want 
the TokenScanner to identify the units in a Python program, you enable options that 
tell the scanner, for example, to ignore whitespace characters, to treat quoted strings 
as single units, and to recognize particular combinations of punctuation marks as 
multicharacter operators. 
 
The tokenscanner module 
Because token scanners are so useful, the library files provided with this book include 
a tokenscanner.py module that offers considerable flexibility without sacrificing 
simplicity.  The tokenscanner.py module exports a TokenScanner class that 
implements the methods shown in appear in Figure 10-8 on the next page. Many of 
the methods in the interface are used to enable options that change the default 
behavior of the scanner so that it serves the needs of a wider range of clients. 
 

The tokenscanner module makes it easier to write a variety of applications, 
including several you have already seen in this book.  You can, for example, use it to 
simplify the PigLatin.py program from Figure 7-3 by rewriting the function 
to_pig_latin as follows: 
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def to_pig_latin(line): 
    scanner = TokenScanner(ine) 
    result = "" 
    while scanner.has_more_tokens(): 
        token = scanner.next_token() 
        if token.isalpha(): 
            token = word_to_pig_latin(token) 
        result += token 
    return result 

 

 
While the new implementation of to_pig_latin is shorter than the original, the real 
simplification is conceptual.  The original code had to operate at the level of 
individual characters; the new version gets to work with complete words, because the 
TokenScanner class takes care of the low-level details. 
 
Implementing the TokenScanner class 
Particularly given the number of options it supports, the complete implementation of 
the TokenScanner class is too complicated to serve as an effective example.  
Figure 10-9, which extends over the next three pages, therefore presents a simplified 
version of the token scanner package that defines only the following methods: 
 
• A constructor that accepts an optional string argument as the initial source 
• The set_input method, which sets the scanner input to a string 
• The next_token method, which returns the next token from the string 
• The has_more_tokens method, which lets clients see if tokens are available 
• The ignore_whitespace method, which tells the scanner to ignore spaces 
 

As the largest example of a class definition you have seen so far, the code for 
TokenScanner in Figure 10-9 is worth studying in some detail.  As you do so, it is 
important that you don’t skip over the first page of the figure, which is composed 
almost entirely of comments.  While it is true that the Python interpreter ignores these 
comments, you should keep in mind that comments are intended for human readers 
of the program—readers like you.  Particularly when you are designing a class that 
you hope other programmers will use, you have a responsibility to give those 
programmers the information they need to use that class effectively.  If potential 
clients are unable to figure out how to use a class, they will refrain from doing so.  
The comments on the first page of Figure 10-9 give the reader a tour of the facilities 
provided by the TokenScanner class along with examples of its use. 
 

Another feature of the code that is worth your notice is that all private identifiers 
begin with an underscore.  These private identifiers include not only the properties of 
the TokenScanner object defined in the constructor but also the private method 
_skip_whitespace, which is called internally by the implementation. 
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Perhaps the most important feature to notice about the TokenScanner class is the 
way in which it encapsulates data values and methods into a single object.  Like other 
data values, a TokenScanner object maintains information about its state.  This 
information is stored in the values of the property variables _source, _nch, _cp, and 
_ignore_whitespace_flag.  The client, however, need not be aware of those 
variables and indeed is warned by their names against making any direct reference to 
their values.  What the client sees in a TokenScanner object are its methods, which 
define its behavior without revealing the implementation details. 
 

 Summary 
This chapter introduces the concept of an object, which is a data structure that 
encapsulates state and behavior.  Like arrays, objects combine multiple values into a 
single unit.  In an array, individual elements are selected using a numeric index; in an 
object, individual attributes are selected by name. 
 

The important points introduced in this chapter include: 
 

• All Python objects are instances of a class, which provides a template for all 
objects of that conceptual type. 
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• Class definitions begin with a header line containing the class keyword and the 
name of class.  The body of the class consists primarily of method definitions that 
define the behavior of the class. 

• Like arrays, objects are treated as references, which means that their internal 
structure is not copied when the object is assigned or passed as a parameter. 

• Given a Python object, you can select individual attributes using the dot operator, 
which is followed by the name of the attribute. 

• Most classes define a method called __init__, which acts as the constructor for 
the class.  Like all class methods, the first parameter to __init__ is a reference 
to the object being created.  That parameter should always be called self.  The 
constructor can take additional parameters, which allows the client to pass other 
information to the constructor. 

• Modern programming style discourages clients from manipulating the values of 
individual attributes directly.  Classes instead provide mediated access in the form 
of methods. Methods that retrieve the value of an attribute are called getters; 
methods that set the value of an attribute are called setters. 

• Classes typically define a method called __str__, which converts an instance of 
the class into a string that humans can recognize. 

• To warn clients against looking too closely at parts of the implementation that 
were not intended to be seen by clients, Python uses the convention of adding an 
underscore at the beginning of names of any private attributes or methods. 

• Designing new classes is as much an art as a science.  This chapter outlines a 
general strategy to guide you in this process on page 353, but experience and 
practice are the best teachers. 

• Python allows classes to define new implementations for the standard operators.  
This technique is called operator overloading.  Figure 10-7 on page 358 provides 
a list of the methods that correspond to the built-in operators. 

• A sequence of characters that has integrity as a unit is called a token.  This chapter 
presents a simple implementation of a TokenScanner class that divides a string 
into its component tokens.  The libraries included with this text include a 
TokenScanner class that offers clients more flexibility.  The methods exported by 
the expanded TokenScanner class appear in Figure 8-1. 

 

 Review questions 
1. What word does Python use for the individual components of an object? 
 
2. True or false: If you pass a Python object as a parameter to a function, the 

function receives a copy of the object and therefore cannot change the 
components of the original. 
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3. What is the dot operator and how is it used? 
 
4. What is the name of the special function used to implement a constructor? 
 

5. True or false: Modern programming practice discourages direct access to the data 
attributes in an object. 

 
6. What are getters and setters? 
 

7. What is the purpose of the __str__ method in a Python class? 
 

8. What convention does Python adopt to discourage clients from referring directly 
to private attributes and methods? 

 
9. What happens if you change the value of DELTA in the YarnPattern.py program 

from 113 to 104?  Does the picture look as striking?  Why or why not? 
 
10. What is a rational number? 
 

11. What restrictions does the constructor for the Rational class place on the values 
of the num and den variables? 

 

12. What steps does the chapter propose as a useful approach to designing a class? 
 

13. What is operator overloading? 
 
14. What method would you define to change the definition of the % operator? 
 

15. What is the difference between the __add__ and __radd__ methods? 
 

16. In your own words, describe the function of a token scanner. 
 
17. Given the TokenScanner class presented in this chapter, what statements would 

you use to list every token from a string stored in the variable line? 
 

 Exercises 
1. Write a function print_payroll that takes an array of employees, each of which 

is defined as a simple Python object, and prints on the console a list for each 
employee showing the name, title, and salary.  For example, if 
SCROOGE_AND_MARLEY has been initialized as a two-element list containing the 
entries for Ebenezer Scrooge and Bob Cratchit shown in the chapter, your 
function should be able to reproduce the following IDLE session: 
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2. Rewrite the YarnPattern.py program from Figure 10-3 so that it uses tuples to 

represent the points instead of GPoint objects. 
 
3. You can make more interesting yarn patterns by changing the color of each 

segment as you cycle through the pegs, like this: 
 

 
 

Here, the yarn starts off red and then moves around the spectrum to orange, 
yellow, green, and so on.  Cycling through the colors of the rainbow is tricky 
using the standard RGB color model but relatively easy if you instead use the 
HSV model, which defines colors in terms of their hue, saturation, and value.  
The hue value ranges from 0 and 1 that indicates a position on the color wheel 
that begins with red and then cycles through the spectrum colors. 

 

This problem is made much easier by the fact that Python supports a 
colorsys library that exports a function hsv2rgb that converts between these 
color models.  Look up the definition of hsv2rgb on the web and figure out what 
you need to do to produce this colored yarn pattern. 

 
4. You can also produce interesting yarn patterns by arranging the pegs in a circle 

instead of a rectangle. Here, for example, is the result of arranging 60 pegs around 
the circumference of a circle and then using a DELTA value of 23 to string yarn 
around the pegs: 
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Modify the YarnPattern.py program to produce this figure.  To save 
yourself the trouble of working out the trigonometric calculations, you can use 
the following function to return a tuple containing the coordinates of a point 
which is r units away from the point (x, y), moving in the direction specified by 
angle, which is measured in degrees, just as in the GArc class: 

 
def polar_point(x, y, r, angle): 
    dx = r * math.cos(math.radians(angle)) 
    dy = -r * math.sin(math.radians(angle)) 
    return (x + dx, y + dy) 

 
5. The game of dominos is played using pieces that are usually black rectangles 

with some number of white dots on each side.  For example, the domino 
 

 
 

is called the 4-1 domino, with four dots on its left side and one on its right. 
 

Define a simple Domino class that exports the following entries: 
 

• A constructor that takes the number of dots on each side 

• A __str__ method that creates a string representation of the domino 

• Two getter methods named get_left_dots and get_right_dots 
 

Test your implementation of the Domino class by writing a program that 
creates a full set of dominos from 0-0 to 6-6 and then displays those dominos on 
the console.  A full set of dominos contains one copy of each possible domino in 
that range, disallowing duplicates that result from flipping a domino over.  Thus, 
a domino set has a 4-1 domino but not a separate 1-4 domino. 
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6. Define a Card class suitable for representing a standard playing card, which is 
identified by two components: a rank and a suit.  The rank is stored as an integer 
between 1 and 13 in which an ace is a 1, a jack is an 11, a queen is a 12, and a 
king is a 13.  For the convenience of clients, the Card class exports constants 
named Card.ACE, Card.JACK, Card.QUEEN, and Card.KING.  The suit is also 
represented as an integer between 0 and 3, which are exported as the constants 
Card.CLUBS, Card.DIAMONDS, Card.HEARTS, and Card.SPADES, respectively. 

 

Along with the constants, the Card class should export the following methods: 
 

• A constructor that takes either of two forms.  If Card is called with two 
arguments, as in Card(10, Card.DIAMONDS), it should create a card from 
those components.  If Card is called with one argument, it should interpret 
the argument as a string composed of a rank (either a number or the first 
letter of a symbolic name) and the first letter of the suit, as in "10D" or "QS". 

• A __str__ method that converts the card to a string as described in the 
outline of the constructor.  The card Card(Card.QUEEN, Card.SPADES), 
for example, should have the string representation "QS". 

• The getter methods get_rank and get_suit. 

• A main program that displays the string representation of every card, with 
each suit appearing on a separate line. The output of this program should 
look like this: 

 

 
 
7. Write a function midpoint that takes two values of type GPoint and returns a 

new GPoint object whose coordinates define the midpoint of the line segment 
specified by the two parameters.  For example, if the variables upper_left and 
lower_right are defined as 

 

upper_left = GPoint(0, 0) 
lower_right = GPoint(GWINDOW_WIDTH, GWINDOW_HEIGHT) 

 

calling midpoint(upper_left, lower_right) should return a point whose 
coordinates mark the center of the window. 

 

8. Design and implement a Date class that exports the following resources: 
 

• Constants for the names of the months, so that clients can use the constant 
Date.DECEMBER instead of writing the number 12. 
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• A constructor that takes parameters named year, month, and day, and then 
uses those values to initialize the internal attributes of the Date object.  For 
example, the statement 

 

moon_landing = Date(1969, Date.JULY, 20) 
 

should initialize moon_landing so that it represents July 20, 1969.  The 
constructor should also check that the date is valid and raise a ValueError 
exception if any value is out of range.  Note that making this check means 
that the module needs to know how many days are in each month. 

• The getter methods get_day, get_month, and get_year. 

• A __str__ method that returns the date in the form dd-mmm-yyyy, where 
dd is a one- or two-digit date, mmm is the three-letter English abbreviation 
for the month, and yyyy is the four-digit year.  Thus, the string version of 
moon_landing is "20-Jul-1969". 

 
9. Extend the Rational class by implementing overloaded versions of the 

relational operators ==, !=, <, <=, >, and >=.  The names of these overloaded 
methods are listed in Figure 10-7 on page 358. 

 

10. Write a program that uses the TokenScanner class to display the longest word 
that appears in a file chosen by the user.  A word should be defined as any 
consecutive string of letters and digits, as in the TokenScanner class. 

 

11. For certain applications, it is useful to be able to generate a series of names that 
form a sequential pattern.  For example, if you wanted to number figures in a 
paper, having some mechanism to return the sequence of strings "Figure 1", 
"Figure 2", "Figure 3", and so on, would be very handy.  You might also need 
to label points in a geometric diagram, in which case you would want a similar 
but independent set of labels for points such as "P0", "P1", "P2", and so forth. 

 

If you think about this problem more generally, what clients would like is a 
LabelGenerator class that allows them to specify a prefix string ("Figure " or 
"P" for the examples in the preceding paragraph) coupled with an integer used 
as a sequence number.  To initialize a new generator, the client provides the 
prefix string and the initial index as arguments to the LabelGenerator 
constructor.  Once the generator has been created, the client can return new labels 
in the sequence by calling next_label on the LabelGenerator object. 

 

Design and implement the LabelGenerator class along with a suitable 
program to test your implementation. 
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Computer programming is an art, because it applies accumulated 
knowledge to the world, because it requires skill and ingenuity, and 
especially because it produces objects of beauty. 

—Donald Knuth, Turing Award lecture, 1974 
 
 
 

 
Donald E. Knuth 

 

Donald Knuth got his introduction to computing during his undergraduate years at the Case Institute of 
Technology (now part of Case Western Reserve University) when he worked with the IBM 650 mainframe.  
He received his Ph.D. in mathematics from the California Institute of Technology in 1963 and in 1968 joined 
the computer science faculty at Stanford University.  Knuth is best known for writing an extraordinarily 
comprehensive series of books entitled The Art of Computer Programming, which focuses considerable 
attention on the topics in this chapter.  Throughout his career, Knuth has sought to weave the notions of 
aesthetics and elegance into the practice of computing.  When he became convinced that conventional 
typesetting was unable to produce books that would be beautiful as well as comprehensive, Knuth 
implemented the typesetting language TEX, which remains in widespread use today.  Professor Knuth 
received the ACM Turing Award in 1974 for his many contributions to computer science. 
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Python defines several built-in types beyond those you have already seen.  Of these, 
the types covered in this chapter—dictionaries and sets—turn out to be especially 
valuable as tools for writing programs.  The primary goal of this chapter is to give 
you a sense of when and how to use these structures as a client.  In addition, the 
chapter explores a strategy called hashing makes it possible to look up dictionary 
entries in constant time. 
 

 11.1 Dictionaries 
Chapter 8 introduced the concept of a lexicon, which was a list of words without 
associated definitions.  While a lexicon is exactly what you need to write a spelling 
checker or for playing games like Scrabble, some applications will require you to 
associate each word with a definition.  Providing those definitions turns a lexicon into 
a dictionary, which is a data structure in which relatively small identifying tags—the 
words in a physical dictionary, for example—are linked to additional information, 
often larger or more complex, such as a dictionary definition.  In computer science, 
the identifying tag is called a key and the associated data structure is called the value 
for that key.  Although computer scientists often use the term map to describe the 
general concept of a data structure that implements the key-to-value association, 
Python uses the term dictionary.  This terminology is also reflected in the name of 
the Python type used to implement a dictionary, which is the built-in type dict. 
 
Symbol tables 
Dictionaries have many applications in programming.  As an example, the Python 
interpreter needs to assign values to variables, which can then be identified by name.  
Python uses dictionaries—which are usually called symbol tables in the context of a 
programming language—to maintain the association between the name of a variable 
and its corresponding value.  Python keeps track of several symbol tables 
simultaneously and looks through them in a specified order, looking first in the 
symbol table associated with the current function, then in the symbol tables associated 
with each of the calling functions, then in the symbol table for the global variables 
for the current module, and finally in the symbol table of built-in functions shared 
across all modules. 
 

Because you already have a mental model of how variables work in the context of 
a programming language, symbol tables provide a good model for illustrating the 
operation of a dictionary.  In Python, you create an empty dictionary by writing a 
matched set of curly braces with nothing inside them.  Thus, you can initialize the 
variable symtab to an empty dictionary like this: 
 

symtab = { } 
 ̀
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This line sets up an empty dictionary that can be diagrammed as follows: 
 

 
 

Once you have created a dictionary, you can add a new definition by writing an 
assignment statement with the following general form: 
 

dictionary[key] = value 
 
For example, making the assignment 
 

symtab["pi"] = 3.14159 
 

adds a new association between the key "pi" and the value 3.14159, as follows: 
 

 
 

Similarly, executing the statement 
 

symtab["e"] = 2.71828 
 

adds a new association between the key "e" and the value 2.71828, like this: 
 

 
 

Once you have assigned a value to a key in a dictionary, you can retrieve that value 
by using the key as if it were an array index.  The expression symtab["e"] has the 
value 2.71828, and the expression symtab["pi"] has the value 3.14159. 
 

Although it hardly makes sense in the case of mathematical constants, you can 
change the values associated with keys in the dictionary using a new assignment 
statement.  You could, for example, reset the value associated with "pi" (as an 1897 
bill before the Indiana State General Assembly sought to do) by calling 
 

symtab["pi"] = 3.0 
 

which would lead to the following state: 
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As these examples illustrate, dictionaries act in much the same way that arrays do.  
The only difference is that the index value is no longer restricted to being an integer.  
Any Python type can serve as keys in a dictionary as long as two conditions are met: 
(1) the type must be immutable and (2) the type must implement the hash function 
described in the section on “Hashing” later in this chapter. 
 

The program in Figure 11-1 simulates a tiny bit of the IDLE interpreter by reading 
assignment statements in the form 
 

var = value 
 

and requests to display the value of a variable in the form 
 

var 
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The program treats value simply as a string and performs no calculations at all.  It 
does, however, illustrate the general process of assignment to a global variable in 
which setting a new value overwrites any previous definition. 
 

A sample run of the SymbolTableDemo.py program might look like this: 
 

 
 
Creating lookup tables 
As it does for lists and tuples, Python includes a special syntactic form that creates a 
dictionary by listing its keys and values explicitly as part of the program.  All you 
need to do is enclose a list of the desired definitions inside curly braces, where each 
definition is a key-value pair in the following form: 
 

key: value 
 
For example, the following statement defines a dictionary that defines an association 
between the name of a month and its conventional numeric value: 
 

MONTH_TABLE = { 
    "January": 1, "February": 2, "March": 3, 
    "April": 4, "May": 5, "June": 6, 
    "July": 7, "August": 8, "September": 9, 
    "October": 10, "November": 11, "December": 12 
} 

 
Dictionaries of this sort that implement a mapping between a predetermined list of 
keys and their associated values is often called a lookup table. 
 

You can use the definition of MONTH_TABLE to convert the name of a month into 
its numeric form by using the month name as an index.  Thus, the expression 
MONTH_TABLE["June"] has the value 6.  More importantly, you can use this 
dictionary to convert the name of a month entered by the user to its numeric value 
using the following statements: 
 

name = input("Enter month name: ") 
print(f"{name} = {MONTH_TABLE[name]}") 
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Running this code snippet might generate the following console session: 
 

 
 

If you try to select a definition from a dictionary using a key that doesn’t exist, 
Python raises a KeyError exception.  For example, if you ran the same lines of code 
and entered one of the new month names invented (and soon abandoned) during the 
French Revolution, you might see the following session: 
 

 
 
Although you can use a try statement to catch this error, it is generally easier to use 
Python’s in operator to check whether a key is defined, as in the following code: 
 

name = input("Enter month name: ") 
if name in MONTH_TABLE: 
    print(f"{name} = {MONTH_TABLE[name]}") 
else: 
    print(f"{name} is not a valid month name") 

 
Reading a dictionary from a data file 
If you fly at all frequently, you quickly learn that every airport in the world has a 
three-letter code assigned by the International Air Transport Association (IATA).  For 
example, the John F. Kennedy airport in New York City is assigned the three-letter 
code JFK.  Other codes, however, are considerably harder to recognize.  Most 
web-based travel systems offer some means of looking up these codes as a service to 
their customers. 
 

A simple way to implement this facility is to create a dictionary whose keys are 
the airport codes and whose values are the city names.  If you can create such a 
dictionary, all you need to do to find the city corresponding to the three-letter airport 
code is use the three-letter code as an index.  There are, however, more than 2000 
assigned airport codes, and the list of codes changes over time as new airports open 
and old airports close.  For these reasons, it doesn’t make sense to define a lookup 
table like the MONTH_NAMES constant from the preceding section.  A much better 
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strategy is to initialize the dictionary using a list of airport codes stored in a data file 
that can be easily updated whenever changes occur. 
 

Suppose, for example, that the IATA organization maintains a downloadable file 
called AirportCodes.txt containing one line of data for each airport.  Those lines 
all start with a three-letter code, which is followed immediately by a colon and the 
name of the city and country in which that airport is located.  If the entries are sorted 
in descending order by passenger traffic as compiled by Airports Council 
International in 2017, the file would begin with the lines in Figure 11-2. 
 

The first step in writing a program that allows users to look up the location of an 
airport from its three-letter code is to read the data from AirportCodes.txt into a 
dictionary.  The problem of reading key-value pairs from a data file, however, is more 
general than the airport application and is worth making into a module of its own, as 
shown in Figure 11-3 at the top of the next page.  Clients can use the dictfile 
module to read in a file in which keys and values appear on the same line.  For the 
airport application, the client might call 
 

airports = read_dictionary("AirportCodes.txt") 
 
For a different application, the client would call read_dictionary on a different data 
file.  The optional separator parameter makes it possible to use a character other 
than a colon to mark the division between the key and the value. 
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The FindAirportCodes.py program in Figure 11-4 at the top of the next page 
reads three-letter codes from the user and displays the corresponding city name, as 
shown in the following sample run: 
 

 
 
Iterating through keys in a dictionary 
In some applications, it is useful to be able to iterate through all the keys in a 
dictionary.  For example, you can list the airports serving a particular country or city 
by going through the keys in the dictionary and listing every entry for which the value 
contains the desired country or city name.  To make such applications possible, 
Python dictionaries support iteration using the following for loop pattern: 
 

for variable in dictionary: 
    . . . body of the loop . . . 

 



 11.1 Dictionaries     383 

This version of the pattern iterates through all the keys in dictionary so that, in each 
cycle, variable is assigned to the next key. 
 

In versions of Python since 3.6, the for loop processes the keys in the same order 
in which they were entered into the dictionary.  In earlier versions of Python—and in 
the similar constructs used in other programming languages—the order in which the 
elements are processed is unpredictable.  If you want your program to run in as many 
versions of Python as possible or you think that it might be at some point translated 
into a different programming language, it is wise not to depend on the order in which 
the for loop processes the keys. 
 

In many cases, you need both the key and the corresponding value in each cycle 
of the loop.  One approach to iterating through the keys and values together is to look 
up the value on each cycle of the loop as shown in the following example: 
 

for key in dict: 
    value = dict[key] 
    . . . rest of the loop body, which has access to both the key and the value . . . 
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While this pattern has the desired effect, it requires an extra step to look up the 
value associated with the key even though that value was presumably accessible as 
Python cycled through the keys.  You can eliminate this step by using the for loop 
to iterate instead over all the key-value pairs like this: 
 

for key, value in dict.items(): 
    . . . the loop body, which has access to both the key and the value . . . 

 
The items method returns an iterable value that is conceptually a list of pairs, each 
of which is a tuple containing a key and its corresponding value.  The for loop then 
uses destructuring assignment to split the tuple into its two components, assigning the 
key to the variable key and the value to the variable value. 
 

The FindAirportsByLocation.py program in Figure 11-5 uses this iteration 
pattern to implement a console-based application to find the airports serving a 
particular location.  On each cycle, the program checks to see whether the 
user-supplied search string appears in the location stored as the value corresponding 
to each key.  If so, the application prints that entry on the console.  A sample run of 
this application might look like this: 
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Dictionary methods 
Dictionaries implement several additional methods that will prove useful in certain 
applications.  The most important of these methods appear in Figure 11-6.  The only 
one of these methods that may need additional explanation is the get method, which 
makes it possible to supply a default value for keys that are not found in the 
dictionary.  The selection operation dict[key] raises a KeyError exception if the 
key is not found.  In many applications, it is more useful to call dict.get(key), 
which returns the constant None if the key is not found.  The get method takes an 
optional second argument, which allows clients to specify some default value other 
than None. 
 

 11.2 Using dictionaries as records 
The preceding section presents Python’s dict class in order to emphasize the use of 
dictionaries as maps that associate a key with a value.  That interpretation remains 
important in Python.  Increasingly, however, Python programmers use dictionaries to 
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implement the idea of a record.  After all, a record associates the name of a field with 
its value, which is pretty much just what a dictionary does. 
 

For example, instead of using either a tuple or a class to represent a point, you 
could use a dictionary for that purpose.  Under this interpretation, you could initialize 
the variable pt to the point (3, 4) by writing 
 

pt = { "x": 3, "y": 4 } 
 
After making this assignment, you could select the x and y components of the point 
by writing pt["x"] and pt["y"], respectively. 
 

Although this model seems somewhat more verbose than the earlier approaches, 
it has the advantage of reducing the number of structures you need to consider when 
defining a new data structure.  This advantage will become much more evident in 
Chapter 12, particularly in the context of using JavaScript Object Notation (JSON) to 
represent nested data structures. 
 

 11.3 Designing an efficient dictionary 
The dictionary abstraction is used widely in programming applications, which gives 
the programmers responsible for implementing that abstraction an incentive to make 
dictionaries as efficient as possible.  After all, if programmers can use clever 
algorithmic techniques to improve the performance of Python’s dictionaries, every 
client that uses those dictionaries will benefit from the change. 
 
Implementing dictionaries using lists 
Before moving on to consider more efficient strategies, it is useful to start with a 
simple list-based implementation just to make sure that you understand what each of 
the required operations does.  Since the goal is to implement the operations required 
for a dictionary, it is hardly appropriate to use Python’s dict class in the solution.  
This section instead implements a Dictionary class that exports the necessary 
operations under the method names put and get.  Calling put(key, value) adds a 
new value for the specified key, overwriting any previous value.  Calling get(key) 
returns the value associated with the key if it exists.  Like its counterpart in the built-in 
dict class, the get method takes an optional default value to use if the key is 
undefined. 
 

Figure 11-7 on the next page shows an implementation of the Dictionary class 
in which the key-value pairs are stored in a list of tuples.  That list of tuples is stored 
in an attribute of the Dictionary object called _bindings.  The constructor sets the 
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ListDictionary-py.png 
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private attribute _bindings to be an empty list.  The put method searches through 
the elements of the list looking for a tuple that contains the requested key.  If it finds 
one, the put method replaces that tuple with one that reflects the new binding.  If not, 
the put method adds a new key-value pair to the end of the list.  The get method 
operates similarly.  If it finds the requested key while searching the list, it returns the 
value from that key-value pair.  If it doesn’t, get returns the default value. 
 

The last three methods in Figure 11-7 illustrate new features that allow the 
Dictionary implementation to function more like Python’s built-in dict class.  The 
__getitem__ method tells Python how to implement square-bracket selection. The 
__setitem__ method has a symmetric interpretation that overrides Python’s 
treatment of assignment to a selected object.  Defining new implementations of these 
methods mean that you can retrieve items from a dictionary by writing 
 

dict[key] 
 
and set a new value by writing 
 

dict[key] = value 
 

The third method is in many ways more interesting.  If you define an __iter__  
method in a class, Python considers instances of that class to be iterable objects, which 
means you can use them in a for statement.  Thus, if you have stored an instance of 
the Dictionary class in a variable called bindings, you can iterate over its keys by 
writing 
 

for key in bindings: 
 

The __iter__ method returns an object called an iterator, which is the data type 
Python uses to track the progress of stepping through an iteration.  The details of 
iterators—and their more counterparts called generators—are beyond the scope of an 
introductory computer science course.  Even so, it is easy to create an iterator from 
any iterable object by calling the __iter__ method for that object.  The 
implementation of the __iter__ method in the list-based Dictionary class creates 
a list of the keys and then result of calling the __iter__ method on that list. 
 
Improving the running time 
In the implementation shown in Figure 11-7, both put and get run in O(N) time.  If 
you can keep the keys in the list in some kind of sorted order, you can reduce the 
running time of the get method to O(log N) by using binary search to find a matching 
key.  Unfortunately, there is no obvious way to apply that same optimization to the 
put method.  Although it is possible to check whether a key already exists in the 
dictionary—and even to determine exactly where a new key needs to be added—in 
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O(log N) time, inserting the new key-value pair at that position requires shifting every 
subsequent entry forward.  Thus, put requires O(N) time, even in a sorted list. 
 

To get some insight into how you might improve the performance of looking up 
words in a Python dictionary, it may help to think more concretely about how you 
might look up a word in a physical dictionary that is printed on paper instead of being 
stored in electronic form.  The strategies that humans use to look up a dictionary entry 
don’t look anything like the implementation in the preceding section.  The algorithmic 
strategy embodied in that implementation is to check each successive word in the 
dictionary to see if it matches the one you’re looking for.  You start with the first 
entry, go on to the second, and then the third, until you find the word or determine 
that it is not in the dictionary at all. 
 

No one, of course, would use this strategy for a dictionary of any significant size.  
But it is also unlikely that you would apply the O(log N) binary search algorithm, 
which corresponds to opening the dictionary exactly at the middle, deciding whether 
the word you’re searching for appears in the first or second half, and then repeatedly 
applying this algorithm to smaller and smaller parts of the dictionary.  You would 
instead try to anticipate more accurately where in the dictionary you should start 
looking for a word.  If, for example, the word you’re looking for starts with the letter 
A, you will start looking near the beginning of the alphabet.  By contrast, if the word 
you’re looking for begins with the letter Z, you would start looking closer to the end. 
 

Printed dictionaries often try to help you with this process by including cutaway 
tabs along the side, each of which is labeled with the starting letter of words in that 
section.  If you are lucky enough to have this kind of dictionary, you would look for 
words starting with A in the section marked with the A tab and for words starting with 
Z in the section marked with the Z tab.  These tabs ensure that your search begins in 
the right section, which reduces the number of words you need to check. 
 

To get a sense of how the metaphor of dictionary tabs might help in the design of 
a Python-based implementation, it is useful to work with a smaller example than the 
one using airport codes presented earlier in the chapter.  In 1963, the United States 
Postal Service introduced a set of two-letter codes for the individual states, districts, 
and territories of the United States.  The codes for the 50 states appear in Figure 11-8 
at the top of the next page. 
 

If you enter the key-value pairs from Figure 11-8 into the list-based dictionary 
presented in Figure 11-7, the list will have 50 elements, one for each state.  Because 
the process of searching for a specific key requires looking at every element, the 
implementation will, in the worst case, have to look at every one of those 50 keys. 
 

The most direct way to apply the idea of dictionary tabs to the search process is to 
divide the list of all the states into 26 shorter lists, one for each possible starting letter.  
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As in the physical dictionary, the states whose two-letter codes begin with A will 
show up in the A list, and so forth.  At least in theory, this strategy should reduce the 
length of the individual lists—and therefore the running time—by a factor of 26. 
 

Unfortunately, keys in a dictionary, like the first letters of English words, are not 
uniformly distributed.  For example, many more English words begin with C than 
with X.  The same is true for the state codes.  Fully 64 percent of the state codes start 
with A, I, M, N, or W, while no state names begin with B, E, J, Q, X, Y, or Z.  The fact 
that the first letters in the state name are poorly distributed across the alphabet means 
that some of the search lists will be relatively long and others will be empty.  The 
divide-up-the-list-by-first-letter strategy offers some increase in efficiency, but 
nothing like the hoped-for factor of 26. 
 

On the other hand, there is no reason that you have to use the first character of the 
key to divide up the keys in a dictionary.  The first-character strategy is simply the 
closest analogue to what you do if you have a physical dictionary sitting in front of 
you.  What you need is a strategy that divides the keys into groups in a way that does 
a better job of ensuring that the keys are distributed more evenly.  That idea can be 
implemented in an elegant way using a technique called hashing, which is described 
in the following section. 
 
Hashing 
The best way to improve the efficiency of the dictionary implementation is to come 
up with a way of using the key to determine, at least fairly closely, where to look for 
the corresponding value.  Choosing any obvious property of the key, such as its first 
character, runs into the problem that keys are not equally distributed with respect to 
that property. 
 

Given that you are using a computer, however, there is no reason that the property 
you use to locate the key has to be something easy for a human to figure out.  To 
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maintain the efficiency of the implementation, the only thing that matters is whether 
the property is easy for a computer to determine.  Since computers are better at 
computation than humans are, allowing for algorithmic computation opens a much 
wider range of possibilities. 
 

The computational strategy called hashing operates as follows: 
 
1. Select a function ƒ that transforms a key into an integer value, which is called the 

hash code of that key.  The function that computes the hash code is called, 
naturally enough, a hash function.  An implementation of the dictionary 
abstraction that uses this strategy is conventionally called a hash table. 

2. Use the hash code for a key to determine the starting point as you search for a 
matching key in the table. 

 
Python includes a built-in function called hash that returns the hash code for any 

immutable value. The following IDLE session shows the result of calling hash on the 
integer 42, the constant value math.pi, and the string "hello, world", all of which 
are immutable: 
 

 
 
Although the hash code for 42 seems simple enough, the other hash codes listed in 
this example seem completely random.  As it happens, the fact that these values seem 
random is not at all surprising.  The implementation of the hash function in Python 
uses much the same techniques as the random library to ensure that the chance that 
two keys collide is as small as possible.  To achieve that goal, the hash function tries 
to scatter the results over as wide a range of integers as possible. 
 

If you are running a recent version of Python on modern 64-bit computer, the 
result of the hash function is a 64-bit integer, which means that its value lies 
somewhere between –9,223,372,036,854,775,808 and 9,223,372,036,854,775,807, 
which is an enormous range of values.  The probability that two strings chosen at 
random produce the same hash code is 1 in 264, which means that one would never 
expect such an event to happen in a lifetime. 
 

Unfortunately, the number of possible values of the hash function is so gigantic 
that there is no way to use the hash code itself as an index into a smaller list of values.  
No computer that exists now or in the foreseeable future could hold an array of that 
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size.  What you need to do is compress the hash codes into a narrower range in which 
each of these smaller values can serve as index into an array containing some fraction 
of the key-value pairs. 
 

Although other representations are possible, a common strategy is to use the hash 
code to compute an index into an array of lists, where each list holds all the key-value 
pairs corresponding to that hash code.  When you use this strategy to implement a 
hash table, the elements of the array containing the lists are traditionally called 
buckets.  To find the key you’re looking for, all you need to do is search through the 
list of key-value pairs in the bucket whose index is specified by the hash code. 
 

As a general rule, the number of possible hash codes is considerably larger than 
the number of buckets.  You can, however, convert an arbitrarily large hash code into 
a bucket number by computing the remainder of the absolute value of the hash code 
divided by the number of buckets.  Thus, if the array of buckets is stored in the 
attribute _buckets of the dictionary object, you can compute the bucket number for 
a particular key like this: 
 

bucket = abs(hash(key)) % len(self._buckets) 
 
A bucket number represents an index into the _buckets array, each of whose 
elements is a list of key-value pairs.  Colloquially, computer scientists say that a key 
hashes to a bucket if the hash function applied to the key returns that bucket number 
after applying the remainder operation.  Thus, the common property that links all the 
keys in a single linked list is that they all hash to the same bucket.  Having two or 
more different keys hash to the same bucket is called collision. 
 

The reason that hashing works is that the hash function always returns the same 
value for any particular key.  If a key hashes to bucket #13 when you call put to enter 
it into the dictionary, that key will still hash to bucket #13 when you call get to find 
its value.  Figure 11-9 shows the code for the HashDictionary module, which 
implements the Dictionary class using a hash table. 
 
Tracing the hash table implementation 
The easiest way to understand the implementation of the hash table in Figure 11-9 
shows is to go through a simple example. 
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HashDictionary-py.png 
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Suppose that you have written a program that needs to initialize a dictionary that maps 
the two-letter codes for each state into the corresponding state name.  Your program 
would begin by calling the Dictionary constructor like this: 
 

state_dictionary = Dictionary() 
 
The constructor creates a list called _buckets with 16 elements, each of which is an 
empty list. 
 

To add the first state in the list to the dictionary, your program would then execute 
the call 
 

state_dictionary.put("AK", "Alaska") 
 
If you look at the code for put, you will see that the first statement is 
 

bucket = abs(hash(key)) % len(self._buckets) 
 
which computes the bucket number.  Calling hash("AK") in this example produces 
the 64-bit integer –5,249,979,066,121,302,514.  While that number is difficult for 
people to comprehend, the computer has no more difficulty performing arithmetic on 
that number than on any other integer that fits inside a single memory location.  The 
statement then divides the absolute value of the hash code by the number of buckets 
and then assigns the remainder to the local variable bucket.  Trusting in the computer 
to carry out that division, it turns out that "AK" hashes to bucket #2.  The remaining 
code in the put method goes through the key-value pairs in the list from bucket #2 
looking for a matching key.  The list is currently empty, so the code simply adds the 
tuple ("AK", "Alaska") to the end of the list. 
 

Since there are only 16 buckets in the array and 50 states whose codes need to be 
stored in the dictionary, it must be the case that the codes for some of the states 
collide.  This fact is an application of what mathematicians call the pigeonhole 
principle, which simply says that if you have more pigeons than pigeonholes, you 
can’t house all the pigeons without having at least two pigeons in some pigeonhole. 
 

As it happens, the first collision in this example comes when you try to insert the 
entry for the state code "AZ", which also hashes to bucket #2.  The put method looks 
through the list of values that have already been added to bucket #2 to see if "AZ" is 
already there.  Since it isn’t, the put method adds a new entry to the list.  If you carry 
out this process for all 50 states, you end up with the diagram shown in Figure 11-10. 
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StateHashTable.png 



396     Dictionaries and Sets 

The implementation of the hash table works because get and put use the same 
code to determine the bucket number.  When you are looking up a key using get, you 
can rely on the fact that it must be in the bucket you calculate from the hash code if 
it is going to be anywhere in the table at all.  After all, the only way that key could 
have found its way into the table is if a previous call to put added it to the list stored 
in that bucket.  If the keys are the same, then get and put will calculate the same 
bucket number. 
 
Adjusting the number of buckets 
If you look at the distribution of keys in the hash table pictured in Figure 11-10, you 
will see that distribution is reasonably uniform.  None of the buckets contain more 
than five elements and none of them happen to be empty.  As you would expect, the 
lists in each buckets are of slightly different lengths because of the way random 
processes work.  Even so, the effect of the hashing strategy is to reduce the time 
needed to find a key in the table by a factor roughly equal to the number of buckets. 
 

In terms of computational complexity, however, it is not yet clear that the 
reduction in time will matter much as the size of the dictionary grows.  Big-O notation 
allows you to throw away constant factors.  If the number of buckets is always 16, all 
this most recent implementation has done is divide the average running time by 16, 
which means that the computational complexity of the put and get methods is still 
O(N). 
 

Although the details of the hash function are also important, the efficiency of a 
hash table depends on the number of buckets.  If the number of buckets is small, 
collisions occur more frequently.  In particular, if there are more entries in the hash 
table than buckets, collisions are inevitable.  Collisions affect the efficiency of the 
hash table because put and get have to search through longer lists.  As the hash table 
fills up, the number of collisions rises, which in turn reduces performance. 
 

It is important to remember that the goal of using a hash table is to optimize the 
put and get methods so that they run in constant time, at least in the average case.  
Achieving this goal requires that the lists stored in each bucket remain short, which 
in turn implies that the number of buckets must always be large in comparison to the 
number of entries.  Assuming that the hash function does a good job of distributing 
the keys evenly among the buckets, the average length of each bucket chain is given 
by the formula 
 

l  =  
 

 
For example, if the total number of entries in the table is three times the number of 
buckets, the average chain will contain three entries, which in turn means that three 
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string comparisons will be required, on average, to find a key.  This ratio, usually 
indicated by the Greek letter lambda (l), is called the load factor of the hash table. 
 

For good performance, you want to make sure that the value of l remains small.  
Although the mathematical details are beyond the scope of this text, maintaining a 
load factor of 0.7 or less means that the average cost of looking up a key in a 
dictionary is O(1).  Smaller load factors imply that there will be lots of empty buckets 
in the hash table array, which wastes a certain amount of space.  You can usually 
reduce the running time of a dictionary implemented as a hash table by being willing 
to consume more memory.  Conversely, you can often save memory by being willing 
to accept slightly slower performance.  Considerations of this sort come in many 
applications and are called a time-space tradeoff. 
 

Unless the hashing algorithm is engineered for a particular application in which 
the number of keys is known in advance, it is impossible to choose a fixed value for 
the number of buckets that works well for all clients.  If a client keeps entering more 
and more entries into a hash table, the performance will eventually degrade.  If you 
want to ensure good performance, the best approach is to allow the implementation 
to increase the number of buckets dynamically.  For example, you can design the 
implementation so that it allocates a larger hash table if the load factor in the table 
ever reaches a certain threshold.  Unfortunately, if you increase the number of 
buckets, the bucket numbers all change, which means that the code to expand the 
table must reenter every key from the old table into the new one.  This process is 
called rehashing.  Although rehashing can be time-consuming, it is performed 
infrequently and therefore has minimal impact on the overall running time of the 
application.  You will have a chance to implement rehashing in exercise 9. 
 
Hashing and computer security 
The techniques involved in hashing play an important role in several applications 
involving computer security.  The most common strategies used to prevent a 
malicious third party from making unauthorized changes to the content of a message 
is to include a digital signature as part of the message, which is essentially a hash 
code of its original contents.  When digital signatures are combined with secure 
encryption technology, forging a message become extremely difficult. 
 

Interestingly, hash tables have also been a source of vulnerability that allow 
hackers to overwhelm the capacity of a system by sending it time-consuming requests 
that prevent the system from responding to legitimate traffic.  This type of intrusion 
is called a denial-of-service attack.  Because hash tables are used in most 
implementations of web-based protocols, knowing how to slow those hash tables 
down becomes a useful tool in the hacker’s arsenal.  For example, if a hacker knows 
exactly how a hash function works, it is not difficult to send requests in which all the 
keys collide. 
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Python eliminates this problem by randomizing the hash function it uses for strings 
so that calling hash gives different values each time the interpreter is run.  This 
strategy prevents a hacker from exploiting collisions to reduce server performance.  
Within any single run of the interpreter, however, the hash function will give 
consistent results, which means that the hashing strategy continues to function 
correctly. 
 

 11.4 Sets 
The last built-in type covered in this chapter is the set class, which is an interesting 
object of study for a variety of reasons.  From the perspective of the Python 
programmer, sets often provide just the right tool for applications in which you need 
to keep track of a collection of distinct objects.  Beyond their practical value, 
however, sets provide a powerful mental model for thinking about programs, mostly 
because the properties of sets have been studied for so many years in the context of 
mathematics.  If mathematicians have known for centuries that some theorem is true 
in the context of mathematical sets, adopting that theoretical model can often make it 
easier to design, implement, and debug a program.  Finally, many intellectually 
exciting algorithms in computer science today use sets in their implementation.  If 
you code those algorithms in a language that includes—as Python does—a powerful 
set abstraction, the translation from an abstract algorithmic description to a working 
program is a much more straightforward process. 
 
Sets as a mathematical abstraction 
In all likelihood, you have already encountered sets at some point in your study of 
mathematics.  In general terms, it is easiest to think of a set as an unordered collection 
of distinct elements.  For example, the set whose elements are the names of the 
primary colors of light looks like this: 
 

{ "Red", "Green", "Blue" } 
 
The individual elements appear in this order only because it is conventional.  If the 
names were in a different order, it would still be the same set.  A set never contains 
multiple copies of the same element. 
 

The set of primary colors is a finite set because it contains a finite number of 
elements.  In mathematics, there are also infinite sets, such as the set of all integers.  
In a computer system, sets are usually finite, even if they correspond to infinite sets 
in mathematics. 
 

To understand the fundamental operations on sets, it is useful to have a few sets 
to use as a foundation.  In keeping with mathematical convention, this text uses the 
following symbols to refer to the indicated sets: 
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Æ The empty set, which contains no elements 
N The set of natural numbers (0, 1, 2, 3, . . .) 
Z The set of all integers 
R The set of all real numbers 

 
In mathematics, sets are most often written using a single uppercase letter.  Sets whose 
membership is defined—like N, Z, and R—are denoted using boldface letters.  
Names that refer to some unspecified set are written using italic letters, such as S and 
T. 
 

The fundamental property that defines a set is that of membership, which has the 
same intuitive meaning in mathematics that it does in English.  Mathematicians 
express membership symbolically using the notation x Î S, which indicates that the 
value x is an element of the set S.  For example, 17 Î N, –4 Î Z, and π Î R.  
Conversely, the notation x Ï S indicates that x is not an element of S.  For example, –
4 Ï N because the set of natural numbers does not include the negative integers. 
 

Mathematical set theory defines several operations on sets, of which the following 
are the most common: 
 
• Union.  The union of two sets is written as A È B and consists of all elements 

belonging to the set A, the set B, or both. 
 

{1, 3, 5, 7, 9} È {2, 4, 6, 8}  =  {1, 2, 3, 4, 5, 6, 7, 8, 9} 
{1, 2, 4, 8} È {2, 3, 5, 7}  =  {1, 2, 3, 4, 5, 7, 8} 
{2, 3} È {1, 2, 3, 4}  =  {1, 2, 3, 4} 

 
• Intersection.  The intersection of two sets is written as A Ç B and consists of the 

elements belonging to both A and B. 
 

{1, 3, 5, 7, 9} Ç {2, 4, 6, 8}  =  Æ 
{1, 2, 4, 8} Ç {2, 3, 5, 7}  =  {2} 
{2, 3} Ç {1, 2, 3, 4}  =  {2, 3} 

 
• Set difference.  The difference of two sets is written as A – B and consists of the 

elements belonging to A except for those that are also contained in B. 
 

{1, 3, 5, 7, 9} – {2, 4, 6, 8}  =  {1, 3, 5, 7, 9} 
{1, 2, 4, 8} – {2, 3, 5, 7}  =  {1, 4, 8} 
{2, 3} – {1, 2, 3, 4}  =  Æ 

 
• Symmetric set difference.  The symmetric difference of two sets is written as 

A △ B and consists of the elements belonging to either A or B but not both. 
 

{1, 3, 5, 7, 9} △ {2, 4, 6, 8}  =  {1, 2, 3, 4, 5, 6, 7, 8, 9} 
{1, 2, 4, 8} △ {2, 3, 5, 7}  =  {1, 3, 4, 5, 7, 8} 
{2, 3} △ {1, 2, 3, 4}  =  {1, 4} 
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Set operations are often illustrated by drawing Venn diagrams, which are named 
for the British logician John Venn.  In a Venn diagram, the individual sets are 
represented as geometric figures that overlap to indicate regions in which they share 
elements.  For example, the results of the set operations union, intersection, set 
difference, and symmetric set difference are indicated by the shaded regions in the 
following Venn diagrams: 
 

A È B A Ç B 

  
  

A – B A △ B 

  
 

In addition to set-producing operations like union, intersection, set difference, and 
symmetric set difference, the mathematical theory of sets also defines several 
operations that determine whether a property holds between two sets.  Operations that 
test a particular property are the mathematical equivalent of predicate methods and 
are usually called relations.  The most important relations on sets are the following: 
 
• Equality.  The sets A and B are equal if they have the same elements.  The equality 

relation for sets is indicated by the standard equal sign used to denote equality in 
other mathematical contexts.  Thus, the notation A = B indicates that the sets A 
and B contain the same elements. 

• Subset.  The subset relation is written as A Í B and is true if all the elements of A 
are also elements of B.  For example, the set {2, 3, 5, 7} is a subset of the set 
{1, 2, 3, 4, 5, 6, 7, 8, 9}.  Similarly, the set N of natural numbers is a subset of the 
set Z of integers.  From the definition, it is clear that every set is a subset of itself.  
Mathematicians use the notation A Ì B to indicate that A is a proper subset of B, 
which means that the subset relation holds but that the sets are not equal. 

 
One of the useful bits of knowledge you can derive from mathematical set theory 

is that the set operations are related to each other in various ways.  These relationships 
are usually expressed as identities, which are rules indicating that two expressions are 
invariably equal.  In this text, identities are written in the form 
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lhs º rhs 
 

which means that the set expressions lhs and rhs are equal by definition.  The most 
common set identities are shown in Figure 11-11. 
 

You can get a sense of how these identities work by drawing Venn diagrams to 
represent individual stages in the computation. Figure 11-12, for example, verifies 
the first of De Morgan’s laws listed in Figure 11-11, which are named after the British 
mathematician Augustus De Morgan, who first formalized these identities.  The 
shaded areas represent the value of each subexpression in the identity.  The fact that 
the Venn diagrams along the right edge of Figure 11-12 have the same shaded region 
demonstrates that the set A – (B È C) is the same as the set (A – B) Ç (A – C). 
 

Mathematical techniques are important to computer science for several reasons.  
For one thing, theoretical knowledge is useful in its own right because it deepens your 
understanding of the foundations of computing.  Moreover, this type of theoretical 
knowledge often has direct application to programming practice.  By relying on data 
structures whose mathematical properties are well established, you can use the 
theoretical underpinnings of those structures to your advantage.  For example, if you 
write a program that uses sets, you may be able to simplify your code by applying 
one of the standard set identities from Figure 11-11. Choosing to use sets as a 
programming abstraction, as opposed to designing some less formal structure of your 
own, makes it easier for you to apply theory to practice. 
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Sets in Python 
The beginning of the preceding section used the following notation to define a set 
consisting of the three primary colors of light: 
 

{ "Red", "Green", "Blue" } 
 

That expression is written in its conventional mathematical form, in which the 
elements of the set are enclosed in curly braces and separated by commas.  Python 
uses precisely that syntax.  You can, for example, assign that set to the variable 
primaries by writing 
 

primaries = { "Red", "Green", "Blue" } 
 

You can also create sets using set comprehensions, which are analogous to the list 
comprehensions introduced in Chapter 8.  For example, the expression 
 

{ i for i in range(10) } 
 
creates a set containing the integers from 0 to 9. 
 

Python’s set class includes built-in operators for all the mathematical operators on 
sets described in the preceding section.  These operators are listed, along with several 
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methods that apply to the set class in Figure 11-13.  Several of the most common set 
operators are illustrated in the following IDLE session: 
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 Summary 
This chapter explored two built-in types—dictionaries and sets—that are useful in a 
variety of applications.  The important points introduced in this chapter include: 
 

• A dictionary associates keys with values in a way that enables clients to retrieve 
those associations efficiently.  Python’s syntax for working with a dictionary is 
similar to the one it uses for lists.  You can retrieve the value for a particular key 
by enclosing the key in square brackets after the dictionary.  You can set a new 
value for a key by assigning to that same selection expression. 

• Python allows you to create a dictionary by enclosing a list of key-value pairs in 
curly braces.  The individual entries in that list consist of a key and a value 
separated by a colon. 

• The for statement makes it easy to iterate through the keys in a dictionary.  Since 
Python 3.6, the for statement returns the keys in the order in which they were 
inserted, but relying on that behavior makes your programs less portable.  You can 
also cycle through the key-value pairs in a dictionary by using the items method, 
which returns an iterable object that delivers each key-value pair as a tuple. 

• Python programmers often use dictionaries to implement data structures that are 
more traditionally thought of as records.  Several examples in Chapter 12 illustrate 
this model in more detail. 

• It is possible to implement the fundamental dictionary operations by storing 
key-value pairs in a list.  Keeping the list in sorted order by key makes it possible 
to find a key in O(log N) time, but this representation still requires O(N) time to 
insert a new key. 

• Dictionaries can be implemented very efficiently using a strategy called hashing, 
in which keys are converted to an integer that tells the implementation precisely 
where it should look for the matching key. 

• A common implementation of the hashing algorithm is to allocate an array of 
buckets, each of which contains a list of the keys that hash to that bucket.  As long 
as the ratio of the number of entries to the number of buckets does not exceed 
about 0.7, the operations of adding a new key or finding an existing one both run 
in O(1) time on average.  Maintaining this performance as the number of entries 
grows requires periodic rehashing to increase the number of buckets. 

• A set is an unordered collection of distinct elements.  You can create a set in 
Python by listing its elements inside curly braces.  The empty set must be written 
as set() because Python interprets the expression { } as an empty dictionary. 

• Sets provide a powerful mental model for thinking about programs because sets 
have a solid mathematical foundation.  The fundamental operations on sets are 
summarized in Figure 11-14 at the top of the next page. 
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 Review questions 
1. In your own words, define the concept of a dictionary as Python uses the term. 
 
2. List at least three application contexts in which the dictionary data structure is 

likely to prove useful? 
 
3. What happens if you select a key that doesn’t exist in a dictionary? 
 
4. How do you iterate over the keys in a dictionary? 
 
5. How does Python allow you to iterate over the keys and their associated values 

at the same time? 
 
6. What guarantees do the most recent versions of Python make about the order in 

which the for loop iterates through the keys in a dictionary?  Why might it be 
unwise to rely on this behavior? 

 
7. For the list-based implementation of a dictionary, what algorithmic strategy does 

the chapter suggest for reducing the cost of finding a key to O(log N) time? 
 
8. If you implement the strategy suggested in the preceding question, why does it 

still require O(N) time to insert a new key? 
 
9. What is meant by the term bucket in the implementation of a hash table? 
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10. What is a collision? 
 
11. In your own words, define the pigeonhole principle. 
 
12. In tracing through the code that enters state abbreviations into a hash table, the 

text notes that the entries for "AZ" and "AK" collide in bucket #2.  By looking at 
the diagram in Figure 11-10, determine what state abbreviations are involved in 
the next collision that occurs. 

 
13. What is a time-space tradeoff?  How does that concept apply to hash tables? 
 
14. What is meant by the term load factor? 
 
15. How does a hash table keep the load factor small as the number of keys grows. 
 
16. What is the approximate threshold for the load factor that ensures that the average 

performance of a hash table is O(1)? 
 
17. How does a set differ from a list? 
 
18. What sets are denoted by each of the following symbols: Æ, Z, N, and R? 
 
19. What do the symbols Î and Ï mean? 
 
20. What are the mathematical symbols for the operations union, intersection, set 

difference, and symmetric set difference? 
 
21. What is the difference between a subset and a proper subset? 
 
22. Give an example of an infinite set that is a proper subset of another infinite set. 
 
23. Evaluate the following set expressions expressed in mathematical notation: 
 

a. {1, 2, 3} È {1, 3, 4} 
b. {1, 2, 3} Ç {1, 3, 4} 
c. {1, 2, 3} – {1, 3, 4} 
d. ({1, 2, 3} – {1, 3, 4}) È ({1, 2, 3} – {1, 3, 4}) 

 
24. For each of the following set operations, draw Venn diagrams whose shaded 

regions illustrate the contents of the specified set expression: 
 

a. A  È (B Ç C) c. (A – B) È (B – A) 
b. (A – C) Ç (B – C) d. (A È B) – (A Ç B) 
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25. Write set expressions that describe the shaded region in each of the following 
Venn diagrams: 

 

a. 

 

b. 

 
 
26. How would you create a Python set containing 6, 28, 496, and 8128? 
 
27. True or false: You can use the syntax { } to designate the empty set in Python. 
 
28. What are the Python operators that correspond to the mathematical operators 

Î, È, Ç, △, Ì, and Í? 
 
29. What is the value of the Python expression len(set("hello"))? 
 

 Exercises 
1. In many word games, letters are scored according to their point values, which are 

inversely proportional to their frequency in English words.  In Scrabble™, the 
points are allocated as follows: 

 

Points Letters 
1 A, E, I, L, N, O, R, S, T, U 
2 D, G 
3 B, C, M, P 
4 F, H, V, W, Y 
5 K 
8 J, X 

10 Q, Z 
 

For example, the word "FARM" is worth 9 points in Scrabble: 4 for the F, 1 
each for the A and the R, and 3 for the M.  Write a function scrabble_score that 
takes a word and returns its score in Scrabble, not counting any of the other 
bonuses that occur in the game.  You should ignore any characters other than 
uppercase letters in computing the score. 

 
2. In Roman numerals, characters of the alphabet are used to represent integers as 

shown in this table: 
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symbol value 
I 1   
V 5   
X 10   
L 50   
C 100   
D 500   
M 1000   

 

Each character in a Roman numeral stands for the corresponding value.  
Ordinarily, the value of the Roman numeral as a whole is the sum of the 
individual character values in the table.  Thus, the string "LXXVI" denotes 
50 + 10 + 10 + 5 + 1, or 76.  The only exception occurs when a character 
corresponding to a smaller value precedes a character representing a larger one, 
in which case the value of the first letter is subtracted from the total, so that the 
string "IX" corresponds to 10 - 1, or 9. 

 

Write a function roman_to_decimal that takes a string representing a Roman 
numeral and returns the corresponding decimal number.  To find the values of 
each Roman numeral character, your function should find that character in a 
dictionary that implements a lookup table.  If the string contains characters that 
are not in the table, roman_to_decimal should return -1. 

 
3. Even though the CountLetterFrequencies.py program in Chapter 8 was 

designed to show how lists can be used for tabulation, its operation is 
conceptually more closely related to the idea of a dictionary in which each 
individual letter serves as a key whose corresponding value is the letter count.  
Rewrite the CountLetterFrequencies.py program so that it uses a dictionary 
rather than a list in its implementation.  As before, the table of letter frequencies 
should appear in alphabetical order. 

 
4. In May of 1844, Samuel F. B. Morse sent the message “What hath God wrought!” 

by telegraph from Washington to Baltimore, heralding the beginning of the age 
of electronic communication.  In his 1998 book, The Victorian Internet, British 
journalist Tom Standage goes so far as to argue quite plausibly that the impact 
of the telegraph on the 19th-century world was in many ways more profound 
than the impact of the Internet on the 20th. 

 

To make it possible to communicate information using only the presence or 
absence of a single tone, Morse designed a coding system in which letters and 
other symbols are represented as coded sequences of short and long tones, 
traditionally called dots and dashes.  In Morse code, the 26 letters are represented 
by the codes in Figure 11-15. 

 

 
Samuel F. B. Morse 
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Write a program that reads in lines from the user and translates each line 
either to or from Morse code, depending on the first character of the line: 

 

• If the line starts with a letter, you need to translate it to Morse code.  Any 
characters other than the 26 letters should simply be ignored. 

• If the line starts with a period (dot) or a hyphen (dash), it should be read as 
a series of Morse code characters that you need to translate back to letters.  
You may assume that each sequence of dots and dashes in the input string 
will be separated by spaces, and you are free to ignore any other characters 
that appear.  Because there is no encoding for the space between words, the 
characters of the translated message will be run together. 

 

The program should end when the user enters a blank line.  A sample run of this 
program (taken from the messages between the Titanic and the Carpathia in 
1912) might look like this: 

 

 
 
5. Telephone numbers in the United States and Canada are organized into various 

three-digit area codes.  A single state or province often has many area codes, but 
a single area code never crosses a state or provincial boundary.  This rule makes 
it possible to list the geographical locations of each area code in a data file.  For 
this problem, assume that you have a file AreaCodes.txt, which lists all the 
area codes paired with their locations, as illustrated by the first few lines of that 
file: 
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Using the FindAirportCodes.py program from Figure 11-4 as a model, 
write the code necessary to read this file into a dictionary where the key is the 
area code and the value is the location.  Once you’ve read in the data, write a 
program that repeatedly asks the user for an area code and then looks up the 
corresponding location, as illustrated in the following sample run: 

 

 
 

As the prompt suggests, however, your program should also allow users to 
enter the name of a state or province and have the program list all the area codes 
that serve that area, as illustrated by the following sample run: 

 

 
 

6. Poets who write rhymed verse sometimes make use of a rhyming dictionary, 
which lists all words with a particular ending.  Although rhyming dictionaries 
find words based on their sound, it is still helpful to match words by spelling. 

 

Write a function create_suffix_dictionary that uses the english library 
to create a dictionary in which the keys are every string that appears at the end 
of some word in the dictionary and whose length is between two and five letters.  
The corresponding value in the dictionary should be a list of all the words in the 
dictionary that end with that suffix.  For example, the value associated with the 
key "lege" should be the list 

 

[ "allege", "college", "privilege", "sacrilege" ] 
 

because those are the only English words ending in "lege". 
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7. Write a program that displays a table showing the number of words that appear 
in the english module introduced in Chapter 3, sorted by the length of the word.  
The output of the program should look like this: 

 

 
 
8. The two implementations of Dictionary class in this chapter—the list-based 

dictionary in Figure 11-7 and the hash-based dictionary in Figure 11-9—do not 
implement the full set of methods from Figure 11-6.  Add the necessary code to 
implement the pop and clear methods as well as the len function, which 
happens automatically if you define a __len__ method for the class. 

 
9. Modify the code for the Dictionary class in Figure 11-9 so that it implements 

rehashing.  Your implementation should keep track of the load factor for the hash 
table and perform a rehashing operation that doubles the number of buckets 
whenever the load factor exceeds the limit indicated by a constant defined as 
follows: 

 

REHASH_THRESHOLD = 0.7 
 

10. Write a program to evaluate the performance of the hashing algorithm by adding 
a display_statistics method to the Dictionary class in the 
HashDictionary module.  This method should report the number of items, the 
number of buckets, and the load factor, along with the mean and standard 
deviation of the lengths of the bucket chains.  The mean is equivalent to the 
traditional average. The standard deviation is a measure of how much the 
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individual values tend to differ from the mean.  The formula for calculating the 
standard deviation of the lengths of the chains is 

 

 
 

where N is the number of buckets, leni is the length of the list stored in bucket i, 
and lenave is the average list length.  If the hash function is working well, the 
standard deviation should be relatively small in comparison to the mean, 
particularly as the number of symbols increases. 

 
11. Although the bucket-chaining approach described in the text works well in 

practice, other strategies exist for resolving collisions in hash tables.  In the early 
days of computing—when memories were small enough that the cost of 
introducing extra reference was taken seriously—hash tables often used a more 
memory-efficient strategy called open addressing, in which the key-value pairs 
are stored directly in a list, like this: 

 

 
 

For example, if a key hashes to bucket #2, the open-addressing strategy tries to 
put that key and its value directly into the entry at hashtable[2]. 

 
The problem with this approach is that hashtable[3] may already be 

assigned to another key that hashes to the same bucket.  The simplest approach 
to dealing with collisions of this sort is to store each new key in the first free cell 
at or after its expected hash position.  Thus, if a key hashes to bucket #2, the put 
and get functions first try to find or insert that key in hashtable[2].  If that 
entry is filled with a different key, however, these functions move on to try 
hashtable[3], continuing the process until they find an empty entry or an entry 
with a matching key.  If the index advances past the end of the list, it should wrap 
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around back to the beginning.  This strategy for resolving collisions is called 
linear probing. 

 
12. Sets are straightforward to implement because most of the operations can be 

layered on top of Python’s dictionary abstraction.  The basic idea is that the 
elements of the sets are the keys in the dictionary.  An element is in the set if its 
corresponding value is True; an element is not in the set if that element does not 
appear as a key in the dictionary or if it has the value False. 

 

Define a Set class that implements the operators and methods shown in 
Figure 11-16.  The implementation requires overloading several special methods 
for the various operators.  The names of those methods are included in the 
descriptions. 

 

In writing your own implementation of the Set class, you should keep the 
following points in mind: 

 

• You should use Python’s dict class to store the internal dictionary. 
• Your Set class should support iteration. 
• Note that sets raise ValueError when a dictionary would raise KeyError. 
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13. Write a Python program that reads in two sets from the user and then displays 
the result of applying the union, intersection, set difference, and symmetric set 
difference operators on those sets.  A sample run of the program might look like 
this: 

 

 
 

The easiest way to let the user enter the sets is to use the input function to 
read in a line and then call the built-in eval method to evaluate the result as a 
Python expression. 

 
14. The power set of a set is defined as the set of all its subsets.  For example, the 

power set of {a, b, c} is 
 

{ Æ, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c} } 
 

Write a Python function power_set that takes a set s and returns a list of the 
subsets of s.  For example, calling power_set({1,  2}) should return the 
following Python list: 

 

[ set(), {1}, {2}, {1, 2} ] 
 

The return value must be a list because Python does not support sets of sets, given 
the implementation restriction that set elements must be immutable. 

 

The hard part of this problem is coming up with a recursive strategy for 
generating the subsets.  As you try to solve this problem, you need to think about 
how being able to generate all the subsets of a set containing N - 1 elements might 
help you generate all the subsets of a set with N  elements. 

 
15. Write a program that lets the user choose an input file and then checks the 

spelling of all words in the file, where a word is any token that consists entirely 
of alphabetic characters.  When your program finishes scanning the file, it should 
print out an alphabetical list of the words in the file that don’t appear in the 
English dictionary.  This program is surprisingly short as long as you make use 
of the library modules you have seen. 
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Modularity based on abstraction is the way things are done. 
—Barbara Liskov, Turing Award Lecture, 2009 

 
 
 
 
 

 
Barbara Liskov (1939–) 

 

Barbara Liskov earned her bachelor’s degree in mathematics from the University of California at Berkeley 
in 1961.  After being introduced to computers and programming through jobs at the MITRE Corporation and 
Harvard University, Liskov returned to California, where she received her Ph.D. in Computer Science from 
Stanford University in 1968.  For most of her career, Liskov was Professor of Electrical Engineering and 
Computer Science at the Massachusetts Institute of Technology, where she conducted pioneering work on 
data abstraction in programming languages.  The ideas that she championed about the importance of 
encapsulation have since become commonplace.  For her many contributions, Liskov received the ACM 
Turing Award in 2009.  On that occasion, MIT Provost L. Rafael Rife observed “every time you exchange 
e-mail with a friend, check your bank statement online or run a Google search, you are riding the momentum 
of her research.”
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Chapters 8, 10, and 11 introduced you to several compound types—lists, tuples, 
dictionaries, sets, and programmer-defined classes—which make it possible to 
represent collections of data values in your Python programs.  Those chapters, 
however, concentrate on how those types are used in isolation.  This chapter focuses 
instead on how you can combine these individual data models into data structures that 
are useful in applications, which requires thinking about data representation in a more 
holistic way. 
 

 12.1 Abstract data types 
In Chapter 10, you learned about encapsulation and how to use it to define classes in 
which the variables that maintain the internal data are stored in attributes of the class 
that are marked as off-limits to clients.  Those classes are examples of a more general 
concept in computer science called an abstract data type or ADT, which corresponds 
in Python to a class that uses encapsulation to separate its behavior from the details 
of its representation.  As a client of an ADT, you know what the methods of that class 
do but not how those methods are implemented. 
 

As a programming model, ADTs offer the following advantages: 
 
• Simplicity.  Hiding the internal representation from the client means that there are 

fewer details for the client to understand. 

• Flexibility.  Because a class is defined in terms of its public behavior, the 
programmer who implements a class is free to change the internal representation.  
As with any abstraction, it is appropriate to change the implementation as long as 
the interface remains the same. 

• Security.  The interface boundary acts as a wall that separates the client and the 
implementation.  If a client program has access to the representation, it can change 
values in the underlying data structure in unexpected ways.  Keeping the 
representation private prevents the client from making such changes. 

 
The first two examples of ADTs from Chapter 10—the GPoint class from 

section 9.2 and the Rational class from section 10.3—are relatively simple.  Those 
classes are also immutable, which means that, once you have created an object of that 
class, the internal state never changes.  Immutable classes have many advantages, 
particularly in applications that use more than one processor. 
 

In practice, many classes—including the TokenScanner class from section 10.5, 
which is the other ADT you’ve seen—need to maintain internal state information that 
changes over time.  The variables that keep track of that state information must be 
included in the object state accessible through the self parameter. 
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 12.2 Representing real-world data 
One of the most important skills that software developers need to learn is how to 
represent real-world information in a form that computers can easily manipulate.  As 
a concrete example, let’s suppose that you have been hired by a political party to store 
voting data from past presidential elections on the theory that understanding the 
historical data may yield important insights that affect elections in the future.  As a 
starting point, it is a useful exercise to design a data structure to represent the 
information shown in Figure 12-1 on the next page, which lists the popular vote for 
the four largest parties in the 2020 presidential election in the United States. 
 

Given the data in Figure 12-1, the important question to ask is how to represent 
the electoral information in a way that preserves the relationships among the 
individual data values.  In doing so, it is important to avoid jumping to conclusions 
based on the way in which the information is presented to human readers.  For 
example, the two-dimensional structure of a printed table does not necessarily imply 
that the best representation is a two-dimensional array, but may simply indicate that 
this representation is easiest to display on the printed page. 
 

As you design a data structure for the state-by-state electoral tallies—or any data 
structure, for that matter—it is important to keep in mind that Python’s data structures 
are tools.  Designing effective data structures requires you to think in a holistic way 
that takes a more abstract view.  Thinking holistically makes it easier to recognize the 
relationships that define the overall structure. 
 

You have already seen examples of the following abstract structures: 
 

• Sequences.  A sequence is an abstract data structure in which the individual 
elements form a logical sequence in which you can identify each element by its 
position.  In Python, sequences are implemented using the built-in list type. 

• Records.  A record is an abstract data structure in which the elements are part of 
a logical whole but not in an ordered relationship.  Python supports several 
strategies for implementing records.  If the records are small, tuples are often an 
appropriate choice.  If the record has more complex structure or if you want to 
associate methods with the data, the usual approach is to define a class to represent 
each record of a particular type.  A third alternative is to use a dictionary in which 
the keys are the attribute names and the values are the corresponding attribute 
values. 

• Map.  A map is an abstract data structure in which a set of keys is associated with 
a corresponding set of values.  Python implements maps using the built-in dict 
class. 
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PresidentialElection2020Figure.png 
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Choosing which of these structures to use depends on the characteristics of the 
data you are trying to model.  If the data collection has a first element, a second 
element, and so on, a sequence is usually the most appropriate choice.  If instead the 
data collection consists of independent pieces, you presumably want to use a record.  
Finally, if the data collection contains a set of values each of which is marked with a 
unique key, you are likely to choose a map. 
 

There are at least two reasons why a two-dimensional array is probably not the 
best option for storing the voting data.  First, elements of an array are usually of the 
same type, even though Python does not enforce that restriction.  In the table of 
election results, the rows have the same structure, but the columns do not.  The first 
column in each row is the number of electoral votes assigned to that state, while the 
other columns list vote totals by party.  This distinction suggests that each row is best 
represented as a record with three properties: 
 
1. The name of the state, which appears in Figure 12-1 as the row heading 

2. The number of electoral votes 

3. A dictionary that links party names and the vote totals for that party 
 

One approach, which you will have a chance to explore in the exercises, is to 
define a class that encapsulates these three attributes into a single structure.  That 
strategy has several important advantages, particularly if the classes you design 
include methods that associate behavior with the underlying data.  In Python, 
however, it is often more convenient to represent data structures using only Python’s 
built-in types.  This strategy avoids the overhead of defining new classes by finding 
a way to represent your real-world data by assembling the complete structure from its 
individual pieces. 
 

If you adopt this strategy, the data for the election would at the top level be a list 
in which each element corresponds to one of the fifty states plus the District of 
Columbia.  These elements therefore represent the rows in Figure 12-1.  Each of those 
elements is then a record containing the three items listed at the bottom of the previous 
page: the state name, the number of electoral votes, and the dictionary linking party 
names and vote totals. 
 

Given that one of the goals of this example is to show how to create abstract data 
types without defining new classes, the remaining options for representing this record 
are to use a tuple or to create a dictionary with keys for each attribute, which might 
be "name", "electoral_votes", and "party_totals".  Although the first option 
is simpler, the second makes it possible to encode the election information in an easily 
readable form, as described in the following section. 
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Representing structured data in text form 
Historically, applications that needed to read and write data to and from files did so 
using a representation specific to each application.  The various applications that are 
part of Microsoft Office, for example, used to store files in binary format.  Word files 
ending with .doc used one format, Excel files ending with .xls used a different 
format, and PowerPoint files ending with .ppt used yet another format.  Following a 
general push toward more open standards in the industry, Microsoft changed its entire 
suite of applications in 2007 to use a text-based form called XML, which stands for 
Extensible Markup Language.  This change is reflected in the new file types .docx, 
.xlsx, and .pptx.  Applications that use XML to represent data files are significantly 
easier to write and maintain.  As a result, XML has become increasingly common as 
a model for representing data. 
 

XML, however, is not the only text-based model to become popular in recent 
years.  The growing popularity of JavaScript as a language for writing web-based 
applications has generated increasing interest in JavaScript’s data model.  The 
growing interest has led in turn to the creation of a new standard for representing 
compound objects that simplifies the process of sharing data between applications, 
even if those applications are coded in different languages.  This model is called 
JavaScript Object Notation, which is typically shortened to JSON. 
 

Although JSON was derived from JavaScript’s standard notation for objects, it 
turns out to be remarkably similar to the notation that Python uses for the same 
purpose.  Strings, numbers, lists, and dictionaries are represented identically in 
Python and JavaScript.  As a result, JSON notation is instantly recognizable to Python 
programmers.  Figure 12-2, for example, shows the election data from Figure 12-1 as 
it appears in JSON form.  The code displayed in Figure 12-2 is legal JSON and legal 
Python at the same time. 
 

Although there are minor differences between the syntactic rules used by JSON 
and Python, it is straightforward to translate one to the other.  Modern versions of 
Python include a built-in library called json that translates back and forth between 
files written in JSON and Python’s data structures.  The function 
 

json.load(file) 
 
reads the next JSON data structure from the specified file object into its equivalent 
representation in Python.  To translate in the other direction, you can call 



 12.2 Representing real-world data     421 

 

json.dump(object, file) 
 
which writes a text representation of the object to the specified data file. 
 

If the file PresidentialElection2020.json contains the data shown in 
Figure 12-3, you can read that data structure into Python using the following code, 
assuming that you have imported the json library at the beginning of the module: 
 

with open("PresidentialElection2020.json") as f: 
    election_data = json.load(f) 

 
The variable election_data now contains a list with 51 elements, one for each state 
and the District of Columbia.  Each of those elements is a dictionary whose three keys 
define a record with the fields name, electoral_votes, and party_totals.  The 
party_totals fields are dictionaries that map the name of a party to the number of 
votes it received in the election for that state. 
 

The CountVotes module in Figure 12-3 on the next two pages defines several 
functions that work with election data along with a program to generate a report. 
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CountVotes-py-p1.png 
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The effect of running CountVotes.py as a program is illustrated in the following 
sample run: 
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The structure of the CountVotes.py application is surprisingly flexible.  It is easy 
to substitute election data for any other year just by entering the name of a different 
data file.  For example, if you were to create a new JSON file for the 2016 presidential 
election, you would see the following result: 
 

 
 

 
In much the same way, you can use this code with minimal modification to prepare 

reports for other elections.  For example, if you prepare a JSON data file in which 
every electoral_votes field has the value 1, you can use the same program with 
minimal modifications to display the results of a parliamentary election in which the 
states are replaced by parliamentary constituencies.  The following sample run, for 
example, shows the results of the June 2017 election in the United Kingdom: 
 

 
 
There are more parties, but the structure of the program is the same. 
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The code in Figure 12-5 includes another feature that is worth noting.  The 
functions print_totals and determine_winner each use the built-in sorted 
function to ensure that the for loop iterates through the sequence of party-vote pairs 
in descending order by the vote component of the tuple.  The key and the reverse 
parameters have exactly the same effect for sorted as they do for the built-in sort 
function, which was described in Chapter 9. 
 

 12.3 Data-driven programs 
Computers got their start as machines designed to process data.  Today, programs 
often use data not as passive information to be processed but instead to control the 
program’s operation.  Programs that allow data to control their execution are said to 
be data-driven.  In a typical data-driven program, the source of the data is external to 
the program, in the sense that it is not actually part of the code.  The data may be 
stored in a text file or in some more highly structured form.  The program then 
operates in two phases.  In the first phase, the program reads the data from the external 
source into an internal data structure that represents the same information.  In the 
second, the program uses the internal structure to control its operation. 
 
Programmed instruction courses 
As with most programming concepts, the idea of a data-driven program is easiest to 
illustrate by example.  The goal of this section is to create a “teaching machine” that 
uses a strategy called programmed instruction in which a computerized teaching tool 
asks a series of questions so that previous answers determine the order of subsequent 
questions.  As long as a student is getting the right answers, the programmed 
instruction process skips the easy questions and moves on to more challenging topics.  
For the student who is having trouble, the process moves more slowly, leaving time 
for repetition and review.  Although the idea of programmed instruction was quite the 
rage some 40 years ago, it didn’t live up to the potential its proponents claimed.  Even 
so, building a simple teaching machine based on the programmed-instruction model 
offers a useful illustration of data-driven programs. 
 

To make the idea of a teaching-machine application more concrete, it helps to 
imagine how the student might use it.  When the program starts, it begins by asking 
the student a question.  For example, a programmed-instruction course on Python 
might begin like this: 
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The program then waits for the student to enter an answer.  Depending on the 
response, the program will choose the next question either to provide more review or 
to let the student move ahead more quickly.  For example, if the student enters an 
incorrect answer, the program will provide feedback and continue with another 
question about the / operator, which might look like this: 
 

 
 
If the student instead supplies the correct response, the program moves on to a 
different topic, as shown in the following console session: 
 

 
 

Students who continue to supply the correct answers can proceed through the 
course very quickly.  Those who are having more trouble with the material have to 
make their way through a larger set of questions. 
 
Designing for flexibility 
It is possible to design a programmed instruction application by writing a set of 
Python functions.  Each function asks a question, reads in an answer, and then calls 
another function appropriate to the answer the student supplies.  Such a program, 
however, would be difficult to change.  Someone who wanted to add questions or 
design an entirely new course would need to write new functions.  Writing functions 
is simple enough for someone who understands programming, but not everyone does.  
The designers of programmed instruction courses are typically teachers in a specific 
discipline with little programming expertise.  Forcing them to work in the 
programming domain—or even to use the JSON format introduced earlier in the 
chapter—limits the number of people who can use your application. 
 

As the software developer for the teaching machine project, your goal is to write 
an application that presents a programmed instruction course to the student but allows 
teachers without programming skills to supply the questions, expected answers, and 
sequencing information that allows the application to ask the questions in the 
appropriate order.  To do so, the best approach is to design your application as a 
general tool that takes all data pertaining to the programmed instruction course from 
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a data file.  If you adopt this approach, the same program can present many different 
courses by using different files. 
 
Framing the problem 
At one level, it is easy to outline the operation of the teaching machine application.  
When the program runs, it repeatedly executes the following steps: 
 
1. Ask the student the current question.  A question consists of one or more lines of 

text, which you can represent as strings. 

2. Request an answer from the student, which can also be represented as a string. 

3. Look up the answer in a list of possibilities provided for that question.  If the 
answer appears in the list, consult the data structure to choose what question 
should become the new current question.  If the student’s answer does not match 
any of the possibilities provided by the course data file, the student should be 
informed of that fact and given another chance at the same question. 

 
Many details are missing from this outline, but it is a start.  Even at this level, the 
outline provides some insight into the eventual implementation.  For example, you 
know that you need to keep track of what the “current question” is, which means that 
you need to have some way of identifying individual questions. 
 

Coding the actual program turns out to be one of the easier pieces of the task; the 
harder problems arise in designing an appropriate data structure.  For the program to 
be general and flexible, all the information that pertains to an actual course cannot be 
built into the program but must instead be stored in a data file.  The program’s job is 
to read that data file, store the information in an internal data structure, and then 
process that structure as outlined earlier in this section.  Thus, your next major task is 
to design the data structures required for the problem so that you have a context for 
building the program as a whole. 
 

The process of designing the data structure has two distinct components.  First, 
you have to design an internal data structure for use by the program.  The internal 
data structure consists of type definitions that use Python’s data structures so that the 
resulting types mirror the organization of the real-world information you seek to 
represent.  Second, you must design an external data structure that indicates how the 
information is stored in the data file.  These two processes are closely related, mostly 
because they each represent the same information.  Even so, the two structures are 
tailored to meet different purposes.  The internal structure must provide all the 
information necessary to write the program.  The external structure must allow 
someone without much programming knowledge to write a course. 
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Designing the internal representation 
The first step in the process is to design a data structure that incorporates the necessary 
information.  If you spend a little time thinking about what data must be stored for 
the teaching machine application, it quickly becomes clear that there are two levels 
at which creating an abstract data type makes sense.  The first is at the level of the 
course as a whole.  The second is at the level of an individual question.  Each of these 
abstract types can be implemented as a Python class.  The TMCourse class models the 
complete course and therefore conceptually contains a list of questions.  The 
TMQuestion class models a single question and contains the text of the question, 
along with a list of possible answers and their associated transitions. 
 

The process of identifying what classes you need and giving those classes names 
helps enormously in refining the data structure design.  Even so, there are still many 
details that you need to fill in before you can write the implementation.  The preceding 
paragraph observes that a course contains what is conceptually a list of questions, but 
it is not yet clear whether the underlying implementation should use Python’s list 
class or some other structure.  To make that decision, you need to think more carefully 
about how to identify each individual question. 
 

One of the dangers in making a premature commitment to a particular data 
structure is that doing so may lead you to make other decisions that are not the best 
for the application.  For example, if you somehow get it into your head that the 
questions in a TMCourse object need to be stored in a Python list, the natural 
assumption is that the questions will be numbered.  That idea certainly seems 
reasonable at first.  The questions, of course, do get written down in some order, and 
it is not immediately clear why a list is not precisely the structure you need. 
 

Using sequential numbers to identify each question makes it much more difficult 
to edit the course.  Each question must be able to refer to other questions so that the 
teaching machine program can move through the questions in a sequence controlled 
by the student’s answers.  Given a particular question, a correct response might take 
the student to question 6, and an incorrect answer might direct the student to question 
17.  But what happens if a course designer decides to add a new question?  In that 
case, any question numbers that follow the inserted question would increase by one.  
The designer would have to go back through the course and fix any references to 
questions whose sequence numbers had changed. 
 

 This problem can be avoided entirely by giving the questions names instead of 
numbers.  The course designer gives each question a name, which is then used to 
identify that question in the sequencing information.  Given that design, adding a new 
question doesn’t require changing any existing ones, except for those that refer to the 
new question.  If questions are named rather than numbered, the underlying structure 
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inside TMCourse is presumably not a list but instead a dictionary that maps question 
names to the corresponding TMQuestion objects. 
 

 The TMQuestion class encapsulates several different attributes: the question 
name, the text of the question, and a structure that associates each possible answer 
with the name of the question that follows this one if the student gives that answer.  
The name attribute is a string, the text attribute is presumably a list of strings to 
accommodate multiline questions, and the structure containing the answers is almost 
certainly a dictionary since it associates answers with question names. 
 
Designing the external structure 
Before you turn to the details that will allow you to write the definitions of TMCourse 
and TMQuestion, it helps to think about how that information is stored in the data 
file.  Files are simply text, and the organization provided by the Python data structures 
must be expressed in the design of the file format.  The file format must also make it 
easy for someone to write and edit, even if that person is not a programmer.  Thus, 
you should choose a representation that is as simple as possible.  In this case, it seems 
easiest to write out each question, one after another, along with its likely answers.  So 
that the computer can tell where the one question stops and the next question begins, 
you must define some convention for separating the individual questions.  A blank 
line works well in this context, as it does in most file structures.  Thus, in individual 
units separated by blank lines, you have the data for each question and its answers. 
 

But what goes into the text representation for the information pertaining to a single 
question?  First of all, you need the text of the question, which consists of individual 
lines from the file.  You also need some way to indicate the end of the question text, 
and the easiest way, both for you and for the course designer, is to define a sentinel.  
The program defined later in this chapter uses a line of five dashes for this purpose.  
Furthermore, you must allow the course designer to specify pairs that link an answer 
with the name of the next question.  A simple approach is to specify both these values 
on a single line consisting of the answer text, a colon, and the name of the next 
question.  Other formats are certainly possible, but this design seems as if it would be 
easy for a course designer to learn.  Thus, the data for an individual question entry in 
the file looks like this: 
 

 
 
The name of the question is "DivQ1", which presumably indicates that this is the first 
question about Python’s division operator.  The text of the question consists of a 
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single line, after which there are two acceptable answers.  If the student types in the 
incorrect answer 1, the program should go to the question named "DivQ2".  If the 
student types in the correct answer of 1.5, the program should move on to the question 
named "DivQ4". 
 

But what if the student types in some other answer like 17 or 3/2?  In the original 
informal design, the proposal was to have the application tell the student that it didn’t 
recognize the answer and then repeat the same question.  As is often the case, working 
through a problem reveals weaknesses in the initial design.  It would be better if the 
data structure allowed the course designer to specify a default next question if the 
student offers any other answer.  Computer scientists often use an asterisk to match 
an arbitrary string of characters, so this notation seems as if it would be a reasonably 
intuitive choice.  Adding in an any-other-answer transition leads to the following file 
format for the first question: 
 

 
 

The data file entries for DivQ2 and DivQ3 might then look like this: 
 

 
 
Each of these questions tells the student that the answer is incorrect, but DivQ2 can 
be more specific about the reasons. 
 

Figure 12-6 on the next page shows a complete data file for a short course on 
Python.  Figure 12-7 on page 432 shows the internal form of the same information. 
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ExternalFormFigure.png 
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InternalFormFigure.png 
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Coding the program 
Once you have defined the internal data structure and the external file format, the 
process of writing the code for the teaching machine program is reasonably 
straightforward.  The main program for the teaching machine application appears in 
Figure 12-6, at the bottom of this page.  Like most data-driven programs, the teaching 
machine applications runs in two phases.  The first phase reads in the data from the 
data file and translates it into its internal form.  The second phase uses the internal 
structure to step through the program operation as specified by the data.  The 
TeachingMachine.py module delegates responsibility for reading the data files and 
translating them into the internal representation to two other classes—TMCourse and 
TMQuestion—each of which is defined in its own module. 
 

The code for the TMCourse.py module appears in Figure 12-7, which begins at 
the top of the next page.  The module includes both the definition of the TMCourse 
class and a top-level function called read_course that reads an open data file and 
returns a TMCourse object.  As the comments indicate, the read_course function is 
logically associated with the TMCourse class but is not applied to an object. 
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TMCourse-py-p1.png 



 12.3 Data-driven programs     435 

The TMCourse class exports two methods.  The first is get_question, which 
returns the TMQuestion that corresponds to a question name.  The second is the run 
method, which guides the user through the questions, adapting the order of questions 
to the user’s responses. 
 

Figure 12-8 shows the code for the TMQuestion class, which stores the data for a 
single question.   The TMQuestion constructor takes the internal data values, which 
are the question name, the list of lines containing the question text, and the dictionary 
mapping answers to the name of the next question.  The class exports getter methods 
for the name and text, along with a lookup_answer method, which checks the user’s 
response against the expected answer and returns the name of the next question.  The 
lookup_answer method also checks to see if the answer dictionary contains the 
special key "*", which matches any response.  If there is no "*" option and no answer 
matches the response, lookup_answer returns None. 
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TMQuestion-py-p2.png 
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Changing the application domain 
The fact that the TeachingMachine.py application takes its data from a data file 
makes it possible to use the program in entirely different contexts.  As an example, if 
you ask the program to use the data file shown in Figure 12-9, the same teaching 
machine program plays a game reminiscent of the Adventure program created by 
Willie Crowther in the early 1970s. 
 

As a player in Crowther’s Adventure game, you assume the role of an adventurer 
wandering through a cave.  The individual locations in the cave are generically called 
rooms, even though they might be outside.  You move through the cave by typing 
simple commands, which the program uses to move you from room to room.  The 
original game also includes objects that you can pick up along the way, some of which 
give you access to otherwise inaccessible rooms.  The teaching machine doesn’t 
support that feature, but you will have the chance to implement it in exercise 6. 
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If you run the TeachingMachine.py program with the Adventure.txt data file, 
you might see a console session that looks like this: 
 

 
 
As the sample run shows, someone who uses the program with the Adventure.txt 
file will perceive the program’s purpose very differently than someone who runs it 
with the Python.txt file.  Even though the TeachingMachine program has not 
changed at all, the programmed instruction course has become an adventure game.  
The only difference is the data file. 
 

 Summary 
This chapter explores how to create more sophisticated data structures using the tools 
that Python provides.  Important points in this chapter include the following: 
 
• Classes that implement a set of operations without revealing the internal data 

structures are called abstract data types.  Abstract data types offer several 
advantages including simplicity, flexibility, and security. 

• Separating behavior and representation in an abstract data type allows the 
implementer to change that representation without adversely affecting clients. 

• In designing the data structure for an application, it is usually better to think in 
terms of abstract conceptual models—sequences, records, and maps—rather than 
the concrete structures—lists, classes, and dictionaries—used to represent them. 

• It is important to think carefully about structural relationships and avoid jumping 
to premature conclusions arising from how information is presented. 

• Modern applications tend to use text-based representations to store complex data 
structures in files.  Two common text-based strategies are XML (Extended Markup 
Language) and JSON (JavaScript Object Notation).  The JSON model is 
particularly useful in Python because the syntax for strings, numbers, lists, and 
dictionaries in Python matches the syntax used in JSON. 
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• Programs in which the control flow is determined by the data structure are said to 
be data driven.  Data-driven programs are usually shorter, more flexible, and 
easier to maintain than programs that incorporate the same information directly 
into the program design. 

• Data-driven programs typically have two formats for the data: an external format 
stored in a data file and an internal format stored as a hierarchical combination of 
objects and built-in types. 

 

 Review questions 
1. What is an abstract data type? 
 
2. True or false: One of advantages of separating the behavior of an abstract data 

type from its underlying representation is that doing so makes it possible to 
change that representation without forcing clients to change their programs. 

 
3. What do the abbreviations XML and JSON stand for? 
 
4. True or false: The syntax for strings, numbers, lists, and dictionaries is the same 

in both Python and JSON. 
 
5. What is a data-driven program? 
 
6. In your own words, describe the differences between the internal and external 

data representations used by data-driven programs. 
 

 Exercises 
1. Use the data from the PresidentialElection2020.json file to find all states 

in which the winning candidate got less than 50 percent of the vote.  In 2020, 
three of these states were won by Democrats and one by Republicans. 

 
2. Following the suggestion on page 419, rewrite the CountVotes.py program so 

that it uses a class to store the information for each state.  Your revised program 
must then read data from a text file instead of a JSON file. 

 
3. Suppose that a bank has hired you as a programmer and given you the task of 

automating the process of converting between different foreign currencies at the 
prevailing rate of exchange.  Every day, the bank receives a file called 
ExchangeRates.json containing the current exchange rates stored in JSON 
format as shown in Figure 12-10 at the top of the next page.  Each value in the 
currencies dictionary is itself a dictionary that specifies the name of the 
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currency and its current exchange rate relative to the dollar.  For example, the 
entry 

 

"GBP": { "name": "Pound sterling", "rate": 1.23586 } 
 

indicates that the three-letter code "GBP" has the name "Pound sterling" and 
is currently trading at 1.23586 dollars to the pound. 

 

Your task in this problem is to write a program that reads conversion requests 
from the user in the form 

 

amount XXX -> YYY 
 

where amount is the monetary value you want to convert, and XXX and YYY are 
the three-letter codes for the old and new currency.  Alternatively, the input line 
may consist of a three-letter currency code, in which case the program should 
report the full name of that currency.  A sample run that illustrates both input 
forms might look like this: 

 

 
 
4. In J. K. Rowling’s Harry Potter series, the students at Hogwarts School of 

Witchcraft and Wizardry study many forms of magic.  One of the most difficult 
fields of study is potions, which is taught by Harry’s least favorite teacher, 
Professor Snape.  Mastery of potions requires students to learn complex lists of 
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ingredients for creating the desired magical concoctions.  Presumably to protect 
those of us in the Muggle world, Rowling does not give us a complete ingredient 
list for most of the potions used in the series, but we do learn about a few, 
including those shown in Figure 12-11. 

 

Design a data structure that encodes the information shown in Figure 12-11 
and then create a Python file that stores that information in JSON form.  Test 
your data structure by writing a console-based program that requests a potion 
name from the user and then displays a list of its ingredients. 

 
5. In recent years, the globalization of the world economy has put increasing 

pressure on software developers to make their programs operate in a wide variety 
of languages.  That process used to be called internationalization, but is now 
more often referred to (perhaps somewhat paradoxically) as localization.  In 
particular, the menus and buttons that you use in a program should appear in a 
language that the user knows. 

 

Your task in this problem is to write a definition for a class called Localizer 
designed to help with the localization process.  The constructor for the class has 
the form 

 

def __init__(self, filename): 
 

The constructor creates a new Localizer object and initializes it by reading the 
contents of the data file.  The data file consists of an English word, followed by 
any number of lines of the form 

 

xx=translation 
 

where xx is a standardized two-letter language code, such as de for German, es 
for Spanish, and fr for French.  Part of such a data file, therefore, might look 
like this: 

 
Localizations.txt 
Cancel 
de=Abbrechen 
es=Cancelar 
fr=Annuler 
Close 
de=Schließen 
es=Cerrar 
fr=Fermer 
OK 
fr=Approuver 
Open 
de=Öffnen 
es=Abrir 
fr=Ouvrir 
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This file tells us, for example, that the English word Cancel should be rendered 
in German as Abbrechen, in Spanish as Ayudar, and in French as Annuler. 

 
Beyond the implementation of the constructor, the only public method you 

need to define for Localizer is 
 

def localize(self, word, language) 
 

which returns the translation of the English word as specified by the two-letter 
language parameter.  For example, if you have initialized a variable localizer 
by calling 

 

localizer = Localizer("Localizations.txt") 
 

you could then call 
 

localizer.localize("Open", "de") 
 

and expect it to return the string "Öffnen".  If no entry appears in the table for a 
particular word, localize should return the English word unchanged.  Thus, OK 
becomes Approuver in French, but would remain as OK in Spanish or German. 

 
6. In its current implementation, the TeachingMachine.py program provides no 

feedback when the user gives an incorrect answer.  Design a strategy to allow the 
course designer to specify an optional message along with each possible 
response.  If this message exists in the data file, the program should display that 
message before asking the next question. 

 
7. Modify and extend the TeachingMachine.py program so that it plays a more 

interesting Adventure game.  Implementing the following changes should allow 
you to reproduce the transcript from Willie Crowther’s original Adventure game 
shown in Figure 12-12 on the next page: 

 

• Change the names of the modules and data structures so that they are 
appropriate for the Adventure game.  Your code, for example, should define 
classes like AdventureGame and AdventureRoom instead of TMCourse and 
TMQuestion, which don’t make sense in the context of Adventure. 

• Add a short description to the data file for the rooms so that the player sees 
the long description of a room only on the first visit.  You should also add a 
LOOK command that prints the long description. 

• Add objects to the game.  The code that works with objects should be 
data-driven, which means that you need to design an external data structure 
that keeps track of at least the following information: the word used to refer 
to the object, a description of the object, and the name of the room in which 
the object is initially located. 
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AdventureFigure.png 
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• Implement the user commands TAKE, DROP, and INVENTORY that allow the 
player to work with objects.  For example, the command TAKE KEYS should 
take the keys from the current room and add them to the player’s collection, 
DROP KEYS should leave the keys in the current room, and INVENTORY should 
display the descriptions of the objects the player is carrying. 

• Make it possible to create interesting puzzles by allowing the player to move 
through a passage only if the player is carrying some object.  In the original 
Adventure game, for example, it is possible to go down from the room named 
OutsideGrate only if you are carrying the object whose name is KEYS.  The 
required object must be included in the data file as part of the passage 
description.  One approach is to allow the pairs of directions and destination 
names to include an optional third component, as in 

 

DOWN: BeneathGrate/KEYS 
 

• Design and implement a mechanism for defining synonyms so that, for 
example, the player can use the single-letter compass points N, E, S, and W 
instead of having to enter the entire word. 

• Add any other features that you think would make for an exciting game. 
 



 
 

C H A P T E R  1 3  
Inheritance 

 

[I remember the exact moment] when the concept of 
“inheritance” (or classes and subclasses) had been created.  I 
realized immediately that this was the solution to a very 
important problem Ole-Johan Dahl and I had been struggling 
with for months and weeks.  And sure enough, inheritance has 
become a key concept in object-oriented programming, and 
thus in programming in general. 

—Kristen Nygaard, address at the IRIS 19 conference, 1996 
 
 

   
 Kristen Nygaard (1926–2002) Ole-Johan Dahl (1931–2002)  
 

Norwegian computer scientists Kristen Nygaard and Ole-Johan Dahl developed the central ideas of 
object-oriented programming more than 50 years ago as part of their work on the programming language 
SIMULA.  Early versions of SIMULA appeared in the early 1960s, but the stable version of the language 
that brought these concepts to the attention of the world appeared in 1967.  The initial work on SIMULA was 
carried out at the Norwegian Computing Center, a state-funded research laboratory in Norway focusing on 
developing better software-engineering techniques.  Both later joined the faculty at the University of Oslo.  
Although their work took several decades to become established in the industry, interest in object-oriented 
techniques has grown considerably in the last three decades, particularly after the release of modern object-
oriented languages like C++ and Java.  For their contributions, Nygaard and Dahl received both the 2001 
Turing Award from the Association for Computing Machinery and the 2001 John von Neumann Medal from 
the Institute of Electrical and Electronic Engineers. 
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Object-oriented languages like Python are characterized by two properties: 
encapsulation and inheritance.  Chapter 10 covers encapsulation in detail, but you 
have not as yet had the opportunity to learn about Python’s model of inheritance in 
which a class acquires characteristics from other classes at higher levels in the 
programming analogue of a family tree.  This chapter begins by introducing the 
concept of inheritance in the biological world and then moves on to show how the 
biological metaphor applies in the programming domain. 
 

 13.1 Class hierarchies 
One of the defining properties of object-oriented languages is that they allow you to 
specify hierarchical relationships among classes.  Those hierarchies are reminiscent 
of the biological classification system developed by the eighteenth-century Swedish 
botanist Carl Linnaeus as a means of representing the structure of the biological 
world.  In Linnaeus’s conception, living things are first subdivided into kingdoms.  
Each kingdom is further broken down into the hierarchical categories of phylum, 
class, order, family, genus, and species.  Every species belongs not only to its own 
category at the bottom of the hierarchy but also to a category at each higher level. 
 

This biological classification system is illustrated in Figure 13-1 at the top of the 
next page, which shows the classification of the common black garden ant, whose 
scientific name, Lasius niger, corresponds to its genus and species.  This species of 
ant, however, is also part of the family Formicidae, which is the classification that 
identifies it as an ant.  If you move upward in the hierarchy from there, you discover 
that Lasius niger is also of the order Hymenoptera (which includes bees and wasps), 
the class Insecta (which consists of the insects), and the phylum Arthropoda (which 
also includes, for example, shellfish and spiders). 
 

One of the properties that makes this system of biological classification useful is 
that all living things belong to a category at every level in the hierarchy.  Each 
individual life form therefore belongs to several categories simultaneously and 
inherits the properties that are characteristic of each one.  The species Lasius niger, 
for example, is an ant, an insect, an arthropod, and an animal—all at the same time.  
Moreover, each individual ant shares the properties that it inherits from each of those 
categories.  One of the defining characteristics of the class Insecta is that insects have 
six legs.  All ants must therefore have six legs because ants are members of that class. 
 

The biological metaphor also helps to illustrate the distinction between classes and 
objects.  Although every common black garden ant has the same biological 
classification, there are many individuals of the common-black-garden-ant variety.  
In the language of object-oriented programming, Lasius niger is a class and each 
individual ant is an object. 
 

 
Carl Linnaeus 
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Class structures in Python follow much the same hierarchical pattern, as illustrated 
in Figure 13-2 at the top of the next page, which shows the relationships among the 
classes in the graphics library.  The GWindow class is in a category by itself.  The other 
class at the top of the diagram is a class called GObject, which you have not yet seen 
but in some sense have been using all along.  The GObject class forms the top of a 
hierarchy that encompasses every graphical object that can be displayed in a 
GWindow.  The classes that represent graphical objects are descendants of GObject, 
some directly and some through an intermediate GFillableObject class that 
encompasses the classes that have a fillable interior. 
 

The diagram in Figure 13-2 illustrates several aspects of a standard methodology 
for illustrating class hierarchies called the Universal Modeling Language or UML.  
In a UML diagram, each class appears as a rectangular box whose upper portion 
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GObjectHierarchyUML.png 
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contains the name of the class.  The methods implemented by that class appear in the 
lower portion of the box.  The hierarchical relationships among the classes are 
indicated using arrows with open arrowheads that point from one class to another 
class at a higher level of the hierarchy.  The class that appears lower in the hierarchy 
is a subclass of the class to which it points, which is called its superclass. 
 

In an object-oriented language, each subclass inherits the methods that apply to 
its superclasses all the way up through the top of the hierarchy.  The GRect class, for 
example, inherits all the methods in GFillableObject, which in turn inherits all the 
methods from GObject.  Given an instance of the GRect class, you can call 
set_fill_color because that method appears in GFillableObject.  Similarly, you 
can call set_color, which is defined one level further up in GObject. 
 

In the UML diagram in Figure 13-2, the names of the classes GObject and 
GFillableObject appear in italics.  This notation is used to define an abstract class, 
which is a class that is never used to create an object but instead acts as a common 
superclass for concrete classes that appear beneath it in the hierarchy.  Because 
GObject is abstract, you never create a GObject but instead create one of its concrete 
subclasses. 
 

In addition to the methods it inherits from its superclass, each class in a hierarchy 
can implement additional methods that are specific to that class.  For example, the 
idea of a font applies only to the GLabel class, which means that the set_font 
method is defined for that class and not at some higher level of the inheritance 
hierarchy.  By contrast, the set_filled method applies only to the classes that 
descend from GFillableObject and not to the other GObject subclasses.  It 
therefore makes sense to define set_filled in GFillableObject so that the 
definition is inherited by the GRect, GOval, GArc, and GPolygon classes. 
 

 13.2 Defining an employee hierarchy 
Although the simple model for keeping track of employee data used in Chapter 10 
might work for a two-person firm like Scrooge and Marley, large companies have 
different classes of employees that are similar in some ways but different in others.  
For example, a company might have hourly, commissioned, and salaried employees.  
Since those employee categories will share some information, it makes sense to define 
methods like get_name and get_title that work for all employees.  By contrast, 
calculating the pay for each class of employee differs according to the employee type.  
A get_pay method must therefore be implemented separately for each subclass of 
Employee.  This model suggests that the class hierarchy used to represent employees 
might look something like the UML diagram in Figure 13-3 at the top of the next 
page. 
 



450     Inheritance 

 

The root of this hierarchy is Employee, which defines the methods common to all 
employees.  The Employee class exports get_name and get_title, which the 
subclasses then inherit.  Each subclass, however, must define its own get_pay 
method, because the computation is different.  Hourly employees are paid based on 
the number of hours and an hourly rate, commissioned employees receive a base 
salary plus a commission on sales, and salaried employees receive a fixed salary. 
 

Even though get_pay is defined in each subclass, it is useful to record the fact that 
every employee has a get_pay method, even though its implementation differs.  The 
UML diagram therefore includes a get_pay method in the Employee class, even 
though that method is implemented at a lower level.  The names of the Employee 
class and the get_pay method are set in italic type to indicate that these are abstract 
entities that act as placeholders for the concrete definitions. 
 

Figures 13-4 and 13-5 on the next two pages define a simple Employee class and 
its HourlyEmployee subclass.  (You will have a chance to implement the other two 
subclasses in exercise 1.)  The Employee class has much the same form as it did in 
Figure 10-1.  The structure of the subclass definition is similar, but includes the name 
of the superclass in parentheses after the subclass name, like this: 
 

class HourlyEmployee(Employee): 
 

In most cases, a subclass constructor must explicitly invoke the constructor for its 
superclass to ensure that the object is properly initialized.  The first line of the 
__init__ method for the HourlyEmployee subclass therefore looks like this: 
 

def __init__(self, name, title): 
    Employee.__init__(self, name, title) 
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Employee-py.png 
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Because the get_pay method is part of the specification for the Employee class itself, 
the definition of Employee in Figure 13-4 also defines a get_pay method, which 
raises the built-in NotImplementedError exception to indicate that the get_pay 
method is not defined at the level of the Employee class.  Fortunately, this error 
condition will never occur as long as the client uses the Employee class hierarchy 
correctly.  Because Employee is an abstract class, clients will not call its constructor 
but will instead create one of its concrete subclasses.  Each of those subclasses must 
replace the default version of get_pay with one that calculates the employee’s pay 
appropriately.  In object-oriented programming, the process of having a subclass 
replace an inherited method definition is called overriding. 
 

Python includes a built-in function isinstance, which is the preferred strategy 
for checking the type of a value.  A call to isinstance(value, type) returns True if 
value is an instance of type or any of its subclasses, and False otherwise. 
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 13.3 Extending the graphics classes 
As you saw in Figure 13-2, the classes in the graphics library form an inheritance 
hierarchy in which classes like GRect, GOval, and GLabel extend a more general 
class called GObject.  You can easily extend this hierarchy by defining new classes 
that build on the existing ones.  For this purpose, the two classes that offer the greatest 
possibilities for extension are GPolygon and GCompound, and you will have the 
opportunity to see examples of both in the sections that follow. 
 
Extending the GPolygon class 
In a way, you have already seen examples of programs that create new GObject 
subclasses, although you didn’t at the time have the necessary vocabulary to see them 
in that light.  Consider, for example, the create_star function, which appears in 
Figure Error! Reference source not found.-12 on page 184.  That function creates 
an empty GPolygon object and then adds the necessary edges to create a five-pointed 
star, which is then returned to the client.  It is, however, equally reasonable to think 
of this function as a constructor for a new GPolygon subclass that appears on the 
graphics window as a star.  Figure 13-6 at the top of the next page contains much the 
same code as Figure 6-12 but defines the operation as creating an instance of a new 
GObject subclass instead of a new graphical object. 
 

As a subclass of GPolygon, the GStar class implements the set_filled and 
set_fill_color methods, which makes it possible to display a gold star outlined in 
black at the center of the graphics window by executing the following function: 
 

def draw_outlined_gold_star(): 
    gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT) 
    cx = gw.get_width() / 2 
    cy = gw.get_height() / 2 
    star = GStar(STAR_SIZE) 
    star.set_filled(True) 
    star.set_fill_color("Gold") 
    gw.add(star, cx, cy) 

 
Calling this function produces the following output on the graphics window: 
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Extending the GCompound class 
The GCompound class turns out to be an even more useful platform for designing 
extended classes than GPolygon because it allows you to combine several graphical 
objects into a single object that acts as an independent unit.  As a simple example, 
you can extend GCompound to create a new class called GTextBox that consists of a 
rectangular box that includes a text string centered inside the frame. The code for the 
GTextBox class itself appears in Figure 13-7.  Once you have defined the GTextBox 
class, you can use the following program to display a box containing the string 
"Hello" in the middle of the window: 
 

def hello_box(): 
    gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT) 
    cx = gw.get_width() / 2 
    cy = gw.get_height() / 2 
    box = GTextBox(BOX_WIDTH, BOX_HEIGHT, "Hello") 
    gw.add(box, cx - BOX_WIDTH / 2, cy - BOX_HEIGHT / 2) 
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The output of this program is an 80 ´ 40 box containing the string "Hello" at the 
center of the graphics window, like this: 
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In addition to the constructor that creates the GCompound along with the GRect 
and GLabel objects it contains, the GTextBox class exports three additional 
methods—set_line_color, set_fill_color, and set_text_color—that control 
the colors of internal components.  Each of these methods redirects the client’s 
request to the graphical object that is responsible for displaying that feature.  The 
set_line_color and set_fill_color methods pass those messages along to the 
GRect object stored in the local variable frame, and the set_text_color method 
sends the appropriate message to the GLabel stored in the variable label.  Passing 
an operation along to an object stored inside a class is called forwarding. 
 

 13.4 Decomposition and inheritance 
The DrawHouse.py program in Figure 4-11 offers an illustration of how to apply the 
idea of decomposition to drawing a house, by dividing the program into smaller 
functions to draw the frame, the doors, and the windows.  Suppose instead that you 
want to write a graphical program that creates the following picture of a three-car 
train consisting of a black engine, a green boxcar, and a red caboose: 
 

 
 
How would you go about designing such a program? 
 

If you use a decomposition strategy similar to the one described in Chapter 4, you 
would implement this program by dividing it up into separate functions such as 
draw_engine, draw_boxcar, and draw_caboose.  Each of these functions could in 
turn be broken down into functions that draw parts of each car, particularly when the 
same code can be shared by more than one type of car.  That strategy, however, has 
a serious drawback that was not so serious in drawing a house.  While houses tend to 
stay in one place, trains are designed to move.  If you want to animate the train, you 
need to have your program change the position of every graphical object in the 
diagram on each time step.  It would be much better if the train were a GCompound 
that you could animate as a single unit. 
 

Fortunately, the strategy of decomposition is not limited to functions.  In many 
cases, it is equally useful to decompose a problem by creating a hierarchy of classes 
whose structure reflects the relationships among the objects.  For this application, it 
makes sense to define a Train class as a subclass of GCompound so that it acts as a 
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single graphical object.  The individual cars that form a train can then be objects of a 
class called TrainCar, which is also a subclass of GCompound.  The three different 
types of train cars then become subclasses of TrainCar. 
 

At this point, it helps to think carefully about the decomposition.  In particular, it 
often makes sense to look for subtasks that recur in multiple subclasses.  To see how 
that strategy might apply in the current problem, it’s worth taking another look at the 
three different types of cars: 
 

 
 

If you look at the diagrams for these three cars, you will see that they share a 
number of common features.  The wheels are the same, as are the connectors that link 
the cars together.  In fact, the body of the car itself is the same except for the color.  
Each type of car shares a common framework that looks like this: 
 

 
 

Thus, if you fill the interior of the car with the appropriate color, you can use it as the 
foundation for any of the three car types.  For the engine, you need to add a 
smokestack, a cab, and a cowcatcher.  For the boxcar, you need to add doors.  For the 
caboose, you need a cupola. 
 

To make it possible to draw cars in any color, the simplest approach is to have the 
TrainCar constructor take a color parameter that specifies the fill color of the gray 
box shown in the most recent diagram.  Individual subclasses can then choose 
whether to make a specific decision about color, which might be that engines are 
always black and cabooses are always red, or to pass that choice on to the subclass.  
The Boxcar subclass, for example, can also take a color parameter and then pass it 
along to the TrainCar constructor. 
 

The fact that each car has two wheels suggests that defining a TrainWheel class 
will simplify the TrainCar class by allowing the code for creating a wheel to be 
shared.  Putting all these ideas together gives rise to the class hierarchy shown in 
Figure 13-8.  Every class in the UML diagram is a GObject and can therefore be 
displayed on the graphics window. 
 

Given this design, you can assemble the three-car train shown at the beginning of 
this section using the following code: 
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train = Train() 
train.append(Engine()) 
train.append(Boxcar("Green")) 
train.append(Caboose()) 

 
The first line creates an empty train, and the remaining lines add an engine, a green 
boxcar, and a caboose to the end of the train.  To center the train at the base of the 
window, you can take advantage of the fact that the Train class inherits the 
get_width method from GObject.  You can therefore simply ask the train how long 
it is and then subtract half its width from the coordinates of the center of the window. 
 

The Train object created in this snippet of code is a GCompound that contains 
every graphical object that appears in the window.  If you want the train to move, all 
you have to do is animate the location of the GCompound, since all of its pieces will 
move together with the top-level compound. 
 

The code to create and animate this train appears in Figure 13-9 on the next two 
pages.  The implementation includes the class definitions for Train, TrainCar, 
TrainWheel, and Boxcar.  You will have the chance to implement the Engine and 
Caboose subclasses in exercise 8. 



 13.4 Decomposition and inheritance     459 

 

DrawTrain-py-p1.png 
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DrawTrain-py-p2.png 
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 13.5 Unit testing 
In software engineering, a unit test is a section of code associated with a single 
module that checks if it is functioning correctly, independent of its connections to 
other modules in an application.  You have been writing unit tests ever since 
Chapter 2 using test functions with assert statements to demonstrate that the other 
functions in the module produce the correct results.  And although the assertion-based 
strategy is all you need in the context of an introductory programming course, Python 
supports a more sophisticated model for writing such tests through the unittest 
library, which uses inheritance in an interesting way. 
 

The unittest library exports a TestCase class, which you then extend to write 
the unit tests for your own modules.  Each subclass defines one or more test methods 
beginning with the prefix test.  When you call unittest.main() at the end of the 
module, the unittest framework goes through the Python environment, finds all the 
subclasses of TestCase; for each of those, the framework finds all the test methods, 
and then calls each one to see whether it succeeds. 
 

Each of the test methods performs its checking by calling one of the methods 
defined in the TestCase class, which are therefore inherited in your subclass.  
Figure 13-10 lists the various assert methods available in the TestCase class. 
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As an example, the following test program verifies a few simple properties of 
Python’s arithmetic operators: 
 

import unittest 
 

class TestArithmeticOperators(unittest.TestCase): 
 

    def test_arithmetic_operators(self): 
        self.assertEqual(2 + 2, 4) 
        self.assertEqual(10 - 5, 5) 
        self.assertEqual(2 * 3, 6) 
        self.assertEqual(6 / 4, 1.5) 
        self.assertEqual(6 // 4, 1) 
        self.assertIsInstance(4 / 2, float) 
        self.assertIsInstance(4 // 2, int) 
        with self.assertRaises(ZeroDivisionError): 
            4 // 0 

 

unittest.main() 
 

The last two lines in the test_arithmetic_operators method illustrate the 
standard usage pattern for the assertRaises method, which checks whether the code 
inside the with body raises the specified exception type. 
 

You have probably noticed that the names of the various assert methods in the 
unittest library use camel-case names instead of the standard snake-case style that 
Python coders prefer.  Python’s guidelines offer at least some flexibility on this point.  
Camel-case function and method names are allowed “in	 contexts	 where	 that's	
already	 the	 prevailing	 style	 to	 retain	 backwards	 compatibility.”	 	 Python’s	
unittest library is adapted from Java’s JUnit library developed by Kent Beck and 
Erich Gamma, which is in turn derived from a similar package in Smalltalk.  Those 
packages for other languages use camel-case names, and maintaining that style makes 
it easier to implement unit testing in multiple languages. 
 

The code in Figure 13-11 on the next page offers a more extensive example in the 
form of a test suite for the Pig Latin translator.  The unit test appears entirely within 
the startup boilerplate, which ensures that none of the test code—including the import 
of the unittest library—is executed unless the module is run from the command 
line, which triggers the test operation.  Running the piglatin.py module as a main 
program generates the following output: 
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 13.6 Deciding when to use inheritance 
Although inheritance is a powerful concept that is ideal for many applications, it can 
easily be overused.  Before deciding to implement a class hierarchy, it is important to 
think carefully about whether that design is appropriate.  Quite often, it is not. 
 

The best illustration I can offer of where inheritance is misused comes from 
several textbooks that suggest the example of a “pizza” class hierarchy, presumably 
because some students pay more attention when pizza is involved.  In this model, the 
base of the hierarchy is a Pizza class, which takes care of those features—such as a 
crust, a tomato base, and cheese—that are common to all pizzas, or at least to those 
pizzas supported by the model.  Different types of pizzas are then represented as 
subclasses of the Pizza class.  For example, if your list of available toppings included 
pepperoni and mushrooms, you might envision a class hierarchy like this: 
 

 
 

So far, so good.  I can believe that pepperoni pizzas and mushroom pizzas are both 
subclasses of a more general Pizza class.  The situation, however, gets more 
complicated if your customers want pizzas with more than one ingredient.  What 
happens if someone orders a pizza with pepperoni and mushrooms.  In languages like 
Python that support multiple inheritance (which is beyond the scope of this book), 
you might try to extend the class hierarchy by defining a PepperoniMushroomPizza 
class that inherits from both the PepperoniPizza and MushroomPizza classes. 
 
 

The problem with this strategy is that the PepperoniMushroomPizza class is not 
really a subclass of those parents.  The subclass relationship should allow you to 
substitute the words “is a” in place of the subclass arrow.  In the Portable Graphics 
Library, for example, a GRect is a GFillableObject, which in turn is a GObject.  
Similarly, an ant in the biological hierarchy shown in Figure 13-1 is an insect and an 
animal.  If for no other reason than the fact that it is no longer vegetarian, a 
pepperoni-and-mushroom pizza is not a mushroom pizza, no matter how you slice it. 
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What you really want to represent a range of different pizzas is not a hierarchy at 
all but instead a single Pizza class that includes a list of ingredients as part of its 
state.  The Pizza class could then simply export an add_topping method that would 
allow the client to add any number of toppings to the base.  Inheritance is simply out 
of place in this example. 
 

As an example that stands in contrast to the misguided attempt to create a pizza 
hierarchy, consider how you might build a hierarchy of the various droids that exist 
in the Star Wars universe.  The original movie introduced two lovable droids, R2-D2 
and C-3PO, who provided a sense of continuity by appearing in all of the nine films 
that made up George Lucas’s original vision.  The two droids, however, are different 
in many ways.  C-3PO introduces itself as a  “cyborg” in that first film, and the many 
Star Wars sites on the web inform us that R2-D2 is an  “astromech.”  In later films, 
we meet other droids in each of these classes.  The Force Awakens brings us into 
contact with another astromech, the roly-poly BB-8.  Rogue One introduces a cyborg 
with the designation K-2SO. 
 

These droid subclasses have different behavior.  Cyborgs can communicate in 
human languages, while astromechs communicate in a binary language of beeps and 
whistles.  Unsurprisingly, give their structural resemblance to humans, droids walk 
upright on two legs, while astromechs exhibit a variety of strategies for movement. 
 

The fact that these behaviors are often associated with a class of droid rather than 
a specific model makes using a class hierarchy much more appropriate.  All droids 
“talk” in some fashion, but that communication is implemented differently for 
cyborgs and astromechs suggests that those two classes would require a different 
implementation of a talk method.  And while a single implementation of a move 
method could presumably be shared by all cyborgs, that method would have to be 
specified at a lower level to account for R2-D2’s strategy of rotating and then rolling 
forward and BB-8’s more flexible model of rolling in any direction. 
 

Figure 13-12 at the top of the next page suggests a hierarchy for droids that 
accommodates both their differences and their commonalities.  All droids respond to 
the methods move and talk, even though the implementations of those methods 
appear at different levels in the hierarchy. 
 

As a general rule, inheritance makes sense when the classes you are working with 
have the following two properties: 
 
1. The classes exhibit a clear hierarchical structure in which the “is a” relationship 

holds between every subclass and its parent. 

2. You can identify shared behavior at higher levels of the hierarchy, which makes 
it appropriate to define methods that can then be inherited by the subclasses. 
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 Summary 
This chapter includes a brief introduction to the idea of inheritance in Python along 
with some appropriate examples.  Important points in this chapter include the 
following: 
 
• Classes in an object-oriented language form hierarchies in which classes at lower 

levels inherit the methods defined by the classes above them in the hierarchy. 

• The immediate descendants of a class are called its subclasses. The immediate 
ancestor of a class is called its superclass. 
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• Classes that form part of the inheritance hierarchy but do not correspond to any 
actual objects are called abstract classes. 

• The Universal Modeling Language or UML provides a notational structure for 
representing the relationships in a class hierarchy.  Each subclass in a UML 
diagram is connected to its superclass using an arrow with an open arrowhead. 

• The graphics library presented in Chapters 4 and 6 uses the class hierarchy shown 
in the UML diagram in Figure 13-2 on page 360.  That hierarchy includes two 
abstract classes—GObject and GFillableObject—that serve to unify graphical 
objects that share a set of common operations. 

• You can implement a subclass in Python by including the name of its superclass 
in parentheses as part of the class definition.  The constructor for a subclass should 
begin by calling the constructor of the superclass. 

• The best way to check the type of a value is to call isinstance(value, type), 
which returns True if value is an instance of type or any of its subclasses. 

• The classes in the graphics library, especially GPolygon and GCompound, offer 
useful starting points for inheritance relationships as illustrated by the GStar, 
GTextBox, and DrawTrain programs in Figures 13-6, 13-7, and 13-9. 

• Inheritance allows you to apply the principles of top-down design and stepwise 
refinement in the data domain. 

• Testing the behavior of a single module independently is called unit testing.  
Python supports unit testing through the unittest library.  Clients of the 
unittest library write a suite of test methods as part of a class that extends 
unittest.TestCase.  The test methods use the various assert methods listed 
in Figure 13-10 to check that the module is producing correct results. 

• Inheritance can easily be overused.  In general, class hierarchies make sense only 
when the classes exhibit a clear hierarchical structure and when you can identify 
shared behavior that can be inherited by classes at lower levels in the hierarchy. 

 

 Review questions 
1. Choose a favorite animal and add it to the biological hierarchy in Figure 13-1.  

To find the appropriate place in the hierarchy, you will need to use the web to 
look up its phylum, class, order, family, genus, and species. 

 
2. Define the terms subclass and superclass. 
 
3. True or false: A subclass inherits the methods in its superclass along with those 

of all its superclasses in the inheritance hierarchy. 
 
4. What does UML stand for? 
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5. How is the relationship between subclasses and superclasses represented in a 
UML diagram? 

 
6. How can you determine what methods a class in a UML diagram supports? 
 
7. What is an abstract class? 
 
8. In your own words, explain the purpose of the GFillableObject class in the 

graphics hierarchy shown in Figure 13-2. 
 
9. The implementation of get_pay in the Employee class signals failure by raising 

an error exception.  What keeps this error from occurring if the client uses the 
employee hierarchy correctly? 

 
10. When you are defining a subclass in Python, how do you specify its superclass? 
 
11. How does a subclass trigger the initialization of its superclass? 
 
12. What term is used to describe the process of providing a new definition for a 

method to replace one defined in a superclass? 
 
13. What built-in Python method should you use to determine whether a value is an 

instance of a particular type? 
 

14. Which two classes in the Portable Graphics Library are most likely to serve as 
the basis for extension? 

 
15. What is meant by the term forwarding? 
 
16. The Train class in Figure 13-9 exports a method called append to add a car to 

the end of the train.  Would it have worked just as well to use add as the name 
of this method? 

 
17. How does unit testing differ from any other kind of testing? 
 

18. What class in the unittest library forms the foundation of the unit tests you 
write for your own modules? 

 
19. How do you check that a computation raises an expected exception in a test 

method constructed using the unittest library? 
 
20. Why does the unittest library use camel case for the assert methods instead 

of snake case, which is more conventional in Python? 
 
21. True or false: Inheritance is often overused in programming applications. 
 
22. What two criteria does the chapter suggest for determining whether inheritance 

is an appropriate strategy when defining a data structure? 
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 Exercises 
1. Complete the definition of the Employee hierarchy from Figures 13-4 and 13-5 

by defining CommissionedEmployee and SalariedEmployee. 
 
2. Inheritance comes up naturally in many games.  If you are writing a chess 

program, for example, you can represent the pieces by defining an abstract 
ChessPiece class along with the subclasses King, Queen, Rook, Bishop, 
Knight, and Pawn for the different piece types, as shown in  The ChessPiece 
class keeps track of the color and location of the piece.  Each of the subclasses 
extends ChessPiece by implementing the moves for that piece. 

 

The following diagram shows the pieces in their initial locations: 
 

 
 

Chess players identify each square on the board using a two-character string that 
combines a letter indicating the column and a digit indicating the row.  For 
example, the white queen is initially on square d1. 
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Implement the classes shown in the UML diagram in Figure 13-13.  The 
constructors for the concrete classes take an argument bw, which is either "B" or 
"W", and an argument sq, which is the two-character string identifying the 
square.  The get_moves method should return an array of all the two-character 
locations to which that piece could move from its current square, assuming that 
the rest of the board were empty.  Figure 13-14 shows how the different pieces 
move, in case you are unfamiliar with the rules of chess.  The white pieces can 
move to any of the squares marked with an ´, and the black pieces can move to 
any square marked with an ¡.  The white pawn in the last diagram can move 
either one or two squares because it is in its initial position on row 2, but the 
black pawn can only move one square because it not in its starting position. 

 
3. Create a new GRegularPolygon class that extends GPolygon so that it is easy 

to represent a regular polygon, which is a polygon whose sides all have the same 
length and whose angles are equal.  The GRegularPolygon constructor should 
take two parameters: sides, which indicates the number of sides, and radius, 
which indicates the distance from the reference point at the center to any of its 
vertices.  The polygon should be oriented so that it is flat along the bottom.  For 
example, calling GRegularPolygon(5, 25) should create a GRegularPolygon 
object that looks like this: 
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Similarly, calling GRegularPolygon(200, 25) should create a 200-sided 
polygon whose appearance—at least at the scale of the graphics window—is 
indistinguishable from that of a circle of radius 25. 

 

4. Use the GRegularPolygon class from the preceding exercise to create a 
GStopSign class that create a picture that looks like this: 

 

 
 
5. Extend the GTextBox class from Figure 13-7 so that it exports a set_font 

method that resets the font used for the text string.  Because changing the font 
typically changes the dimensions of the label, the implementation of set_font 
will need to adjust the position of the label within the box. 

 

6. Implement a GCompound subclass called GVariable class that makes it easy to 
draw box diagrams of variables on the graphics window.  The methods 
implemented for GVariable appear in Figure 13-15.  The reference point for the 
GVariable should be the upper left corner of the variable box. 
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7. Complete the implementation of the DrawTrain.py program in Figure 13-9 by 
writing definitions for the Engine and Caboose classes.  Update the main 
program so that the train includes an engine, a green boxcar, an orange boxcar, 
and a caboose. 

 

8. In Chapter 6, you had the chance to work with several programs that let you 
create shapes by dragging the mouse on the graphics window.  Using those 
programs as a starting point, create a more elaborate DrawShapes.py program 
that displays an onscreen menu of five shapes—a filled rectangle, an outlined 
rectangle, a filled oval, an outlined oval, and a straight line—along the left side 
of the window, as shown in the following diagram: 

 

 
 

Clicking one of the squares in the menu chooses that shape as a drawing tool.  
Thus, if you click the filled oval in the middle of the menu area, your program 
should draw filled ovals.  Clicking and dragging outside the menu should draw 
the currently selected shape. 

 

9. Use the unittest library to update the testing code in the quadratic.py 
module presented in Figure 3-10.  You should also change the implementation 
of find_quadratic_roots so that it raises a ValueError exception if the 
equation has no real roots and then check for that behavior in your unit test code. 

 

Use the unittest library to write a comprehensive unit test for your revised 
implementation of solve_quadratic. 

 

10. Use the unittest library to write a unit test for the rational.py module that 
appears in Figure 10-6 on page 338.  The hard part of this exercise consists of 
designing a good set of test methods that cover enough possibilities to give both 
the implementers and the clients of the rational library confidence that it is 
behaving correctly. 

 
11. In the 1990s, my Stanford colleague Nick Parlante developed a wonderful 

simulation game that not only involves inheritance but also pays tribute to the 
evolutionary metaphor from which the idea of inheritance is derived.  The 
Darwin game operates in a rectangular grid that looks like this: 
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This sample world is populated with twenty creatures, ten of a species called 
Flytrap and ten of a species called Rover, each of which is identified by the first 
letter in its name.  The orientation is indicated by the shape surrounding the letter; 
the creature points in the direction of the arrow.  Each creature runs a program 
that is particular to its species.  Thus, all Rovers behave in the same way, as do 
all Flytraps, but the behavior of one species is different from that of the other. 

 

As the simulation proceeds, every creature gets a turn.  On its turn, a creature 
executes one of the actions shown in the first section of Figure 13-16 at the top 
of the next page.  As soon as one of these actions is completed, the turn for that 
creature ends.  When every creature has had a turn, the process begins again. 

 

If one creature is facing another creature of a different species in the next 
square, the first creature can “infect” the second, which turns the infected 
creature into an instance of the infecting one.  The goal for each species in the 
Darwin game is to infect as many creatures as possible. 

 

The program for each species is represented as an array of strings, each of 
which is one of the statements in Figure 13-16.  The program for the Flytrap 
creature, for example, consists of the following five-element array: 

 
[                       # Index 
    "if_different 3",   #   0 
    "turn_right",       #   1 
    "goto 0",           #   2 
    "infect",           #   3 
    "goto 0"            #   4 
] 
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Each creature instance keeps track of the index of the current instruction in 
this program, which always begins at 0 when a creature is created.  On a turn, the 
creature executes instructions until one of the Darwin actions occurs.  The 
Flytrap creature, for example, begins by executing the "if_different 3" 
instruction at index 0 in the array.  If the Flytrap is facing a creature of a different 
species, it goes to the "infect" instruction at index 3 and executes that 
operation.  If the if_different instruction does not apply, the creature 
continues with the "turn_right" instruction at index 1.  In either case, this 
creature’s turn ends after executing the action.  On its next turn, the creature 
begins by executing one of the "goto 0" instructions, which sends the program 
back to the top.  The Flytrap creature therefore rotates clockwise until it sees a 
creature of a different species, in which case it infects it to make it a Flytrap. 
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 Your job in this exercise is to implement both the Darwin file that runs the 
simulation and the Creature class, which is the abstract superclass of Flytrap 
and Rover as well as any other creatures you design.  The definitions of these 
two subclasses appear in Figure 13-17.  Your definition of Creature must 
provide the methods used in these subclasses.  The Creature class is also 
responsible for managing the display of the creature on the graphics window, 
which is most easily accomplished by making Creature a subclass of 
GCompound. 
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The main Darwin program is responsible for the following actions: 
 

• Setting up the graphics window and drawing the grid 

• Initializing the grid by creating 10 creatures of each species and positioning 
them randomly in the grid facing in a random direction 

• Iterating through the grid giving each creature a turn 
 

The most interesting part of this problem is designing new creatures that perform 
well in the survival-of-the-fittest challenge the Darwin game provides. 

 

12. Many applications require some part of the implementation to read commands 
from the user and then perform some operation in response.  If, for example, you 
implemented the Adventure game that appeared as exercise 7 in Chapter 12, you 
needed to implement commands such as LOOK, TAKE, and DROP. 

 

As long as the number of commands you need to recognize is small, you can 
implement the task of interpreting commands using a sequence of if and elif 
statements that compare the command word entered by the user against the 
names of the various commands, like this: 

 

if word.upper() == "LOOK": 
    execute_look_command() 
elif word.upper() == "TAKE": 
    execute_take_command() 
elif word.upper() == "DROP": 
    execute_drop_command() 
. . . and so on . . . 

 

This kind of control structure is called a command dispatch. 
 

A more elegant approach is to use inheritance to create a class hierarchy of 
commands, particularly if several related commands are similar enough that they 
can share parts of their implementation.  The abstract class Command represents 
the top of the hierarchy.  Clients of the command-dispatch library then define 
subclasses, each of which knows how to execute that particular type of command.  
In the case of the Adventure game, for example, you might define concrete 
subclasses called LookCommand, TakeCommand, and DropCommand.  All 
instances of the Command class and its subclasses define a method called execute 
that performs the necessary operation.  If you put each Command object into a 
dictionary with its name as the key, all you need to do to implement the 
command-dispatch operation is select its name from the dictionary and call its 
execute method. 

 

Reimplement the Adventure game (exercise 7 from Chapter 12) using this 
model to execute the predefined commands. 


